
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 72(6), 2024, Article number: e151376
DOI: 10.24425/bpasts.2024.151376

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Two-step reinforcement learning for multistage
strategy card game

Konrad GODLEWSKI and Bartosz SAWICKI ∗

Warsaw University of Technology, Poland

Abstract. This study introduces a two-step reinforcement learning (RL) strategy tailored for “The Lord of the Rings: The Card Game”, a
complex multistage strategy card game. The research diverges from conventional RL methods by adopting a phased learning approach, beginning
with a foundational learning step in a simplified version of the game and subsequently progressing to the complete, intricate game environment.
This methodology notably enhances the AI agent’s adaptability and performance in the face of the unpredictable and challenging nature of the
game. The paper also explores a multi-phase system where distinct RL agents are employed for various decision-making phases of the game.
This approach has demonstrated remarkable improvement, with the RL agents achieving a winrate of 78.5% at the highest difficulty level.

Keywords: reinforcement learning; incremental learning; card games.

1. INTRODUCTION

Card games are rapidly gaining popularity, evidenced by the
increasing number of titles on platforms like Google Play, App
Store, and Steam. Market analyses [1] indicate a regular growth
of more than 10% per year in this segment. This surge in popular-
ity can be attributed to various features, including deck building,
short gaming sessions, and replayability, which arise from ran-
dom events occurring during gameplay. As a result, card games
can offer hours of entertainment for enthusiasts.

Modern artificial intelligence methods have been proven to
outperform humans in many tasks. However, card games con-
taining a high degree of randomness are still challenging. For
example, the first AI agent capable of beating professional play-
ers of no-limit Texas Hold’em was not created until 2019 [2].
Collectible Card Game (CCG) is a class of card games which
allows the decks of cards to be redefined, which requires sig-
nificant adaptation from the player. The “Lord of the Rings:
Card Game” represents this type of card game, making it an
interesting research object.

A previous paper by the authors [3] demonstrated the suc-
cessful use of the Monte Carlo Tree Search method in the same
game. However, the results achieved at that time at the level of
40% wins could hardly be considered fully satisfactory. There-
fore, it was decided to try to use RL methods, as presented in
this article.

The primary innovation of this paper is its strategy for im-
plementing a two-step RL technique in the intricate and random
world of “The Lord of the Rings: The Card Game” (LOTRCG).
The methodology tackles the game’s inherent complexity by
first learning the RL agent in a straightforward environment

∗e-mail: bartosz.sawicki@pw.edu.pl

© 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2024-02-28, revised 2024-06-19, initially
accepted for publication 2024-07-13, published in November 2024.

and then advancing to the complete difficulty level. Exploring a
multi-phase setup where various RL agents specialize in distinct
decision phases of the game represents a significant advance-
ment in AI-driven strategy gaming.

The paper comprises four main sections. Section 4. Rein-
forcement learning agent explores how the actor-critic model,
state encoders, and action decoders are applied in LOTRCG.
The study progresses to 5. Learning strategies, which compares
approaches, such as one-step, two-step, and early-terminated
learning, highlighting their effectiveness in the game’s chal-
lenging environment. A distinctive feature of this paper is the
6. Multi-phase setup section examines the efficacy of single
versus multiple RL agents during decision-making phases. The
paper ends with 7. Conclusions which recaps the findings and
highlights the effectiveness of the two-step learning approach.

2. RELATED WORK

The AI algorithms detailed in this work fall into reinforcement
learning (RL), a branch of machine learning that relies on a trial-
and-error approach. The learning process involves the interac-
tion of an agent with its environment, where the agent observes
the game state and decides on appropriate actions. These actions
are implemented in the environment, which provides a reward
in return. There are numerous examples of the implementation
of RL techniques in card games.

Three RL algorithms: Deep Q-Learning, A2C, and Proximal
Policy Optimization (PPO) were compared in the game Chef’s
Hat (Barros et al. [4]). Chef’s Hat is a competitive four-player
card game in which players try to become a chef. The game is
played in turns, in which each player decides whether to play
cards or fold. Due to the four-player nature of the game, it was
possible to experiment with different configurations of agents.
RL algorithms were challenged with random agents in direct
skirmishes and against a human player.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024 1

https://orcid.org/0000-0003-1832-759X
mailto:bartosz.sawicki@pw.edu.pl

K. Godlewski and B. Sawicki

The PPO algorithm was applied to the DouDizhu game (Guan
et al. [5]). DouDizhu is a three-player game mixing collabora-
tion with competition. Two players have to cooperate to de-
feat the third player. The authors developed a framework called
Perfect-Training-Imperfect-Execution (PTIE) based on central-
ized training and decentralized execution of RL agents. PTIE
allows agents to train their policies on a game that is treated as
perfect information. The policies are distilled in order to play
the actual game with imperfect information.

The usage of PPO was also investigated for a drafting phase
in collectible card games (Vieira et al. [6]). The methods built a
deck in three variants that differ in the representation of the game
state. The first variant based on the MLP network includes all
previously selected cards into the state vector. In the second, the
leading role is played by the LSTM network, which accumulates
information about previous card choices only based on the vector
of cards currently available to the player. Finally, the third option
uses only the MLP network with the same representation as the
second option.

Zha et al. [7] developed an open-source platform to learn
and test reinforcement learning agents on card games. The plat-
form supports standard 52-card games like Blackjack, Texas
Hold’em, and also Chinese-originated games such as Mahjong
and DouDizhu. The authors test three algorithms on their plat-
form, such as Deep Q-Network, Neural Fictitious Self-Play, and
one outside RL such as Counterfactual Regret Minimization.

To accelerate the learning process in Mahjong’s above-
mentioned game, a mirror loss function was proposed [8]. It
allows the RL agent to take mirrored actions in the mirrored
environment. This method limits the policy space during the
optimization process.

Yao et al. [9] propose a method of handling large action
spaces of the Axie Infinity card game. Axie Infinity is an online
competitive 2-player game in which players form a few subsets
of cards to defeat the opponent. Cards to a subset are chosen
based on Q-function approximation. The function indicates the
optimal decision from a restricted subset of actions. The method
can be applied to other card games with large action spaces like
DouDizhu or Hearthstone.

The performance of the RL agent for different state represen-
tations in the game of Hearts was analysed by Sturtevant and
White [10].

The Hanabi card game has been seen as a challenge to AI
in recent years [11]. Hanabi is a cooperative card game for 2–5
players. The game stands out for the way it handles imperfect
information. The player does not see his own cards; he can only
observe other players’ cards. To play the right card, the player
must get hints from other participants.

Recently Hanabi has drawn the attention of RL researchers.
Grooten et al. [12] compare different RL algorithms for Hanabi.
The algorithms include Proximal Policy Optimization (PPO),
Vanilla Policy Gradient (VPG), and Simple Policy Gradient
(SPG). VPG is an actor-critic method. It maintains separate neu-
ral networks for both policy and value function approximation.
SPG uses only a policy network. The authors analyse various
aspects of the algorithm performance within the game, such as
learning curves and policy refinement over episodes.

Other noteworthy applications of artificial intelligence algo-
rithms in card games can be found in the following papers:
Hanabi [13], Splendor [14], Leduc Hold’em [15] and Legends
of Code and Magic [16].

3. MULTISTAGE GAME

The Lord of the Rings: The Card Game (LOTRCG) is a fantasy-
themed, cooperative, collectible card game published in 2011
by Fantasy Flight Games. The game is based on challenging
adventures to complete a scenario. During the scenario inspired
by the famous J.R.R. Tolkien universe, a fellowship led by the
players encounters many adversities, and if they fail, the sce-
nario is lost. The game can be played in two variants: solo
or two-player cooperative. In LOTRCG, the players can form
their fellowship using a variety of decks. By default, the core
set features four decks, but a more appealing option is build-
ing its own. The game is receiving positive reviews in the card
game community; however, they recognize its steep learning
curve.

An example of a game table view can be seen in Fig. 1.
The “Staging Area” cards represent the world of evil the player
(cards on the bottom) is fighting against. The game’s goal is to
complete a scenario, which means reaching a specified number
of progress points throughout the game. During the scenario,
the player encounters objects, such as enemies or lands, which
hinder gaining progress points. These objects require a player’s
reaction. If an enemy appears, the player has to defend himself;
otherwise, he can lose his heroes or allies. If a land card ap-
pears, the player can decide whether to explore it. Leaving lands
unexplored makes the scenario progress difficult.

Fig. 1. An example game state at the planning phase. The state features
imperfect information since the player does not observe cards in the

player’s deck and the encounter deck

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024

Two-step RL for card game

A game round consists of eight phases (Fig. 2), starting with
the Resource phase, where players draw cards and gain re-
sources, followed by the Planning phase for card purchases.
During the Questing phase, players commit characters to quests
and face threats, and in the Travel phase, they can explore lands.
The Encounter and Defense phases involve engaging in fights
with enemies, and players counterattack in the Attack phase. The
Refresh phase readies all characters and increases the player’s
threat level. The game outcome is determined during the Quest-
ing and Defence phases, where players win by achieving quest
points or lose if their threat level exceeds 50 or all heroes die.

Fig. 2. The sequence of activities that constitute one round of the
game. Activities are ordered in rule-based (blue), random events (violet)
and player decisions (orange). The bolded rect marks the moment of

determining game-end conditions

The game difficulty could be controlled by the number of
points required for game success. The number 20 is the default
threshold specified by the game rule book. However, for this
article, the difficulty varied from 8 to 20 points.

The game includes many random events. Therefore, all trial
findings to evaluate the efficacy of agents reflect an average of
10 000 games. All of the numerical experiments ran on a local
workstation with Intel Core i9-9960X CPU, 128 GB RAM and
GPU RTX 2060 Super.

4. REINFORCEMENT LEARNING AGENT

Reinforcement learning has been a new trend in the development
of artificial intelligence in recent years. The concept is based on
the trial-and-error method [17], in which an AI agent interacts

with an environment. The AI agent is a decision-making al-
gorithm that takes specific actions based on observations. This
action will be executed in the environment, and a feedback sig-
nal (positive, negative, or zero) is sent to the agent. RL differs
significantly from other machine learning techniques. RL agent
does not operate on a static set of learning data but receives a
feedback signal based on which it performs the learning process.
The feedback signal is irregular, meaning positive or negative
information may appear at different time intervals. These fea-
tures are ideally suited to strategy games, where generating a
large, representative set of static learning data is impossible.

The basic concepts used in the context of reinforcement learn-
ing are as follows:
• state (𝑠): current game situation including all information

coming from the table and hand of the player (see Fig. 1),
• action (𝑎): game action resulting from a decision-making

process,
• policy 𝜋(𝑠): a function that maps state probability distribu-

tion over actions,
• reward (𝑟): environment reaction to action,
• value function (𝑣): represents a measure of how beneficial it

is for a player to be in a given state or state-action pair. Value
function for policy 𝜋 can be described with the following
equations [17]:

𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′ ,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 +𝛾𝑣𝜋 (𝑠′)], (1)

𝑞𝜋 (𝑠, 𝑎) =
∑︁
𝑠′ ,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 +𝛾𝑞𝜋 (𝑠′, 𝑎′)], (2)

where: 𝑣𝜋 (𝑠) – value function for state 𝑠, 𝜋(𝑎 |𝑠) – prob-
ability of action 𝑎 in state 𝑠, 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) – probability of
reaching next state 𝑠′ and reward 𝑟 by performing action 𝑎

from state 𝑠, 𝛾 – discount factor, 𝑣𝜋 (𝑠′) – value function for
the next state 𝑠′, 𝑞𝜋 (𝑠, 𝑎) – value function for the pair state
𝑠 and action 𝑎, 𝑞𝜋 (𝑠′, 𝑎′) – value function for the next state
𝑠′ and the next action 𝑎′.

The objective of reinforcement learning is the maximization
of discounted reward in the long term [17]:

𝑄𝑛+1 =
1
𝑛

𝑛∑︁
𝑖=1

𝑅𝑖 =𝑄𝑛 +
1
𝑛
[𝑅𝑛 −𝑄𝑛] . (3)

This formula allows us to iteratively calculate the value function
𝑄𝑛+1 given its current value 𝑄𝑛 and reward 𝑅𝑛. This goal is
achieved through Generalised Policy Iteration (GPI). GPI con-
sists of two steps: calculating the value function and modifying
the strategy (policy improvement). The value function can be
calculated from the formulas (1) or (2) for each state and action
for low-complexity problems. However, approximation meth-
ods such as linear or neural networks are employed for large
state spaces. Once the value function is obtained, the strategy is
updated according to the formula:

𝜋(𝑠) ← argmax
𝑎

∑︁
𝑠′ ,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 +𝛾𝑣𝜋 (𝑠′)] . (4)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024 3

K. Godlewski and B. Sawicki

The type of RL algorithm used in this paper is Actor-Critic
(AC). It approximates both the value function and the strategy.
The actor is responsible for estimating the probability distri-
butions of actions for a given strategy according to the equa-
tion [17]:

𝜃𝜃𝜃𝑡+1← 𝜃𝜃𝜃𝑡 +𝛼
[
𝑅𝑡+1 +𝛾𝑣(𝑆𝑡+1,𝑤𝑤𝑤𝑡)

− 𝑣(𝑆𝑡 ,𝑤𝑤𝑤𝑡)
] ∇𝜋(𝐴𝑡 |𝑆𝑡 ,𝜃𝜃𝜃𝑡)
𝜋(𝐴𝑡 |𝑆𝑡 ,𝜃𝜃𝜃𝑡)

, (5)

where𝜃𝜃𝜃 and𝑤𝑤𝑤 are vector parameters of policy and value function
respectively. The critic is responsible for the value function as
follows:

𝑤𝑤𝑤𝑡+1←𝑤𝑤𝑤𝑡 +𝛼
[
𝑅𝑡+1 +𝛾𝑣(𝑆𝑡+1,𝑤𝑤𝑤𝑡)

− 𝑣(𝑆𝑡 ,𝑤𝑤𝑤𝑡)
]
∇𝑣(𝑆𝑡 ,𝑤𝑤𝑤𝑡). (6)

To bring the RL learning model to LOTRCG, we had to
create different components, such as the underlying agent and
the environment, and auxiliary classes, such as the simulator
and the encoders. The simulator class exchanges info between
the agent and the environment. The agent receives observations
from the environment and decides what to do. The simulation
executes an action in the environment and receives a reward and
the subsequent observation. These and the current observation
and action create an input vector for the agent. The agent then
undergoes a learning process with this input vector.

The experiments with partial rewards have shown a negative
effect on the final effectiveness of the model. Therefore, only
bivalent rewards were used (+1 – win, −1 – loss). This ensures
a neutral, stable learning process focused on a high winrate.

The above description is common to all implementations of
the RL algorithm. What distinguishes the different problems is
the communication scheme between the environment and the
agent. These are necessary to handle the input and output of
the neural network. This issue is described in the following
subsections: state encoding and action decoding.

4.1. State encoders

Encoders handle the data flow from the environment to the agent.
They fetch data from the game model and embed it in a feature
vector. This vector then feeds the agent as a neural network
input. The process of state encoding is different for the Planning
and Questing phases.

The feature vector for the Planning phase consists of 33 items
(Fig. 3):
• 17 binary vector-defining ally cards in the player’s hand,
• 15 binary vector-defining enemy cards in the staging area,
• an integer specifying the total resource pool available to the

player.
The feature vector for the Questing phase also relies on binary

and integer variables, but it points to different cards and statistics
regarding a situation on the board as follows:
• encoding type 0 – enemies in the staging area and round

number,
• encoding type 1 – lands, enemies in the staging area and

round number,

Fig. 3. Example of the encoding scheme for the planning phase pre-
sented in Fig. 1. Cards in the player’s hand are Lorien Guide (id:3),
Northern Tracker (8), Wandering Took (9) and Gandalf (16). There are
three enemies in the staging area: Forest Spider (22), King Spider (28)
and Ungoliants Spawn (30). The last element of the vector is set to the

current resource pool of 5 points

• encoding type 2 – enemies in the staging area and combined
threat,
• encoding type 3 – enemies in the engagement area and com-

bined threat.
Every vector has 18 binary variables representing the player’s
cards: three for hero cards and 15 for allies. The remaining
features depend on a particular encoding scheme. The encoding
for the defense decision consists of a binary vector with IDs for
hero, ally, and enemy cards.

We investigated the effect of game state encoding type on
efficiency in the Questing phase. Within four encodings, the best
winrate achieved type 2 (92.2%) followed by type 3 (80.7%).
Opposite to the remaining encodings (type 0 and 1), these two
observe the combined threat, which is a sum of the threat of
all cards in the staging area (yellow rectangle in Fig. 1). The
importance of the combined threat indicates that the RL agent is
learning the game based on a condensed observation since the
combined threat is a composite value that depends on the cards
in the staging area, either lands or enemies.

4.2. Action decoder: macroactions

Action decoders serve as middle-ware between the agent and
the environment. They receive an action from the agent and
translate it into an executable form suited for the environment.
In presented experiments, two forms of action are analysed: a
macroaction (abstract) or a direct card choice.

Macroactions offer a level of abstraction instead of picking
exact cards. It allows the agent to operate on a fixed number of
actions (choose a value for coefficient 𝛽), making the size of
the decision space constant. This means that the output of the
neural network is a single number which is the value of the 𝛽

coefficient. The drawback of this approach is losing a degree of
freedom of choice during the decision process.

The proposed macroactions scheme is based on an idea to
define 𝛽, which could be understood as a choice of whether the
player’s strategy is to be more offensive or defensive. Weighting
coefficient 𝛽 takes values from set {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

For given value of 𝛽 the cards 𝑐 are sorted in descending order
according to value of 𝑓 function:

𝑓 (𝑐) = 𝛽 ∗ 𝑐𝑤 + (1− 𝛽) ∗ 𝑐𝑑
𝑐𝑐

, (7)

where 𝑐𝑤 – card willpower, 𝑐𝑑 – card defense and 𝑐𝑐 is card
cost.

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024

Two-step RL for card game

When the ordering process is done, Planning phase cards are
acquired until the total resource pool is depleted.

For the questing phase, a similar formula applies. Cards are
committed to the quest up to the combined threat level of the
Staging area.

4.3. Action decoder: direct card choice

The direct method restricts the agent’s response to a two-point
distribution of whether a card should be played. This query for
neural network is repeated for all the cards available in the hand
and the answer with the highest certainty is selected. These
decisions are based on Planning substates. The decisions are
executed in a loop until no cards are affordable for the agent
(Algorithm 1). The loop passes the current substate to the agent,
which returns an action. The action has a form of ID of a card
from the player’s hand. The last step of the loop is applying to
the action to the environment.

Algorithm 1. Direct Card Choice – Planning
Require: 𝑎𝑔𝑒𝑛𝑡, 𝑒𝑛𝑣

𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒← 𝑒𝑛𝑣.𝑒𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔()
while 𝑙𝑒𝑛(𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒.𝑐𝑎𝑟𝑑𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)! = 0 do

𝑐𝑎𝑟𝑑𝐼𝑑← 𝑎𝑔𝑒𝑛𝑡.𝑎𝑐𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒)
𝑒𝑛𝑣.𝑎𝑝𝑝𝑙𝑦𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(𝑐𝑎𝑟𝑑𝐼𝑑)
𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒← 𝑒𝑛𝑣.𝑒𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔()

end while

Fig. 4. Testing results of macro and direct agent setups learned
at 8 difficulty points

Table 1 presents an example loop execution. The agent has
four cards in hand (IDs 3, 8, 9, and 16) and five tokens in the
resource pool. Three enemies are in the staging area (IDs: 22,
28, 30). He decides to play a card (ID:9) with a cost of 2 – it
shows up on the table, and the resource pool gets updated. Then,
the agent purchases a card (ID:3) with a cost of 3. The resource
pool drops to zero, and the program breaks the loop. The agent’s
cumulative action consists of cards with ID:9 and ID:3 played
in those two iterations.

Table 1
An example planning action loop

Hand Staging area Res. pool Table Action

1 3, 8, 9, 16 22, 28, 30 5 – Play 9
2 3, 8, 16 22, 28, 30 3 9 Play 3
3 8, 16 22, 28, 30 0 3, 9 –

Direct actions at the Questing phase are processed in a no-
looping workflow (Algorithm 2). It begins with encoding a game
state. The action is a list of IDs of available cards – hero and
allies. Then, the action is applied to the environment. Following
the example, now the agent has three heroes (IDs: 0, 1, 2) ac-
companied by four allies (IDs: 3, 5, 9, 10). Three enemies (IDs:
22, 28, 30) are in the staging area. The agent decides to commit
(ids: 1, 3, 10) to the quest, leaving the rest (ids: 0, 2, 5, 9) for
later phases, such as the defence or attack phase (phases 6 and
7 in Fig 2).

Algorithm 2. Direct Card Choice – Questing
Require: 𝑎𝑔𝑒𝑛𝑡, 𝑒𝑛𝑣

𝑠𝑡𝑎𝑡𝑒← 𝑒𝑛𝑣.𝑒𝑛𝑐𝑜𝑑𝑒𝑆𝑡𝑎𝑡𝑒𝑄𝑢𝑒𝑠𝑡𝑖𝑛𝑔()
𝑐𝑎𝑟𝑑𝐼𝑑𝑠← 𝑎𝑔𝑒𝑛𝑡.𝑎𝑐𝑡𝑄𝑢𝑒𝑠𝑡𝑖𝑛𝑔(𝑠𝑡𝑎𝑡𝑒)
𝑒𝑛𝑣.𝑎𝑝𝑝𝑙𝑦𝑄𝑢𝑒𝑠𝑡𝑖𝑛𝑔(𝑐𝑎𝑟𝑑𝐼𝑑𝑠)

4.4. Hyper-parameter optimisation

The study used a three-layer MLP neural network, in which the
size of the input layer was related to the game state encoding
method used, while the size of the output layer was related to
the action decoding. Hyper-parameter optimisation involves the
number of neurons in the hidden layer and the learning rate.

Table 2 presents three networks which achieved the best re-
sults after optimisation. Two of them used the questing state
encoding type of 2, which allowed the winrate of about 90%.

Table 2
Winrate for setup: direct AC agent at planning, direct AC at questing

and random agent at defence. Difficulty: 8 points

Number of neurons Learning rate Encoding Winrate [%]

70 6e-4 2 91.9
100 8e-4 2 88.7
70 7.5e-4 3 83.7

Networks with a minimum of 70 neurons in the hidden layer
are effective. Increasing the number of neurons may cause over-
fitting, where the network only remembers specific actions for
given observations instead of generalizing them. A high num-
ber of neurons can also lead to instability during the learning
process.

Hyper-parameter optimisation consisted of 100 trials. Each
samples the search space, meaning the AI setup plays 10 000
episodes to learn the RL agent. The evaluation function tracks
the best average reward from a recent 1000 episodes and records
it as the trial score.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024 5

K. Godlewski and B. Sawicki

5. LEARNING STRATEGIES

Initial attempts to learn the model to play at the normal diffi-
culty level (20) were unsuccessful. Simply changing the values
of the hyperparameters and increasing the computational budget
had no effect. Hence, a step-by-step learning strategy was devel-
oped, inspired by curriculum learning or progressive learning
concepts.

Curriculum learning (CL) in machine learning mimics the hu-
man educational approach of progressing from simple to com-
plex concepts [18]. Pioneered by Bengio et al. in 2009, CL struc-
tures the training of models by initially presenting easier tasks
or examples and gradually increasing complexity [19]. This
method has proven effective across various domains, including
object localization, detection, and neural machine translation.

Progressive reinforcement learning (PRL) has demonstrated
significant potential in various domains, notably in recognizing
actions in skeletal animation as illustrated by Tang et al. [20].
Their method effectively samples frames from videos, progres-
sively selecting the most relevant ones in the animation se-
quence, showcasing the adaptability of PRL in handling se-
quential data.

An RL agent learned in a simple environment can be used for
a new, more complex problem [21]. This progressive technique
consists of two sequential phases. In the first, called experi-
mentation, the agent solves a simple problem using vanilla Q-
Learning. Then, introspection is performed, which generates a
symbolic representation of the solved problem. This representa-
tion will then be used to gain knowledge of states unexplored by
the agent with increased difficulty in the next experimentation
phase. Prior knowledge gained from solving simple problems
was also presented for classification tasks such as image and
audio recognition [22].

The solution presented in this paper can be classified as an
example of incremental learning. Preliminary research is based
on a single RL agent setup, which will be extended in Sec-
tion 6. Multi-phase setup.

The learning process of a neural network is stochastic. This is
due to the random initialisation of the network weights and the
strongly random nature of the LOTRCG game. Two cards draw
events are in each game round (violet rectangles in Fig. 2). This
results in a learning process that is never repeatable.

The game difficulty affects the model ability to learn to win.
Figure 5 shows ten learning curves for three selected difficulties
of 1, 5, and 9 points. For the lowest difficulty (1 point), the
network only takes 500 episodes (full games) to reach a high
winrate. We observe large differences between the learning pro-
cesses for a game with a difficulty of 5 points (Fig. 5b). In most
cases, after 2500 episodes, the average reward is at 0.0. However,
it should also be noted that the learning process went practically
perfectly in a few cases. Playing at a difficulty level of 9 points
is more challenging. As shown in Fig. 5c, only a few learning
processes can lead the network to positive results. Further rais-
ing the difficulty strengthened this effect, and for a game with
a difficulty of 20 points, not a single win was observed even
after 20 000 episodes. This means that the network has not even
begun to learn.

(a)

(b)

(c)

Fig. 5. Learning curves for three different game difficulty levels.
(a) 1 point, (b) 5 points and (c) 9 points. The full difficulty of the

game is 20 points

5.1. One-step learning

If learning a network on a game of difficulty 20 has proved
impossible, using networks learned on lower difficulties is the
simplest solution. While these networks show good efficiency
on a simplified game, they may also prove helpful in a full-
difficulty game. The results of this experiment are shown in
Fig. 6. Learning was carried out on nine variants of game diffi-
culty. To improve reliability, ten iterations of the learning process
of 1000 episodes were performed on each. Each network was
then tested on a game with a difficulty of 20. It can be seen that
only networks learned on difficulties 3 to 8 achieve a win rate

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024

Two-step RL for card game

above 30%. The best result of 49% was achieved by the network
trained on difficulty 4.

Fig. 6. Winrate of networks learned on the game with lower difficulties
and tested on full difficulty (20 points)

5.2. Two-step learning

If single learning has proven unsuccessful, one alternative is to
split the learning process into two steps. During the first step,
the network would learn on a simplified difficulty; in the second
step, it would learn on the full difficulty. However, the query
remains as to the optimal threshold for this type of division.
Efficient computation is crucial, considering that the network
learning tasks in the RL model are highly time-consuming. One
experiment can take several days to complete.

For a complete two-step learning, there are nine attempts at
learning the network with reduced difficulty, followed by the
learning process at full difficulty for each attempt. Due to the
extensive computational time required, which would have taken
many days, we abandoned this strategy and instead focused on
searching for more efficient solutions.

Therefore, the aim is to reduce the number of learning pro-
cesses and shorten their length while keeping the winrate as
high as possible.

The first solution analysed was to select only a few networks
for learning on the game with simplified difficulty. Figure 7
shows the distribution of the winrate after. Chart a the first
learning step is for games of reduced difficulty (from 1 to 9
points), while the second b is the results after learning the se-
lected networks on a game of difficulty 20.

Networks whose winrate was above 90% were admitted to
the second step. Therefore, only six cases are analysed in the
second stage. The best final result was achieved by a network that
learned the 0→ 6→ 20 scheme, with a probability of victory
of 73%.

The right axis in Fig. 7 shows the time of the learning process.
For the first graph a, it increases with the game difficulty. This
effect is related to the increasing number of rounds required to
win the game at a more difficult level. Learning in the second
step b does not show this trend, but the increased computational
budget (20× 2500 episodes) increased one learning process to
more than 3 hours.

(a)

(b)

Fig. 7. Distribution of winrate for (a) first step of learning (difficulty
from 1 to 9), (b) second step of learning at full difficulty (20 points)

5.3. Two-step early-terminated learning

With the assumed calculation budgets, a full calculation in a
two-step scheme takes about 24 hours. The question, therefore,
arose as to whether it would be possible to reduce this time and
what impact this would have on the quality of the solution.

A simple reduction in the number of episodes and iterations
of the learning process immediately resulted in a lower win rate.
Therefore, a scheme was proposed in which the network selec-
tion was based on exceeding the average reward during learning.
Final testing on the full game difficulty was only conducted at
the end.

The algorithm allows setting the reward threshold, after which
learning will be terminated. This way, the number of networks
selected for the second learning step can be controlled.

Figure 8a shows that for a game with low difficulty levels
(1–3), the model needs to play less than 1000 games to reach the
expected threshold of average reward. For higher difficulties, this
number increases until the learning process breaks the budget
limit of 10 000 episodes. As in the previous experiment, a strong
advantage of low computation time for small values of difficulty
points can be seen.

On this basis, six networks were selected for the second step
out of the nine tested. The second learning step was carried out
in a similar way as before. To improve the quality of the solution,

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024 7

K. Godlewski and B. Sawicki

(a) (b)

Fig. 8. Number of episodes and learning time for first (a) and second (b) step in early-terminated learning scheme. The average reward threshold is:
(a) greater than 0.5, (b) greater than −0.1

the budget was increased to 20 iterations of the learning process,
each consisting of 2500 episodes. Learning was based on a
game with a target difficulty of 20 points. As seen in Fig. 8b
the networks learned on difficulties 1–3 could not fully cope
with the new task, and the learning process proceeded until
the 50 000 episode limit. In contrast, the networks based on
difficulties 3–6 in the first step learned relatively quickly to win
on the full difficulty. Final testing confirmed that the best result
was achieved by the 0→ 6→ 20 scheme, giving a winning
factor of 64% after 16 hours of computation.

5.4. Strategies comparison
A graphical comparison between the three described learning
strategies is presented in Fig. 9.

The research aimed to determine the ideal difficulty level for
the learning process in the game. Analyses were conducted for
each strategy from difficulties 1 to 9, concluding with testing at
level 20.

The illustration highlights a unique internal learning architec-
ture that utilises successive modules, represented by coloured
rectangles, operating on results from the previous module. The

(a) 1-step learning (b) 2-step learning (c) 2-step early-terminated learning

Fig. 9. Illustration of three examined learning strategies. The simplest is (a) a one-step continued process, where the agent learns 9 times for
different difficulties. The second scheme (b) involves two-step learning (without interruption). The third is strategy (c), where learning is early-

terminated when the average reward reaches the threshold

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024

Two-step RL for card game

computation time elapsed is shown on the vertical axis. The
graph does not preserve proportions to enhance readability, so
the total time is indicated at the top of each strategy. The most
significant computational effort occurs during the second learn-
ing step, in which up to 50 000 games are played at the highest
difficulty level of 20.

The crossed-out elements on the graph represent the elimi-
nated cases. By selection, we cut down the number of analysed
alternatives, accelerating the learning process. Eliminating anal-
yses in the second step of learning is especially crucial due to
their high computational cost.

Figure 9 clearly shows that difficulty 6 is the optimal midpoint
when learning in two steps. Early-terminated learning allowed
us to find the same solution in less time. It would, therefore, be
possible to use strategy c) to find the optimal midpoint and then
strategy b) for the already chosen optimal difficulty.

Additionally, experiments were carried out by dividing the
learning process into more than two steps to gradually increase
game difficulty. These did not give a better quality solution and
resulted in a much longer computation time. In the LOTRCG
game, the optimal choice is two learning steps.

6. MULTI-PHASE SETUP

The analyses presented so far have dealt with using a single
RL agent to make decisions in the Questing phase. This was
an initial simplification, but it should be remembered that each
round of the game contains five decision moments. In previous
research [23], we identified three of them (Planning, Questing
and Defence phases in Fig. 2) as the most important.

Each of those three decisions could be managed by RL agents.
At the same time, it must be remembered that any increased
number of RL agents increases the computation time. It is also
possible to combine RL and random agents, each specialising in
a different decision. Table 3 presents a comparison of different
numbers of RL agents used. With only one RL agent, the best
solutions can be seen when using it at the Questing phase (28%).
Two agents in the Planning and Questing phases yield a result
(66%) that is significantly better than for only one agent. The
simultaneous combination of three RL agents (winrate 64%)
does not significantly change the quality of the solution.

Table 3
Comparison of winrates for different setups of agents

AI setup
Winrate

planning questing defense

RL random random 11.2±0.6
random RL random 28.3±0.9
random random RL 7.0±0.5

RL RL random 66.2±0.9
RL random RL 16.3±0.7

random RL RL 33.6±0.9
RL RL RL 64.4±0.9

The two-agent configuration appears to be the most econom-
ical solution, so further research has been devoted to it. Conse-
quently, all the tests described in Section 5. Learning strategies
were repeated. This time, with two RL agents, on the Planning
and Questing phases.

Table 4 contains the final comparison of the results obtained
by the best one RL setup (random-RL-random), and the best two
RL combination (RL-RL-random). Results for one RL agent
have already been presented on Fig. 9, where the winner is two-
step learning with a full budget. For two RL agents setup, all
learning strategies provide winrate above 70%. However, the
learning time is higher. In both uninterrupted cases, approxi-
mately twice as long.

Table 4
Comparison between one RL agent setup vs. two RL agents – final

winrates in testing and learning time

random-RL-random
learning strategy

winrate [%] learning time [h]

1-step 48.8 4.0
2-step 72.7 24.0

2-step early-term. 64.2 15.9

RL-RL-random
learning strategy

winrate [%] learning time [h]

1-step 71.4 9.1
2-step 78.5 39.4

2-step early-term. 72.2 19.8

It is interesting to compare the results of two agents learn-
ing in a one-step strategy with a two-step early-terminated
learning strategy. A similar win rate (approximately 72%) was
achieved more than twice shorter time. Thus, the one-step learn-
ing scheme should not be rejected.

The highest score (78.5%) was achieved, however, after a
long 39-hour uninterrupted, dual-agent RL learning process,
which was broken down into two steps. In the first step, a neural
network with random weights was learning to play at difficulty 6,
and then the network was subjected to a learning process at a
maximum difficulty 20 points.

7. CONCLUSIONS

It has been demonstrated that reinforcement learning techniques
can be utilised to construct an agent that dominates in the sophis-
ticated and strategic card game Lord of The Rings. The game is
characterised by multiple stages featuring five decision-making
phases alongside random events and rule-based actions.

The study has indicated that the quality of the result is heavily
influenced by the patterns used in game state coding and action
decoding. Furthermore, as anticipated, tuning the hyperparam-
eters of the artificial neural network resulted in a noticeable
increase in the average percentage of the winrate.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024 9

K. Godlewski and B. Sawicki

Much of the research was dedicated to discovering strate-
gies for model learning. This was necessary as direct learning
the game at its highest difficulty level was unfeasible. Three ap-
proaches were trialled, employing regulated alterations in game-
play complexity and interrupting the learning process. Results
indicated that the most effective method was two-step learning
without interruptions. However, this was found to require a great
deal of computational power. Interruption schemes based on an
estimated average reward threshold provide a more cost-effective
solution.

The analysed game features decisions of varying nature,
prompting the need to merge agents specialised in different
phases. The research identified the Planning and Questing as the
crucial phases. Utilising a two-step learning strategy, a model
was developed that attained a 78.5% winrate when tested on
10 000 random games at the highest difficulty level. This is sig-
nificantly better than the previous studies on the use of MCTS
methods [3], which achieved an average winrate of 40%, as
well as 60% reported by evolutionary algorithms for a similar
collectible card game [24].

The analysis of the results indicated that for games with sev-
eral different decisions in a round, more benefit is obtained from
introducing several smaller independent agents than from a large
effort to develop just one agent. However, one has to be aware
that the inevitable consequence of using several models is a
higher memory cost and a proportional increase in learning time.

In the future, enhancing the learning strategy of a team of
collaborating agents seems beneficial. Learning each agent sep-
arately and subsequently training them in collaboration should
reduce the computational cost. Moreover, independent agents
should be able to communicate with each other through the
development of further encodings. This structure could be hi-
erarchical or employ a combination of various AI algorithms
(e.g. Deep RL, Long-Short Term Memory, Transformer), which
showed to be impressively efficient for Starcraft II game [25].

REFERENCES

[1] statista.com, “Card games – worldwide.” https://www.statista.
com/outlook/dmo/app/games/card-games/worldwide, 2024.

[2] N. Brown and T. Sandholm, “Superhuman AI for multiplayer
poker,” Science, vol. 365, no. 6456, pp. 885–890, 2019.

[3] K. Godlewski and B. Sawicki, “Optimisation of mcts player for
the lord of the rings: The card game,” Bull. Pol. Acad. Sci. Tech.
Sci., vol. 69, no. 3, p. e136752, 2021.

[4] P. Barros, A. Tanevska, and A. Sciutti, “Learning from learners:
Adapting reinforcement learning agents to be competitive in a
card game,” in 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 2716–2723, IEEE, 2021.

[5] G. Yang et al., “Perfectdou: Dominating doudizhu with perfect
information distillation,” Adv. Neural Inf. Process. Syst., vol. 35,
pp. 34954–34965, 2022.

[6] R. Vieira, A.R. Tavares, and L. Chaimowicz, “Drafting in col-
lectible card games via reinforcement learning,” in 2020 19th
Brazilian Symposium on Computer Games and Digital Enter-
tainment (SBGames), pp. 54–61, IEEE, 2020.

[7] D. Zha et al.„ “Rlcard: A toolkit for reinforcement learning in
card games,” arXiv preprint arXiv:1910.04376, 2019.

[8] J. Zhao, W. Shu, Y. Zhao, W. Zhou, and H. Li, “Improving
deep reinforcement learning with mirror loss,” IEEE Trans.
Games, vol. 15, no. 3, pp. 337–347, 2023. doi: 10.1109/TG.2022.
3164470.

[9] Z. Yao et al., “Towards modern card games with large-scale action
spaces through action representation,” in 2022 IEEE Conference
on Games (CoG), pp. 576–579, IEEE, 2022.

[10] N.R. Sturtevant and A.M. White, “Feature construction for re-
inforcement learning in hearts,” in Computers and Games: 5th
International Conference, CG 2006, Turin, Italy, May 29-31,
2006. Revised Papers 5, pp. 122–134, Springer, 2007.

[11] N. Bard et al., “The hanabi challenge: A new frontier for ai
research,” Artif. Intell., vol. 280, p. 103216, 2020.

[12] B. Grooten, J. Wemmenhove, M. Poot, and J. Portegies, “Is
vanilla policy gradient overlooked? analyzing deep reinforcement
learning for hanabi,” arXiv preprint arXiv:2203.11656, 2022.

[13] R. Canaan, X. Gao, J. Togelius, A. Nealen, and S. Menzel, “Gen-
erating and adapting to diverse ad-hoc partners in hanabi,” IEEE
Trans. Games, vol. 15, no. 2, pp. 228–241, 2023. doi: 10.1109/
TG.2022.3169168

[14] I. Bravi and S. Lucas, “Rinascimento: Playing splendor-like
games with event-value functions,” IEEE Trans. Games, vol. 15,
no. 1, pp. 16–25, 2022.

[15] J. Guo, B. Yang, P. Yoo, B.Y. Lin, Y. Iwasawa, and Y. Mat-
suo, “Suspicion-agent: Playing imperfect information games with
theory of mind aware gpt-4,” arXiv preprint arXiv:2309.17277,
2023.

[16] J. Kowalski and R. Miernik, “Evolutionary approach to col-
lectible arena deckbuilding using active card game genes,” in
2020 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8, IEEE, 2020.

[17] R.S. Sutton and A.G. Barto, Reinforcement learning: An intro-
duction. MIT Press, 2018.

[18] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learn-
ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9,
pp. 4555–4576, 2021.

[19] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curricu-
lum learning,” in Proceedings of the 26th annual international
conference on machine learning, pp. 41–48, ACM, 2009.

[20] Y. Tang, Y. Tian, J. Lu, P. Li, and J. Zhou, “Deep progressive
reinforcement learning for skeleton-based action recognition,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5323–5332, 2018.

[21] M.G. Madden and T. Howley, “Transfer of experience between
reinforcement learning environments with progressive difficulty,”
Artif. Intell. Rev., vol. 21, no. 3-4, pp. 375–398, 2004.

[22] H.M. Fayek, L. Cavedon, and H.R. Wu, “Progressive learning: A
deep learning framework for continual learning,” Neural Netw.,
vol. 128, pp. 345–357, 2020. doi: 10.1016/j.neunet.2020.05.011

[23] K. Godlewski, Monte Carlo Tree Search and Reinforcement
Learning methods for multi-stage strategic card game. PhD the-
sis, Warsaw University of Technology, 2023. doi: 10.13140/
RG.2.2.36103.16808

[24] R. Miernik and J. Kowalski, “Evolving evaluation functions for
collectible card game AI,” arXiv preprint arXiv:2105.01115,
2021.

[25] O. Vinyals et al., “Grandmaster level in starcraft II using
multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019.

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151376, 2024

https://www.statista.com/outlook/dmo/app/games/card-games/worldwide
https://www.statista.com/outlook/dmo/app/games/card-games/worldwide
https://doi.org/10.1109/TG.2022.3164470
https://doi.org/10.1109/TG.2022.3164470
https://doi.org/10.1109/TG.2022.3169168
https://doi.org/10.1109/TG.2022.3169168
https://doi.org/10.1016/j.neunet.2020.05.011
https://doi.org/10.13140/RG.2.2.36103.16808
https://doi.org/10.13140/RG.2.2.36103.16808

	Introduction
	Related Work
	Multistage game
	Reinforcement Learning Agent
	State encoders
	Action decoder: macroactions
	Action decoder: direct card choice
	Hyper-parameter optimisation

	Learning strategies
	One-step learning
	Two-step learning
	Two-step early-terminated learning
	Strategies comparison

	Multi-phase setup
	Conclusions

