
Archives of Mining Sciences 45, 3 (2000) 427 ~438

HENRYK OTWINOWSKI*

STATISTICAL MODELLING OF COMMINUTION PROCESS 

STATYSTYCZNE MODELOWANIE PROCESU ROZDRABNIANIA 

The theoretical analysis of a statistical model of the comminution process is presented
in the paper. Nowadays, one of the most important investigative directions of the
comminution process is mathematical analysis based on population balance, where two
probability functions are inserted: the selective function and the breakage function. The
selective function quantifies probability of particles of a given size crumbling at a single
milling and depends only on the parameters of the breaking load. The selective function can
also be interpreted as the milling velocity of particles. The breakage function expresses the
cumulative size distribution of a single milled product. This function depends on the
physical and mechanical properties of the milled material. In this work the assumptions of
the stochastic model of the comminution process are presented. Theoretical analysis of the
mass-balance equations, containing the breakage function and the selective function, is
presented. The method of experimental determination of both the stochastic functions is
also presented.

Key words: comminution, statistical model, selective function, breakage function, particle
size distribution.

W pracy przedstawiono analizę teoretyczną statystycznego modelu rozdrabniania.
Obecnie jednym z ważniejszych kierunków badawczych, dotyczących procesu rozdrab
niania jest analiza matematyczna oparta na bilansie populacji, w którym występują dwie
funkcje prawdopodobieństwa: funkcja selektywna i funkcja rozdrabniania. Selektywna
funkcja określa prawdopodobieństwo rozdrobnienia ziarna o danym rozmiarze przy
jednokrotnym obciążeniu i zależy tylko od parametrów obciążenia. Selektywną funkcję
można również zinterpretować jako szybkość mielenia ziaren. Funkcja rozdrabniania
wyraża skumulowany skład ziarnowy produktów jednokrotnego rozdrabniania. Funkcja ta
zależy od fizyczno-mechanicznych własności materiału mielonego. W niniejszej pracy
przedstawiono założenia stochastycznego modelu procesu rozdrabniania. Przeprowadzono
analizę teoretyczną równań bilansu masowego zawierających funkcję rozdrabniania i funk-
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cję selektywną. Przedstawiono również metodykę eksperymentalnego wyznaczania obydwu
funkcji stochastycznych.

Słowa kluczowe: rozdrabnianie, modelowanie statystyczne, funkcja selektywna, funkcja
rozdrabniania, skład ziarnowy.

1. Introduction

The comminution process of particles in fragile solid substances is an energy
consuming one currently used in industry. As a result the milling process is the topic
of many research works. The definition of the power demand needed to comminute
particles of a fed material is a particularly important problem in the milling process.
Therefore, the first theories, which aimed to establish the relationship between the
effect of solid substance comminution and the energy used in the milling process,
arose in the second half of the last century. Those theories, defined as hypothesises,
are known by the names of their authors, such as Rittinger (1867), Kick (1885),
Bo n d (1952), Ch ar Ie s (1957), Br ach (1968, 1972). All the above mentioned
theories have a common feature. They relate the energy, which has been supplied to
the particles of a solid substance, with the size reduction rate of this substance during
the process of slow material destruction. The process of solid substance comminution
by stroking the particles with a high velocity has been the subject of further
investigation. The kinetic energy of the substance has played an essential role in the
milling process. According to research it was stated that the power demand at
stroking with high velocities is smaller than at slow comminution (Ch ar 1 es, 1956).
Other theories, i.e. Gu i 11 at (1960), Rinehart (1960) and Huk ki (1975) can also
be mentioned. It should be stated that comminution theories are correct only for
particular equipment and none of them is a universal theory valid for different
processing conditions. Lots of different equations, which definite the power demand
in the comminution process, are used in the design stage of milling equipment. They
can be divided into two groups: the relationship between energy consumption and
the mill size, and the relationship between energy consumption and the degree of
fineness. The first group of equations connects power with capacity and the mill's
other parameters (Rose, 1956, 1961). The second group of equations determines the
specific energy, which is necessary to receive a product, with required comminution
- these are the comminution hypothesises mentioned above. The required power of
the mill is calculated on the basis of specific energy data and the fluid flux of the
milled material data. The use of this type of empirical dependences requires great
experience to avoid or to minimize errors in the design of milling equipment
(Herbst & Fuerstenau, 1980; Tanaka, 1981; Perry, 1984).

Nowadays, mathematical analysis is the most important research direction of the
comminution process. This analysis is based on the balance population, where two
probability functions are present: selective and breakage. The assumptions of the
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stochastic model of the comminution process are shown in this paper. Theoretical 
analysis of the mass-balance equations containing the breakage and the selective 
functions is presented. The method of experimental determination of both stochastic 
functions is also described. 

2. Statistical modelling of the comminution process 

As the material is being ground in a mill, energy is delivered to the particles and as 
a result the particle size distribution of the milled material is changing. The particle size 
distribution of the material can be expressed by R(x) function of cumulative mass 
fraction for the particles bigger than x or by F(x) function of cumulative mass fraction 
for the particles smaller than x. F(x) function is called the particle size distribution 
function. Both F(x) and R(x) functions fulfill a following condition 

R(x) + F(x) = 1. ( 1) 

The supply of energy can take place in a continuous or discrete way. It is assumed 
that the milled material is a material with a particle size distribution function F 0(y). 
Accordingly, in every narrow fraction with an elementary size distribution dF 0(y) 
only those grains, marked as S(y), are comminuted. S(y) function is called the 
selective function. It specifies the probability of comminution of y size particles at 
a single loading and depends on the loading parameters. The selective function can 
be interpreted as the milling velocity of y size particles (Nomura et. al., 1994), so the 
selective function is the measure of mill's capacity and material's susceptibility to 
comminution. It arises from this that the selective function strictly depends on the 
mill's power or milling energy. These particles, equal to B(x, y), in the single 
comminution of material with elementary size distribution dF 0(y), will have a size 
bigger than x size, where y > x. B(x, y) function is called the breakage function. This 
function expresses the cumulative size distribution of the milled product of 
elementary fraction (y, y + dy) and depends on the physical and mechanical proper 
ties of the ground material. Knowing S(y) and B(x, y) functions from the mass 
population balance of particles bigger than x ( occurring in the gro ud product of 
elementary fraction (y, y + dy) with particle size distribution dF 0(y)) one can obtain: 

dF1(x) = dF0(x)+S(y)B(x,y)dF0(y), (2) 

where dF 1(x) - elementary size distribution function of ground product, dF 0(y) 
- elementary size distribution function of non-ground product (it means - the 
grains of the fed material, smaller than x, which have gone into material without 
comminution), S(y)B(x, y) - size distribution function of grinding fed material 
particles bigger than x in the ground product. 
After integrating the above equation one can obtain the expression: 

l 

F1(x) = F0(x)+ J S(y)B(x,y)dF0(y). 
Fo(x) 

(3) 
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Y quantity changes m borders from x to xm - this means that the integration
borders equal:

F0(y = x) = F0(x)}
Fo(Y = xm) = 1.

After differentiating Eq. (3) with respect to x one can obtain the basic equation of
particle size distribution for the comminution function in differential form:

(4) 

Xm 

f1(x) = f0(x)[ 1-S(x)] + Jf0(y)S(y)b(x, y)dy, (5)
X 

where: b(x, y) = - aB(x, y) - differential function of comminution, xm - minimal
ax 

size of milling particles.
Eq. (5) was the topic of theoretical and experimental research by many authors
(Bass, 1954; Brożek et al., 1995; Gardner et Austin, 1962; Luckie et
A ust i n, 1973). The specific forms of the selective and breakage functions were the
results of the above researches. The experimental determination of both probability
functions is shown in the following parts of the article.

3. The determination of the breakage function 

The breakage function can be experimentally determined by an analysis of
particle size distribution in a sample milled material in the case of monofraction
grinding. An experimental examination of the breakage function has been carried out
in the Russian laboratory beater mill QR-VTI type. The mass of the beater has been
constant and equal to 3 kg for all the tests, which were carried out. During the
experiment samples with the mass of 1 g of anthracite with different sizes were
ground. Changes in the specific heat were caused by changes in the height of the beater
falling on the ground sample. The relationship of a specific energy e, supplied to the
sample, to the height of the falling beater is shown in the table. During the experiment
of single milling the samples of anthracite with grain sizes, from 1.6- 2.0 mm
were ground with the application of different values of specific energy (Fig. l, 2). The
range of changes of specific energy e equals 200-5180 J/kg for all the tests which
were carried out. Fig. 1 presents the relationship of F1(1.6) ground material minus
mesh of 1.6 mm with respect to the quantity of supplied specific energy. That
relationship is almost rectilinear in the range of specific energy changes
e = 500-3000 J/kg. A deviation fore< 500 J/kg means that the value of the supplied
energy approaches the threshold energy of a single particle intermolecular interac
tion. A deviation for e > 3000 J/kg can be explained by the over-grinding of the
already broken particles and also by heterogenity of material structure (especially
breaking-up resistance). Fig. 2 shows F 1(x) cumulative size distribution of ground
products for different values of supplied specific energy e. From Fig. 2 it could also
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Fig. I. The relationship of F,(1.6) minus mesh of milled material on the 1.6 mm sieve with respect to 
specific energy e supplied to the anthracite sample with particle sizes 1.6-2.0 mm 
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Fig. 2. The course of F,(x) particle size distribution function of single milling of anthracite samples with 
particle sizes 1.6- 2.0 mm for different values of supplied characteristic energy e 

be stated that the course of the function is linear. A deviation of F1(x) dependence 
from a straight line in Fig. 2 can be explained as follows: 
- for small values of e energy the rounding of sharp particle edges makes the 

products go through the sieve and their size are close to that of the fed material 
sizes, 
- for the biggest values of e energy over-milling of fed material in comparison to 

linear dependence takes place. 
The cumulative curves of particle size distribution of mono-dispersion fed 

material samples with particle sizes from 0.2- 5.6 mm range are shown in Fig. 3. The 
relative size .x with respect to arithmetic mean of fraction particle sizes in the fed 
material is shown on the x-axis 

(6) 
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Fig. 3. The diagram of breakage function B(x, y) for products of mono-dispersion material samples with 
different size 

where 

Y1 +Yi Ym =--2-. (7) 

Identifying the comminution of y1 - y2 narrow fraction with the comminution of 
y = Ym monodispersion material sample, one can conclude that the course of the 
comminution function is linear in the given loading conditions: 

X B(x,y)=-. 
y 

(8) 

On the base on the above results and taking into account the possibility of correcting 
the distribution function, the hypothesis of breakage function linearity could be 
formulated with the help of a suitable selective function. In the case of the differential 
form of the breakage function, the linearity determines the uniform distribution of 
mono-dispersion material of ground products: 

1 
b(x, y) = -. 

y 

The distribution given by Eqs. (8) and (9) assumes the presence of particles with sizes 
near zero in the ground products. As a result, in the calculation of some quantities, 
i.e. the specific surface of power, one can receive values approaching infinity. The 
resistance tests prove that fragmentation breaking-up strength of milling particles 
increases with the decrease of their sizes, and that growth is biggest for the ultrafine 
particles magnitude and the smaller particles do not form at all during milling. 

(9) 
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Assuming the presence of grains with Xmin minimal size in the milled products the 
Eqs. (8) and (9) can be transformed into the following form: 

l 1, 

B(x,y) = x-x . x 
__ m_1n'.::::::'.~ 

y-xmin y 

l O, 

b(x, y) = 1 1 

y-xmin y 

x<xmin 

x>xmin 
(10) 

x<xmin 

X>Xmin 
(11) 

4. The determination of the selective function 

Because of the linear character of the breakage function only the selective 
function can have an influence on the particle size distribution in milled products. 
However, considering the limited possibilities of designing and constructing mills, 
which takes into account any earlier given selective function, the necessity to define, 
at least a general selective function form occurs in the first stage. The relationship 
between the selective function and the well-known comminution theories of 
Rittinger, Kick and Bo n d is examined below. It is assumed that E0 energy (a 
gross energy) is supplied into a mass unit of material with density of particle size 
distribution equal to f0(y). According to the definition of the selective function 
S(y)f0(y)dy mass of particles will be comminuted from all f0(y)dy mass of (y, y + dy) 
size particles, and S(y) - is the value of the selective function given y size. Only 
ground particles are taken into consideration in the determination of the selective 
function in a mass balance. As a result an elementary particle size distribution 
function of dF 1s(x) ground product can be expressed by the following dependence: 

dF 1s(x) = S(y)B(x, y) dF 0(y). 
The fraction of (x,x + dx) size particles in the product 1s equal to: 

f1s(x) = S(y)fo(y)dy' 
y-xmin 

(12) 

(13) 

if the milled products have a uniform distribution in relation to sizes according to 
Eq. (11). It is assumed that the energy distribution, spend on particle milling, in 
relation to the size of the particles formed during comminution is given by p(x, y) 
function, which can be specified on the basis of any comminution theory (R it ti n - 
g er, Kick, Bo n d). This function determines an energy needed for single milling of 
mass unit of fed material and for receiving inquired graining of product (net energy) 
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(Z a w ad a, 1998). p(x, y) function can be called the density function of energy 
distribution. An experimental determination of an amount of energy used for milling 
(net energy) is often distorted by the influence of incidental factor, for instance 
breaking of the particles by falling weight. So gross energy is determined experimen 
tally. The influence of incidental factors is not taken into account in the following 
parts of this paper and both kind of energy: gross and net one are treated 
equivalently. According to this assumption the energy consumption dE(y), needed for 
forming the ground products with (y, y + dy) fraction, can be represented by equation 

(14) 

X • 
min 

In accordance with the results of the tests, carried out by Side n ko (1977), it was 
assumed that E0 energy distributes on the individual size class of the fed material 
proportionally to the mass fraction of those classes in the fed material. 

dE(y) = E0f0(y)dy. (15) 

The solution of Eqs. (14) and (15) in relation to the selective function gives the 
sought expression: 

S(y) = ~o(Y- Xmin). 
J p(x,y)dx 

(16) 

The transformation of Eq. (16) is considered according to three known comminution 
theories: 
1. Rittinger's theory 

According to this theory the comminution energy is proportional to newly-raised 
characteristic surface of the products, so then p(x, y) function takes the form: 

p(x, y) = cR(~-~), 
X y 

(17) 

where cR - is material constant which takes into account grain shapes, material 
density and resistance of grain material to comminution. 
Substituting Eq. (17) into Eq. (16) one can obtain: 

( Eo yEo 
Sy)= cR(ln(y/xmin) -~) = cR(ln_l'__-1)' 

y- X min Y Xmin 

(18) 

where approximate equality meets a condition y/xmin >> 1. 
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2. Bond's theory 
According to this theory the function of energy distribution can be written as: 

(19) 

From Eq. (20) anses 

(20) 

where c8 - factor of proportionality presented in Bond's hypothesis. 
3. Kick's theory 

This theory assumed logarithmic dependence between energy consumption and 
the degree of fineness: 

(21) 

Substituting that relationship into Eq. (16) obtained: 

S(y) = Eo . [1 Xmin 1 Y ] CK ---- n-- 
y-Xmin Xmin 

(22) 

According to Eqs. (18), (20), (22) the course of the selective function is displayed in 
Fig. 4, and these functions intersect at one common point S(l) = 0.88. From Fig. 4 it 
arises that S(y) function for Rittinger's hypothesis is practically rectilinear, this means 
that relationship (18) simplifies into S(y) = ay relationship. The experimental tests of 
mechanical properties of single particles (Side n ko, 1977) prove that those 
properties have a wide scatterring of results even for particles belonging to the 
narrow fraction. This is connected with different shapes of particles, non-uniform 
distribution of defects of grain, crystallographic structure and others physical 
properties. The determination of those properties is very complex. It is for this reason 
that, nowadays, the milling method of a specified and representative sample of 
a particle monofraction is the practical method of determining the selective function. 
The method of determining the selective function, based on experimental 
investigation results, are used to define the fines on the lower sieve, which limit the 
size class of the milled material. The experimental determination of the selective 
function was carried out in a laboratory beater mill QR-VTI type - the same one as 
has been used for determination of the breakage function. Samples of narrow 
fractions with different F(y) = idem sizes and lg mass were ground in the mill. The 
connection between the selective function and particle sizes is displayed in Fig. 5. The 
course of the received curve is compatible with Bond's theory (continuous line). 
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Fig. 4. The course of the selective function in accordance with the three comminution theories 

TABLE 

The relationship of a specific energy e, supplied to the milled sample, to the height of the falling beater in 
the laboratory beater mill QR-VTI type 

h, mm 7 34 48 54 66 88 103 122 176 

e, 1/kg 200 1000 1420 1600 1950 2600 3030 3600 5180 
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Fig. 5. The course of the selective function obtained by the milling narrow fraction of anthracite samples 
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5. Conclusions 

As a result of carried out tests, it was revealed that the breakage function has 
a linear course for homogeneous substances as anthracite (assuming invariance of 
the breakage function from the loading parameters). The theoretical analysis and 
experimental determination of the selective function for a sample milled anthracite 
narrow fractions let us state that the course of the selective function meets Bond's 
hypothesis. 

The form of the selective function can be generalized independently from theory 
by the following formula: 

S(y) = Eo t/l;{y), 
C; 

(23) 

where: c; - constant corresponding to particular theory (for example cR, c8, cK), 
t/J; - the function of energy distribution in relation to fraction. 
Eq. (23) enables passage from discrete to continuous comminution. The delivered 
amount of energy during zlr time with a continuous supply of energy is equal to: 

LJE = NLJr, (24) 

where N - specific power. 
During the energy supply LJS(y) amount of y fraction will be ground. From Eq. 

(23) one can obtain: 

NLJr 
LJS(y) = -t/l;(Y), 

C; 
(25) 

from where the velocity of the comminution fraction can be determined: 

LJS(y) N S,(Y) = - = -t/l;(Y)- 
LJr C; 

(26) 

Continuous comminution concerns such mills as a fan mill or a beater mill which 
work with high frequency. It should be stated that the selective function concerns 
a specific equipment and particular material. That is the reason why all inferences, 
connected to the course of the selective function, should be stated very carefully. 

In this paper, the selective and breakage functions were determined on the basis 
of the tests of single milling of monofraction in the beater mill. For this type of mills, 
the determination of the above mentioned functions is complicated in the case of 
milling of polydispersion sample material. The theoretical and experimental analysis 
in this case of milling will be undertaken in the consecutive study. 
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