Archives of Mining Sciences 45, 4 (2000) 555-565

WLADYSEAW CIERNIAK *

COMMENTS ON STOCHASTIC FLOWS THROUGH CHANNELS

UWAGI O PRZEPLYWACH STOCHASTYCZNYCH PRZEZ KANALY

The present article contains an analysis of stochastic flows of liquids through straight
channels. Calculations were carried out for a one-dimensional incompressible flow model,
which is described by a linear differential equation with the application of the correlation
theory of random functions.
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W kopalnianych sieciach wentylacyjnych przez caly czas wystepuja nieustalone
przeplywy powietrza. Przeprowadzone pomiary predkosci powietrza [Trutwin i inni
1996] *, [Wasilewski 1984] pokazaly, ze widmo czgstotliwosci rosnie wraz z predkoscia i dla
$redniej predkosci 1,8 m/s jego istotna cz¢S¢ zawiera si¢ w przedziale 0—1 Hz, a wariancja
moze dochodzi¢ do 25% S$redniej wartosci predkosci.

Pomiary ci$nienia absolutnego [Trutwin i inni 1996] wykazaly, ze jego zmiany moga
dochodzi¢ do 75 Pa oraz ze istotna czg$¢ jego widma zawiera sie w przedziatach 00,03 Hz.
W tym samym czasie i wyrobisku mierzona réznica ci$nien dochodzila do 15 Pa, a jej
widmo zawieralo si¢ w przedziale 00,001 Hz.

Przeprowadzone pomiary wykazuja bardzo wolne zmiany roznicy cisnienia miedzy
poczatkiem 1 koncem wyrobiska, a co za tym idzie i wydatku. Upowaznia to do
zaniedbania zjawisk falowych. Ze wzgledu na duze masy powietrza, wypelniajace wy-
robiska, nic mozna zaniedba¢ bezwladnosci i dlatego do rozwazan przyjeto model
przedstawiony rownaniem (3).

Jak wiadomo, zjawiska stochastyczne mozna scharakteryzowaé pewnymi usrednionymi
parametrami. W tym celu w artykule skorzystano z korelacyjnej teorii zjawisk losowych
[Lojek 1993], [Swiesznikow 1965] wyprowadzajac zwiazki dla wartosci $rednich lewej
1 prawej strony rownania (3). Dla przeplywow niestacjonarnych wynik tych obliczen
pokazuje wzor (12), a dla stacjonarnych (13). Wyprowadzono tez zwiazek dla kowariangji
lewej 1 prawej strony zlinearyzowanego rownania (3), co pokazano wzorem (19) dla
dowolnych rozktadow wydatku. Dla przeptywu niestacjonarnego kowariancje wydatku
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i roznicy ci$nien przedstawia zaleznosc (19), a dla stacjonarnego réwnanie (21), ktére po
przeksztalceniu Fouriera daje zwiazki migdzy gestosciami widmowymi (22).

Przy zalozeniu, ze wydatek i jego pochodna tworza dwuwymiarowy rozktad normalny
wyprowadzono zwiazki dla kowariancji rownania (3) dane wzorami (28) dla przeptywow
niestacjonarnych i (31) dla stacjonarnych.

Przy zalozeniu, ze przeplyw jest procesem stacjonarnym o rozkladzie symetrycznym
wzgledem warto$ci $redniej, korzystajac z definicji mocy chwilowej danej wzorem (34)
wyprowadzono zalezno$¢ na Srednia moc, potrzebna do przetloczenia przez wyrobisko
opisane modelem (3), iloéci powietrza o pewnej $redniej wartosci 1 wariancji w postaci wzoru
(38).

Pokazano tez mozliwosci wyznaczenia wspotczynnikow modelu (3) ze zwiazkow dla
wartosci Srednich i kowariancji zapisanych zaleznosciami (32) 1 (33).

Z przeprowadzonej analizy przeplywéw z fluktuacjami wysnuto nastepujace wnioski:

Po pierwsze, do opisu wartosci $redniej przeptywu w przypadku, gdy wariancja
wydatku w poréwnaniu z jego wartoscia srednia osiaga znaczace wielkosci, nie mozna

stosowa¢ modelu (3), nawet gdy jest matle, lecz zalezno$¢ (13), w ktorej wystepuje

dt
wariancja wydatku.

Po drugie: przy eksperymentalnym wyznaczaniu wspolczynnikow réwnania A,
B i H réwnania (3) stosujac sposob opisany w rozdziale Mathematical heading model, nalezy
uwzgledni¢ wariancj¢ wydatku (formuta (13)) lub skorzysta¢ z metody podanej w dalszej
czesci (wzory (32), (33)).

Po trzecie: wystepowanie fluktuacji w wydatku powoduje wzrost mocy potrzebnej dla
przettaczania tej samej Sredniej wartosci wydatku ptynu w poréwnaniu z moca potrzebna
do przetlaczania plynu o ustalonej wartosci wydatku.

Uwzglednienie fluktuacji przeptywu przy wyznaczaniu wspotczynnikow modelu wyma-
ga dokonania dlugiego ciagu jednoczesnych pomiaréw wydatku i roznicy cisnien. Obecnie
jest to mozliwe dla kanalow o matych wymiarach poprzecznych, dla kanatow wielkosci
wyrobisk goérniczych nie opracowano takich metod.

Wysnute powyzej wnioski z teoretycznych badan modelu wymagaja weryfikacji
cksperymentalnej. W tym celu budowane jest odpowiednie stanowisko badawcze, umoz-
liwiajace wytworzenie przeptywow o wymaganych wlasnosciach oraz ich badanie.

Slowa kluczowe: mechanika plynow, procesy stochastyczne, wentylacja kopaln.

LIST OF DENOTATIONS:

— coefficients of proportionality,
— channel diameter [m],

— average value operator,

— frequency [1/s],

(t;)] — two-dimensional flow distribution function,

— gravitational acceleration [m/s?],

— flow covariance for stationary process [kg?/s”],

— differential pressure covariance function, when the process is transient [Paz],
— stationary process pressure covariance [Pa’],

— channel length [m],

— ordinary moments of a two-dimensional random variable of the order i, k,
— temporary power [W],

— average power value [W],
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(0) — average differential pressure value [Pa],

) — difference in pressure between the beginning and end of the channel [Pa],
) — flow (flow quality) [kg/s],

) — average flow value (following all realisations) [kg/s],

() — flow derivative with respect to time [kg/s*],

'(t) — average flow value derivative [kg/s?],

1) — [low fluctuations in the average value environment [kg/s],
flow fluctuations derivative [kg/s*],

spectral flow density function,

jo) — differential pressure spectral density function,

— time [s],

Z — vertical co-ordinate [m],

|1 — stationary process flow variance [kg?/s?],
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() — transient process flow variance [kg?/s?],
— fluid density [kg/m?],
characteristic function of two-dimensional random variable Q(t,), Q(t,).
s resistance coefficient,
w=2nf — frequency [1/s],
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=
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1. Introduction

Transient airflows are constantly present in mine ventilation networks. We may
distinguish two fundamentally different scales of this phenomenon. On a small scale,
these are turbulence phenomena with dimensions of the order of transverse sections
of galleries. Work [Wasilewski, 1984]*, as well as measurements carried out in one
such gallery with the co-participation of the author [Trutwin et al., 1996] show that
the standard deviation of velocity measured at a point may reach up to ap-
proximately 25% of average velocity, with the frequency spectrum increasing along
with the velocity, and that, for a velocity of approximately 1.8 m/s, a significant part
thereof is ranging between 0—1 Hz.

The large-scale transient states, even under conditions of normal work that is not
disturbed by any special occurrences, encompass the entire mine. The reasons
therefore are: transport (movement of strings of cars and hutches), the opening and
closing of ventilation stoppings, and — to a certain extent — changes in atmospheric
pressure or the outflows of methane during the mining of coal.

Measurements executed [ Trutwin et al., 1996] reveal that momentary (lasting no
more than a few seconds) pressure changes in headings may equal even 75 Pa.
A significant part of the pressure spectrum is located within the range 0—-0.03 Hz.
Differences in pressure measured in the same heading between the beginning and end
of the gallery were of the order of about 15 Pa, while a significant part of the
spectrum was situated in the range 0—0.001 Hz. We may expect the flow spectrum to
be of the same order as the differential pressure spectrum.

* The relevant items of cited literature have been given in square brackets.
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2. Mathematical heading model

One dimensional flow in conduits is described by well known equation of motion
[Pawinski et al., 1995]:

ow ow 1 dp dz(s) w?
— A—=0 1
8t+w63 0 Os gds i 2y M

derived from the momentum equation, in which the term /17— represents dissipation
g

of energy.

For small pressure and temperature fluctuations compressibility of air may be
neglected without risk of making a large error. This assumption together with
continuity equation, for a conduit of a constant cross section area leads to

A

0 . .
conclusion that a_w = 0. Therefore equation (1) may be integrated along s and
s

transormed to a form:

dw w? 1
LE‘F{](ZI_ZZ)'f‘L}uiE:—E(pz—pl) (2)
In terms of a mass flow quantity we obtain:
do(t
A% +BO*()+ H = P(1). 3)

For straight, round conduits coefficients in (3) can be expressed as:

4L 84
=5 B:Qn—zdgL; H =g(z;—2,). (4)

Of course, such a model may be applied within a somewhat limited frequency
range and only when the flow proceeds in one direction.

It would seem that if the period of the greatest harmonic component is many
times longer (10 times, for example) that the passage of the wave through the
channel, the following will be of decisive importance for the type and magnitude of
occurring phenomena: mass of the liquid in the channel, losses being the result of
movement, and also the differences in altitude and pressure between the beginning
and end of the channel. In this situation the wave phenomena may be neglected and
model (3) shall sufficiently describe the flow through the channel.

Real mine headings have different transverse sections, roughness and tem-
peratures of walls along their entire length, and, what is more, their course is
frequently non-linear. These factors force us to carry out the experimental deter-
mination of factors of proportionality in model (3).

Normally, A and H are determined on the basis of averaging geometric
measurements of the heading and air density. Coefficient B is determined on the basis
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of an flow quality measurement and differential pressure for a predetermined H,
assuming that dQ /dt = 0. Such a procedure may lead to significant errors, which fact
may be easily observed by calculating the average value for the left and right sides of
expression (3).

3. Relations for average values

Averaging [Cierniak et al., 1977] the left and right sides of formula (3), we receive:

B4 5000+ +11} - E[P()] o)
and next
AE {%Q(z)JrBE[QZ(t)] +H} — E[P(1)]. ©)
Substituting
0() - ()~ E[0()+ E[0(0)]
E[0()] - E[0(0—E[0() + E[QWIF - E[0()—E[0@]]*+ "

+EQRE[Q@][e()—E[QW]T} +{E[@]}* = {E[C()]}* + E{Q() - E[2(1)]}*

From definition E{Q(t)—E[Q(t)]}* is a variance Q(¢).
Introducing denotations to be used below:

E[0(r)] = 0(1), (8)
E[p(1)] = P(1) 9)
we may write:
E{Q()—E[Q(1)]}* = Vo (1), (10)
E[Q%(1)] = {E[Q(1)]}> + Vo(r) = Q*(1) + Vo(t)- (11)

Applying the theorem on changing the order of averaging and differentiating,
expression (6) may be presented as follows:

A%Q(t)+B [02(t)+ V,(t)]+H = P(1). (12)

When the process is stationary, then P(f) = const. and Q(r) = const., while
equation (12) may be reduced to the following equation:

B[Q*+V,]+H =P. (13)
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Two facts follow from dependence (13). First, the increase in flow variance leads
to an increase in the average differential pressure value necessary to maintain
unchanged average flow value, while second — the omission of flow variances when
determining coefficient B results in an error, even when the process in stationary. Of
course, to determine B it is required to have H, which may be determined from (4).

For the non-stationary process we may, applying dependence (12), determine all
of the coefficients on the basis of flow and differential pressure measurements only,
since for various time periods it is possible to arrange a system of equations with
a non-zero matrix determinant, like from dependence (3). It would appear, however,
that the derivative of the average flow value may be determined with greater ease
and precision than the temporary value derivative.

Yet another possibility consists in applying the covariance of the left and right
sides of dependence (3).

4. Relations for the covariance

Because of the presence of flow in the square, the derivation [Cierniak et al.,
1977] of analytical dependencies for the covariance of the left and right sides is
possible only for specific distributions of the two-dimensional variable Q(t,), O (t,).
This will next be derived for a normal distribution. Due to the fact that there are no
such requirements concerning a distribution in the case of linear differential
equations, dependencies for the linearized form of equation (3) will be derived first.

If we assume that flow Q(f) fluctations are small, we may proceed to linearise
dependence (3) and thus obtain the following equation:

dq(t)

A7+A%Q(t)+28q(t)+BQ2(t)+H:P(t), (14)

where:
0(t) = 0(e) +4(o). (15)

The notation of the covariance for both sides of the equation (14) upon
introduction of the convention:

Lo =00: Lal)=q0)
has the form:
E{[Aq'(t,)+ AQ'(t,)+2Bq(t,)+ BO*(t,)+ H— AQ'(t,)— BO*(t,)— H]-
[Aq'(t,) + AQ'(t,) +2 Bq(t,) + BO*(t,) + H— AQ'(1,)— BQ*(1,) —H]} = (16)

= E[P(t,)— P(t,)]-[P(t,)— P(t,)]
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and then, following reductions:

E{[Aq'(t;)+2Bq(t,)]-[Aq'(t,) +2Bq(t,)]} = K,(t;,t,). (17)
Upon multiplying, it takes the form:
AE[q'(t,)q (t,)] +2ABE[¢'(t1)q(t,) ]+ 2ABE[q(t)q'(t,)] +
+B%E[q(t))q(t,)] = K, (t1,t,).  (18)

If we change the order of differentiating with averaging, the above expression
may be transformed into the following form:

0* i 0
A? o Ko(ty,t,)+2 ABaT Ko(ty,t)) +2AB§ Koty t,)+
1Ve2 1 2 (19)

+4 B*K y(t1,1,) = Ky(ty,15).

In the event of a stationary process:

K(ty,t,) = K(t,—t,) = K (1) (20)
and equation (19) receives a shorter form:
0
—AZEEKQ(I)+4BZKQ(r) = K, (7). 21

If we subject the last expression to Fourier transformation, we shall receive the
relation:

(A°w*+4 B*) Sy(jo) = §,(jo) (22)

connecting the functions of spectral output density and differential pressure, which
may be easily calculated applying Fast Fourier Tranformation.

Seeking covariance relations in the event of non-linearity is considerably more
difficult. The issue is simplified if the non-linearities are polinomials and the form of
the distribution function is known. This is the case of equation (3) if we assume that
the two-dimensional distribution function Q(t;), Q(t,) is known.

As was mentioned previously, hereonforward it is assumed that the distribution is
normal and two-dimensional.

Applying dependence (11), the covariance of process (3) may be presented by
dependence.

E {[Ad%g(tl) +BQ*(t,)+ H~Aditlé(t1)—EQZ(II)—BVQ(tl)_H] d

. [A%Q(t2)+ BQ*(t,)+H—A %Q(tz)— BQz(lz)—BVQ(tz)—H]} = (23)

= E{[P(t,)—P(t,)] [P(t2) = P(t;)]} = K, (¢, 15)



562

Applying the theorem on changing the order of averaging and differentiating and
having -executed the appropriate multiplications and ordered the formulae, we
receive:

0
AmeQ(tl,tZH

+ 4B 3 ([000)~ 06 [Q102)— Q{6 +20(6) Kolos ) +

(Z {E{[Q(t,)—0(t,)][Qfr, _Q(tl)]2}+2é(t1)KQ (tut)f+  (24)

(
+B2E{[0(t,)-0(t))]?
+2B20(t,)E{[0(t,)— Q(tl)]z[Q(tz) (1))} +
+2B2Q(1))E{[Q(t,)— 0(t)][Q(t,)— O(t) ]} +
+4B20(1,)Q(t2)K o1, 1) = B>V (1)) Vo(ts) = K, (t1: ).

If we make no assumptions regarding the form of the distribution density
function f[Q(t,), Q(¢,)], then formula (24) is the final form.

On the left side of the above formula there appear average flow values, the
covariances thereof, derivatives of covariances and terms situated beneath the sign of
the averaging operator E, which are the central moments of different grades. It is
most convenient to calculate [Lojek 19937, [Smiesznikow 1965] these moments from
the characteristic function that for the two-dimensional random variable has the
following form:

¢(Z1,2,) = E{exp[jZ,0(t,).jZ,Q(t,)]} = 25)
= [ 1 1106,).Q(t)]exp [1Z,0(1)+17,0(0:)1d0(1)d0(:).

while moments are calculated applying the formula:
1 itk

Mi,k :ji+kmz_zw(zl’22)llx=22:0|‘ (26)

In practice, normal distribution is most common. The authors of several works
have voiced the opinion that output in mine headings is characterized by exactly this
type of distribution. An experiment carried out with the co-participation of the
author does not contradict this. Thus, further calculations will be made for
two-dimensional normal distribution, the function of which is characteristic of the
average value, this equal to zero (and such is the case in expressions on the left side of
eq. (24)), has the form:

1 1
il Z s Z o) = exp|:— EZ%VQ(tI)—lezKQ(tI,tZ)— §Z§VQ(t2)] (27)
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Applying dependencies (25), (26) for dependences (24), we receive:

62

Ot,0t,

> 915 .
KQ(tl,tz)+2ABa—tl[Q(zvl,z%)KQ(tl,tz)]+2A3072[Q(t2)1<g(x1,z2]+
+B2K3(t,,1,) +4B*Q(1,)0(t,) Kol 15) = K, (15,15).  (28)

If the process is stationary, then

Q(ﬁ) = Q(tz) =0
and:
Ko(tyty) = Kolt,—1,) = Ko() (29)

and equation (28) obtains the following form:

52

C K, (t)—2 AB—K (1) +2 ABO~ K (1) + B*K3(1)+ 4B20*K ,(1) = K () (30)
0T ot

— A2
0t
and, further,

A2

_AZO

ot?

Ko(1)+4B*Q?Ky(1)+ B*Kj(1) = K (7). (31)

Relations for covariances given by formulae (19), (21), (28) and (31) or relation
(22) for spectral density make it possible to obtain additional equations which are
required in order to determine the entirety of coefficients of model (3).

Dependencies (21), (22), (31) are of the form:

af(x)+bg(x) = h(x), (32)

where: x =1 or x = w.
This allows us to arrange N equations for x = x; i =1.. N and determine a and
b from dependence:

mina'b{ i [af(x;)+bg(x;)— h(xi)]z} (33)

i=1
and this considerably reduces the uncertainty of determining a and b.
Since it is assumed that a and b > 0 then A = \/a and B = \/B

5. Average power consumption

The result of the calculation of the average value (13) for both the left and right
side of equation (3) implies an increase in the average power requirement, needed in
~order to force through the liquid for an flow of a stochastic nature as compared with
a stationary flow. The average power consumption value will be calculated on the
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assumption that process Q(t) is stationary and with a symmetric distribution with
respect to the average value (for example, normal distribution).

The temporary power required in order to force a flow with an flow Q(t) with
a differential pressure P(t) is expressed by the dependence:

M(t) = Q()P(t). (34)

For the adopted model we may thus write:

d
M(t) = AQ(z)EQ(t)+BQ3(t)+HQ(t). (35)
Following the introduction of the replacement:

Q(r) = Q+4(1)

the average power value is expressed by formula:
_ _ d _ _ _
M= AE [Q + q(t)aq(t):| + BE [Q3 +30%q(t)+304q°(t)+ q3(t)} +
+HQ+HE[q(t)] (36)
and, further:

M:AE[qa)%q(r)}BQs...+3BéE[q2<rﬂ+BE[q3<r>J+HQ 67)

since the average value ¢(r) is by assumption equal to zero, and also the expression:

| a0 5400 | = LSBT0 = 3 K,l0h-0 =0

since the covariance has a maximum for ¢ = 0.
The expression

EMWﬂ:qu®M=O

since function f(g) is by assumption a symmetric function and when multiplied by the
unsymmetrical function ¢*(f) produces an unsymmetrical function, the integral of
which in the range +o00, —oo is equal to zero.

Thus, expression (36) may be transformed to form:

M = BQ*+3BQV,+HQ. (38)

If follows from the above dependence that the increase in power necessary in
order to force through liquid with an average flow value Q is proportional to the
average value of the flow and the variance thereof.
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6. Conclusions

Several conclusions may be drawn from the analyses of flows with fluctuations.
First of all, to describe the average flow value when the flow variance attains
considerable values in comparison with its average value we cannot apply model (3)

do(1)
dt

— even if

is small — but dependence (13), in which there is present an flow

variance.

Secondly: when experimentally determining the equation coefficients 4, B and
H using the method described in the chapter Mathematical heading model, it is
necessary to take into consideration the flow variance (formula (13)) or otherwise use
the method set forward subsequently (formulae (32), (33)).

Thirdly: the occurrence of fluctuations in flow brings about an increase in the
power which is required to force through the same average value of fluid flow
quantity as compared with the power necessary in order to force through fluid with
a stationary flow value.

Taking into consideration flow fluctuations when determing the coefficients of
the model requires making a lengthy series of simultaneous measurements of flow
quantity and differential pressure. At present, this is possible only for channels which
have small transverse dimensions; no such methods have been elaborated for
channels of the size of mine headings.

The conclusions presented above, reached on the basis of theoretical model
research, need to be verified experimentally. To this end, an appropriate test bed is
being constructed, and this will make it possible to generate and research flows that
have that required properties.
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