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Abstract.. Lithium-based battery systems (LBS) are used in various applications, from the smallest electronic devices to power 
generation plants. LBS energy storage technology, which can offer high power and high energy density simultaneously, can 
respond  to  continuous energy needs  and  meet  sudden power  demands.  The  lifetime  of LBSs,  which  are  seen  as  a  high-cost 
storage technology, depends on many parameters such as usage habits, temperature and charge rate. Since LBSs store energy 
electrochemically, they are seriously affected by temperature. High-temperature environments increase the thermal stress on the 
LBS and cause its chemical structure to deteriorate much faster. In addition, the fast charging feature of LBSs, which is presented 
as  an  advantage,  increases  the  internal  temperature  of  the  cell and  negatively  affects  the  battery  life. The  proposed  energy 
management approach ensures that the ambient temperature affects the charging speed of the battery and that the charging speed 
is adaptively updated continuously. So, the two parameters that harm battery health absorb each other, and the battery has a 
longer life. A new  differential approach has been created for the proposed energy management system. The total amount of 
energy that can be withdrawn from the LBS is increased by 14.18% compared to the LBS controlled with the standard energy 
management system using the genetic algorithm optimized parameters. In this way, the LBS replacement period is extended, 
providing both cost benefits and environmentally friendly management by LBSs turning into chemical waste later.

Key words: Lithium-Ion Battery; Temperature; Energy Management System; Renewable Energy; Genetic

Algorithm     

1. INTRODUCTION 

In recent years, the increasing need for energy by developing 

technology and increasing environmental concerns have led 

people to renewable energy sources [1]. According to data 

from the National Energy Agency, fossil fuel consumption is 

projected to increase by 0.7 times by 2050 unless energy 

consumption habits are changed. This could lead to a 1.3-fold 

increase in carbon emission rate and a 6 degree rise in global 

temperature [2]. Renewable energy systems (RES) are seen 

as the most excellent alternative to fossil fuel exhaustibility 

and environmental impacts. Due to their sustainable and 

environmentally friendly energy, RESs are expected to play 

a significant role in the future energy world. Renewable 

energy sources (RES) do not have the emissions caused by 

fossil fuels and are seen as the energy source of the future 

thanks to their sustainable nature [3], [4], [5]. However, 

although sustainable, RESs depend unpredictably on nature 

and are not a continuous energy source. For example, solar 

energy systems cannot produce energy when the sun is not 

shining, or wind energy systems require wind speed to be 

within certain limits to generate energy [6]. RESs are 

combined with other energy sources or integrated into energy 

storage systems to overcome these problems. In this way, it 

is possible to provide a stable and fluctuation-free power flow 

to the load [7].  

Energy Storage Systems (ESS) can store and use excess 

energy when needed. Many energy storage techniques exist, 

such as physical, electromagnetic, chemical and 

electromechanical. The battery system is the most widely 

used storage unit, and it is based on an electrochemical 

method [8], [9]. Numerous battery types, such as lithium-ion, 

sodium-sulfur, nickel-cadmium, vanadium-redox and 

polysulfide bromine and lead acid batteries, are used in 

various fields [10], [11], [12]. Lithium-based batteries (LBS) 

offer high power and energy density simultaneously and have 

the highest utilization rate. Their high energy density allows 

them to meet long-term low power demands, while their high 

power density allows them to meet instantaneous high power 

demands. In addition to all these advantages, LBSs have the 

disadvantage of high cost. Therefore, it is necessary to extend 

the battery's life as much as possible and delay its 

replacement [13]. Batteries, which are indispensable for 

electric vehicles, have several concerns. LBS can cause 

dangerous and unwanted chemical reactions when charged at 
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extreme temperatures. This can shorten battery life and, in 

worse scenarios, lead to safety risks such as fire. 

LBSs need to operate under the control of a Battery 

Management System (BMS) to ensure high performance and 

long-lasting life. LBS performance of LBSs decreases over 

times the calendar ages[14], [15]. This occurs for two 

reasons: The first is the loss of lithium ions due to the 

formation of solid electrolytic contact. The second is 

electrode loss. This situation increases internal resistance, 

reducing capacity and efficiency and shortening battery life. 

As both of these occur as a result of irreversible chemical 

reactions, batteries need to be operated in a controlled 

manner. High temperatures can affect lithium-ion batteries' 

performance and lifespan, significantly accelerating their 

deterioration. The battery loses capacity as the solid 

electrolytic contact grows. This is because the rapid growth 

of solid electrolytic contact on the surface of the electron 

particles causes the battery to lose its capacity. Furthermore, 

the temperature of the environment significantly affects the 

rate of capacity loss. Battery cell temperature and high 

environmental conditions can cause solid electrolytic 

contacts to overgrow. Their development also reduces the 

battery capacity.  

Parameters measured directly by sensors, such as current, 

voltage and temperature, can be used as regulators or drivers 

in BMS [16], [17]. For high performance, battery parameters 

such as SoC, C-Rate, and Depth of Discharge are required, 

which are indirectly estimated and predicted [18], [19]. 

Furthermore, one of the most critical parameters affecting 

ESS reliability and performance is temperature [20], [21], 

[22]. It is possible to determine whether the system is 

operating within the safe temperature range and to detect 

potential problems in advance by monitoring the temperature 

data of the ESS obtained by sensors. In addition, abnormal 

performance degradation that may be due to the effect of 

temperature can be detected, temperature-appropriate 

management can be provided, system failures can be 

prevented, efficiency can be maintained at consistently high 

levels, and energy security can be ensured through downtime 

reduction. The temperature parameter can be used as a safety 

and performance indicator of the energy management system 

(EMS), as well as part of an algorithm which controls the 

operation of the EMS with the temperature parameter as input 

[23]. In the development of strategies to increase the lifetime 

of components and to realize the longevity perspective, the 

use of the parameter of the internal cell temperatures of the 

batteries and the external temperatures as an input to the EMS 

plays an essential role[24], [25], [26]. 

Thermal runaway should be mentioned first to deal with 

temperature problems in general. A temperature curve and 

peak heat dissipation typically mark battery overheating. It 

consists of three stages: the abnormal generation of heat, the 

initiation of a fire and the explosion, which correspond to 

specific temperature thresholds[27]. Thermal runaway events 

can be classified into two paths: internal and external. The 

internal pathway refers to thermal failures caused by 

chemical reactions inside the cell, while the external pathway 

refers to smoke and fire observed outside the cell [28]. Both 

internal and external, thermal runaway is hazardous for 

safety. When the literature is examined, it is seen that there 

are many studies on battery cooling systems and battery 

thermal management systems (BTMS) to protect against 

thermal runaway [29], [30], [31], [32], [33]. Studies have 

been done on the battery with an external cooling system 

[34], [35] or to cool the battery with chemical structure and 

material science [36]. First of all, this situation causes extra 

cost. Secondly, cooling systems have serious disadvantages, 

such as the area they cover and the energy they consume from 

the battery. The proposed study uses the temperature 

parameter as the primary management input; in cases where 

the temperature increases, the aim is to eliminate other 

reasons that cause the temperature to improve and reduce the 

effect of the battery temperature in this way. 

The parameter that determines charge and discharge rates, 

also known as C-rate, is another critical element that can be 

used in ESSs [37]. The C-rate is crucial for evaluating the 

performance of cells and batteries in energy storage systems. 

C-Rate expresses a cell or battery's charge/discharge rate 

relative to its rated capacity. This parameter is crucial for 

BMSs to monitor, control and optimize battery performance. 

A battery's C-rate indicates how quickly it can store or release 

energy. This information determines how your battery will 

respond to sudden energy needs, ensuring optimal power 

[38], [39]. The current at which the battery is being charged 

can also be controlled using this parameter. By using the C-

rate parameter as a control argument, the EMS increases the 

life and performance of the battery by ensuring that charging 

and discharging take place at the optimum value. In this way, 

the cost of the battery is reduced, and the system's safety is 

improved [40]. 

In temperature scenarios, battery capacity loss significantly 

increased [41]. Batteries used in high-temperature 

environments without taking precautions will not perform at 

full capacity and will age rapidly. For example, the battery is 

stressed, and chemical degradation accelerates when used at 

high temperatures. As a result, the temperature parameter 

should not be ignored in the design of an advanced BMS. The 

responses of the battery to C-rate values at different 

temperatures are experimentally demonstrated in [42]. The 

effect of the heat produced by the battery on the 

charging/discharging characteristics was also studied. [43], 

another study using temperature as a direct control parameter 

alongside the primary control mechanism has a tangible 

impact on the charging-discharging rate. The reference 

current value is divided into three different zones according 

to temperature to reduce the stress caused by temperature. As 

a result of the study, the system's efficiency was measured to 

be 97.6 per cent.  

In the proposed study, a BTMS was developed that provides 

a C-rate parameter that will be adaptively updated with the 

temperature value to increase the lifetime of the battery 

operating in high-temperature conditions. Due to the thermal 

stress caused by increasing battery cell temperature, the 

battery charging rate significantly impacts battery health. 
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High-speed charging technologies offer time advantages. 

However, they irreversibly damage the battery chemistry. 

The proposed study aims to adaptively reduce one of the two 

factors that adversely affect battery health when one of them 

increases, using a differential approach. By reducing the 

thermal stress caused by the charge rate, the aim is to offset 

the thermal stress caused by the temperature rise. A 

weighting parameter ζ was added to the differential approach 

developed to balance between the two factors. The 

optimization of ζ parameter is optimized by using a genetic 

algorithm. 

The contribution of this study to the literature is the design of 

a BMS in which the temperature is taken as a basis, and the 

charging current is adaptively updated depending on the 

temperature to increase the lifetime of the batteries. 

The main contributions of this paper are as follows: 

1. Design and genetic algorithm optimization of a new 

adaptive energy management system for lithium-

based batteries, where the ambient temperature is 

taken into account, and the charging rate is 

adaptively updated accordingly to extend the life of 

the batteries. 

2. Ensuring the performance and safe operation of 

batteries under high temperatures and ensuring 

battery and user safety by reducing temperature-

induced chemical stress without any cooling system 

3. Reducing environmental waste generation and 

battery replacement costs by extending battery life 

This paper is organized as follows: Firstly, the thermal 

model of lithium-based batteries is explained. Then, the 

flowchart of the proposed study is presented. Then, the 

impact of the temperature and C-Rate on the LBS are 

investigated. Finally, the BTMS simulation studies are 

analyzed and demonstrated to be superior. 

 

2. MATERIAL and METHODS 

The following equations for the Li-ion battery type represent 

the effect of temperature on the model parameters. The 

equations for the charging model and the discharging model 

will be analyzed separately. First, the discharge model's 

equations are given in equations 1 and 2 below. 

f1(it, i ∗, i, T, 𝑇𝑎) = 𝐸0(𝑇) − 𝐾(𝑇) ∙
𝑄(𝑇𝑎)

𝑄(𝑇𝑎) − 𝑖𝑡
∙ (𝑖 ∗ +𝑖𝑡) + 𝐴 ∙ 𝑒𝑥𝑝(−𝐵 ∙ 𝑖𝑡)
− 𝐶 ∙ 𝑖𝑡 

(1) 

𝑉𝑏𝑎𝑡𝑡(𝑇) = 𝑓1(it, i ∗, i, T, 𝑇𝑎) − 𝑅(𝑇) ∙ 𝑖 (2) 

For the charging model, the following equations are given. 

f1(it, i ∗, i, T, 𝑇𝑎) = 𝐸0(𝑇) − 𝐾(𝑇)

∙
𝑄(𝑇𝑎)

𝑖𝑡 + 0.1 ∙ 𝑄(𝑇𝑎)
∙ 𝑖 ∗ −𝐾(𝑇)

∙
𝑄(𝑇𝑎)

𝑄(𝑇𝑎) − 𝑖𝑡
𝑖𝑡 + 𝐴

∙ 𝑒𝑥𝑝(−𝐵 ∙ 𝑖𝑡) − 𝐶 ∙ 𝑖𝑡 

(3) 

𝑉𝑏𝑎𝑡𝑡(𝑇) = 𝑓1(it, i ∗, i, T, 𝑇𝑎) − 𝑅(𝑇) ∙ 𝑖 (4) 

Next, the effect of the battery temperature is considered by 

calculating the Nernst/Arhenius thermoelectric potential, the 

polarising constant and the internal resistance [44]. 

𝐸0(𝑇) = 𝐸0 ∣ 𝑇𝑟𝑒𝑓 +
𝜕𝐸

𝜕𝑇
(𝑇 − 𝑇𝑟𝑒𝑓) 

(5) 

𝐾(𝑇) = 𝐾 ∣ 𝑇𝑟𝑒𝑓 ∙ 𝑒𝑥𝑝 (𝛼 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

(6) 

𝑄(𝑇𝑎) = 𝑄 ∣ 𝑇𝑎 +
ΔQ

ΔT
∙ (𝑇𝑎 − 𝑇𝑟𝑒𝑓) 

(7) 

𝑅(𝑇) = 𝑅 ∣ 𝑇𝑟𝑒𝑓 ∙ 𝑒𝑥𝑝 (𝛽 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

(8) 

Where C is the nominal discharge curve slope, T is the cell 

temperature, Ta is ambient temperature, E/T is the 

temperature coefficient of reversible voltage, α and β are the 

Arrhenius rate constants for the polarization resistance and 

internal resistance respectively, ΔQ/ΔT is the maximum 

temperature coefficient of the capacitance, Tref is the 

ambient temperature [45]. The relationship between 

temperature internal resistance and power loss is also given 

in equation 9. 

T(𝑡) = 𝐿−1 (
𝑃𝑙𝑜𝑠𝑠𝑅𝑡ℎ𝑇𝑎
1 + 𝑠 ∙ 𝑡𝑐

) 
(9) 

Where Rth is the temperature-dependent resistance, tc is the 

temperature-dependent time constant, and Ploss is the power 

dissipation due to heat generation. The number of battery 

cycles is expressed by N in the expression. The temperature 

and the C-Rate are closely related. The proposed study is 

based on the relationship between these two parameters and 

how they affect the battery's cycle life. 

𝑁(𝑛) = 𝐻 (
𝐷𝑂𝐷(𝑛)

100
)

−𝜉

∙ 𝑒𝑥𝑝 (−𝜓(
1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑎(𝑛)
))

∙ (𝐼𝑑𝑖𝑠_𝑎𝑣𝑒(𝑛))
−𝛾1

∙ (𝐼𝑐ℎ_𝑎𝑣𝑒(𝑛))
−𝛾2

 

(10) 

3. PROPOSED TEMPERATURE-BASED CONTROL 
FUNCTION 

The dynamics of the battery performance concerning the 

ambient temperature are crucial for optimizing the battery's 
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capacity and longevity. Equation 7 shows the direct 

relationship between battery capacity and ambient 

temperature, with capacity degradation when the 

temperature deviates from an established benchmark. This 

reference point was set at 25°C, the nominal ambient 

temperature for measurements. This ambient temperature is 

crucial as it is considered ideal for the battery to operate, 

providing optimum conditions for performance and 

durability. Taking the thermal effects a step further, 

equation 10 shows how ambient temperature affects battery 

capacity and significantly impacts the number of charge 

cycles and overall battery life. This relationship highlights 

the need to manage thermal conditions to maintain battery 

integrity. Specifically, high temperatures can accelerate 

degradation processes within the battery, reducing its life 

and reliability.  

Therefore, understanding and controlling temperature 

effects is critical to improving battery performance 

throughout their operational lifetime. The proposed BTMS 

uses a novel approach to dynamically adjust the charge 

current to overcome the problems associated with high 

ambient temperature. As shown in Eqs. 11, 12, and 13, 

BTMS employs a differential approach for changing the 

charge current based on the deviation from the reference 

temperature and minimizes the thermal stress on the battery 

by reducing the charging current in response to increased 

temperature. This adaptive charging strategy is critical in 

high-temperature environments, where the risk of 

exacerbating thermal degradation is significant. 

 

𝐶𝑟𝑎𝑡𝑒 =
𝐼𝑐ℎ

𝐼𝑛𝑜𝑚𝑖𝑛𝑎𝑙

 
(11) 

𝛥𝑇 =
𝑇𝑎 − 𝑇𝑟𝑒𝑓

𝑇𝑎
 

(12) 

𝐶𝑟𝑎𝑡𝑒(n) = 𝐶𝑟𝑎𝑡𝑒(n − 1) − ζ ∗ 𝛥𝑇 (13) 

 

Ultimately, this adaptive approach reduces the adverse 

effects of high temperatures on battery chemistry and 

increases battery life. BTMS effectively slows down the 

degradation processes and extends the battery's life by 

applying a lower charge current as temperatures rise. This 

strategy allows the batteries to operate within more secure 

thermal parameters, preserving their capacity and 

prolonging their life under varying environmental 

conditions. Active thermal management through intelligent 

charge adjustment represents a significant step forward in 

battery technology. It offers a practical solution to one of 

the most pressing challenges facing battery management 

systems. Figure 1 shows the flow diagram of the proposed 

BTMS. 

 

 
Fig. 1 Flowchart of the proposed battery management approach 

4. SIMULATION STUDY 

Table 1 gives information about the Powerbrick+ LiFEPO4 

battery used in the simulation studies. A Simulink diagram 

was created using Matlab for simulation studies to minimize 

the effect of temperature on the battery and optimize the 

temperature and charge rate process.  

The simulation diagram consists of the battery and control 

blocks, the block containing the proposed algorithm, and the 

blocks that perform the power calculations, as shown in Fig. 

2. In this way, the system dynamics and control mechanisms 

are modelled in detail. The proposed algorithm controls the 

temperature in each cycle, determines the charging rate of the 

system according to the temperature value, and generates 

control signals.  
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TABLE 1 Battery Fabrication Parameters  

Parameter Value 

Nominal Voltage 12.8 V 

BOL Capacity 40 Ah 

Cut-Off Voltage 10.5 

Nominal Current 20 A (0.5C) 

EOL Capacity 40*0.8 Ah 

Nominal Charge Current 20 A (0.5C) 

BOL Internal Resistance 0.015 Ohm 

EOL Internal Resistance 0.01512 Ohm 

Stored Energy 512 Wh 

Mass 5.25 kg 

Max Discharge 2C 

 

  
Fig .2 Simulink model  of the proposed system 

The battery block contains electrochemical and thermal 

models of the battery. Battery parameters such as voltage, 

current and temperature are continuously monitored and 

controlled. These components are critical to simulate the 

battery's instantaneous operating conditions accurately. 

The control block is used to optimize the performance of the 

battery system, extend its life and ensure its thermal safety. 

These blocks monitor the operating conditions of the battery 

and generate control signals. The proposed algorithm focuses 

on the temperature control of the battery and updates the 

charge rate by controlling the temperature value of the battery 

in each cycle. The algorithm consists of three steps: 

temperature measurement, decision-making, and control 

signal generation. In the temperature measurement step, the 

sensors take the current temperature values. The decision step 

determines the appropriate charge rate according to these 

temperature values. In the control signal generation step, the 

control signals required to adjust the charge rate are 

generated and applied to the system. 

Figure 3 shows the amount of energy the system can produce 

during its lifetime operating under a constant C-Rate under 

varying temperature conditions. While 625 kWh of energy 

can be obtained from the battery at 25 degrees nominal 

temperature, this value decreases to 503.92 kWh at 35 

degrees. In regions with high summer temperature averages, 

such as the Middle East and South America, this value drops 

to 411.75 kWh. 

 

 

Fig. 3 Total energy provided by whole battery life under varying cell 
temperature 

In desert regions, which we call extreme temperatures, the 

battery can produce 340.47 k Wh of energy under a constant 

C-Rate value. As can be seen, as the temperature increases, 

the battery's life decreases significantly due to the thermal 

stress on the battery. 

 

 
Fig. 4 Total energy provided by whole battery life under varying C- 
Rate values 
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When the battery is analyzed in terms of C-Rate under 

constant temperature, which can seen in Fig. 4, it is seen that 

the battery life decreases in parallel as the charging rate 

increases. When we discharge with 1.5C, 3612.4 kWh of 

energy can be withdrawn, and when we reduce the battery 

charging rate by 33% and charge with 1C, 4205.25 kWh of 

energy is provided. Similarly, when we reduce it to the 

minimum and charge it with 0.25C, the energy that can be 

drawn is 9608.09 kWh, but it should be noted that the lower 

the C-Rate value, the more the expected time for charging 

will increase. Therefore, it is essential to establish a balance 

and optimization between time and battery life. 

4.1. Weighting Parameter Optimization By Genetic 
Algorithm 

The genetic algorithm (GA) is an evolutionary algorithm 

inspired by the processes of biological evolution. It operates 

on a population of solution candidates and mimics the 

mechanisms of selection, crossover and mutation, which are 

the basic principles of natural selection. In each iteration, the 

most suitable individuals are selected, crossed to produce 

new individuals, and diversified by random mutations. This 

process continues until a set stopping criterion is met and 

usually produces results close to the best solution. Genetic 

algorithms are suitable for complex and multidimensional 

optimization problems and have a high probability of 

reaching the global optimum. 

In this section, the weighting parameter ζ, which controls 

the rate at which the C-Rate decreases with each charging 

cycle, is optimized. The ζ parameter dynamically adjusts the 

initial C-Rate value at each cycle and aims to maximize the 

energy output while extending the battery life. 

4.1.1. Cost Function 

The cost function evaluates the effect of dynamic C-Rate 

changes controlled by the parameter ζ on the battery 

performance. It optimizes the value ζ over the battery life 

and total energy amount. The proposed cost function is 

given as equation 14: 

𝐽(ζ) = −∫ 𝐸(𝑡, ζ)𝑑𝑡
𝐿(ζ)

0

 
(14) 

Here, E(t,ζ) is the amount of energy withdrawn during 

the battery life depending on the C-Rate determined by time 

t and weight parameter ζ. L(ζ) is the battery lifetime 

calculated depending on the value of ζ. J(ζ) calculates the 

total energy output depending on ζ and tries to maximize 

this value. Equation 15 finds the expression ζ* to minimize 

the cost function. 

ζ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ζ. 𝐽(ζ) (15) 

 

4.1.2. Optimization Process 

The optimization process uses a genetic algorithm to 

determine the optimal value of the parameter ζ according to 

the flowchart in fig.5: 

1. Starting Population: Starts with various values of ζ. 

2. Simulation: For each ζ the battery model is simulated, 

and E(t,ζ) and L(ζ) are calculated. 

3. Cost Evaluation: J(ζ) is calculated for each ζ. 

4. Genetic Algorithm: Selection, crossover and mutation are 

carried out until the value of ζ that gives the lowest J(ζ) is 

found. This model can provide more efficient energy 

utilization and battery life in battery management systems. 

The optimal value of the ζ parameter optimally balances the 

energy efficiency and the battery's lifetime. 

 

 
Fig. 5 Genetic Algorithm Optimization Flowchart 

The optimization studies have shown that the best result in 

terms of time and energy is obtained from ζ=13.45. Figure 

6 shows the cost function minimization by the genetic 

algorithm. The optimum ζ parameter found by the genetic 

algorithm considers the total energy that can be obtained 
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and aims to ensure that the extended charging times are 

acceptable. 

  
Fig. 6 Cost function minimization by the genetic algorithm 

4.2. Case Study I: Constant Load Profile  

Firstly, a constant load causing a constant 1C discharge at the 

output was used. Figure 7 shows the temperature profile used. 

The battery was tested at different temperatures during its 

lifetime. A separate C-Rate was determined for each 

temperature cycle using the proposed approach. Using four 

different ζ parameters, the variation of the charging current 

values obtained is given in Fig. 8, and the corresponding C-

Rate values are presented in Fig. 9. 

 

 
Fig. 7 Temperature Profile of the Simulation Studies 

 

 
Fig. 8 Charging currents under different weighting parameters for 
constant load condition test 

 
Fig. 9 C-Rate values under different weighting parameters for 
constant load condition test 

Figure 10 compares the energy amounts obtained from the 

battery tested under constant load and different weighting 

parameters. When the weighting parameter is set as ζ =10, 

749.0271 kWh of energy can be extracted from the battery 

for 2878.5 hours. However, the charging time increases by 

249.3 hours compared to the system controlled with a 

constant C-Rate. An increase of 9.41% is observed in the 

energy that can be obtained. When the parameter is updated 

to ζ =13.45, which is the optimal ζ of the genetic algorithm, 

the total charging time increases by 343.3 hours, but the 

amount of energy that can be obtained increases by 14.18% 

to 781.663 kWh. When the weighting parameter is doubled 
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compared to the first case (ζ =20), the charging time 

increases by 738.4 hours, and the amount of energy that can 

be obtained is measured as 874.926 kWh with an increase 

of 27.8%. 

 

 
Fig. 10 Energy comparison of different weighting parameters for 
constant load condition test 

4.3. Case Study II: Variable Load Profile  

 

The second simulation study used a load requiring variable 

discharge with the profile in Figure 11. While preparing the 

profile, sudden charging requirements were created, and 

stationary states were added and designed to use different 

discharge currents in the whole process. The battery was 

tested at various temperatures during its lifetime. A separate 

C-Rate was determined for each temperature cycle using the 

proposed approach. Using four different ζ parameters, the 

variation of the charging current values obtained is given in 

Fig. 12, and the corresponding C-Rate values are presented 

in Fig. 13.  

 

 
Fig. 11 Load current profile for variable load condition test 

 

 

Fig. 12 Charging currents under different weighting parameters for 
variable load condition test 

 

Fig. 13 C-Rate values under different weighting parameters for 
constant load condition test 

Figure 14 compares the energy amounts obtained from the 

battery tested under variable load profiles under different 

weighting parameters. When the weighting parameter is set 

as ζ =10, 824.341 kWh of energy can be extracted from the 

battery for 3156.2 hours. However, the charging time 

increases by 241.6 hours compared to the system controlled 

with a constant C-Rate. An increase of 8.14% is observed 

in the energy that can be obtained. When the parameter is 

updated to ζ =13.45, which is the optimal ζ of the genetic 
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algorithm, the total charging time increases by 338.6 hours, 

but the amount of energy that can be obtained increases by 

11.84% to 852,482 kWh. When the weighting parameter is 

doubled compared to the first case (ζ =20), the charging 

time increases by 738.4 hours, and the amount of energy 

that can be obtained is measured as 983.606 kWh with an 

increase of 29.04%. 

 

 
Fig. 14  Energy comparison of different weighting parameters for 
variable load condition test 

In the proposed approach, it is seen that if the weighting 

parameter is selected more widely, the energy that can be 

drawn from the battery in the long term may increase, but 

the charging time in single cycles will increase at the same 

rate. There is an inverse relationship between the increase 

in the weighting parameter and the charging current, and as 

one increases, the other decreases. The proposed approach 

creates flexibility for the designer in this regard, and it is 

foreseen that the most appropriate weighting parameter will 

be selected due to the cost-benefit analysis. Table 2 shows 

the comparative results of all simulation studies. 

TABLE 2 Comparison of the test profiles in terms of Energy and 
Time   

Load ζ Energy (kWh) Time (H) 

 

Constant 

Load 

Profile 

0  

(Constant C-Rate) 

684.5776 2629.2 

10 749.0271 2878.5 

13.45 (GA) 781.663 3005.6 

15 798.809 3072.4 

20 874.926 3367.6 

 

Variable 

Load 

Profile 

0  

(Constant C-Rate) 

762.224 2914.6 

10 824.341 3156.2 

13.45 (GA) 852.482 3270.1 

15 873.641 3348.4 

20 983.606 3770.4 

5. CONCLUSIONS 

 

In this study, an adaptive battery management system based 

on temperature and charging rate is developed for lithium-

based battery systems (LBS). LBS, an electrochemical 

storage technology, can offer high power and high energy 

density at the same time. Thus, it can respond to continuous 

power needs and meet sudden power demands. The 

temperature harms LBS chemistry, and it is crucial to use 

LBS in high-temperature environments with unique 

management systems for its long life. 

In the proposed approach, a differential relationship 

between ambient temperature and charging rate is 

established, and the aim is to update the charging rate as the 

temperature changes. In this way, two conditions likely to 

cause thermal stress on the LBS are prevented from 

affecting the LBS simultaneously. With the proposed 

approach, the life of the battery is extended, and the 

environmental waste generation is reduced by extending the 

battery replacement time. The genetic algorithm optimized 

the ζ parameter used for balancing in the study. 

The study was carried out under two different load profiles. 

Firstly, in the simulation studies performed under constant 

load, it was observed that 14.18% more energy could be 

obtained compared to the EMS using constant charging 

speed using the optimal ζ, obtained by genetic algorithm. 

On the other hand, it was observed that the amount of 

energy that can be obtained can be increased by 27.8% by 

using the ζ =20, although it causes the charging time to 

increase. Similarly, in simulation studies under variable 

load current, it is observed that an 11.84% energy increase 

is obtained when the weighting parameter ζ =13.84 is 

selected. In comparison, a 29.04% energy increase is 

observed when ζ =20 is selected.  

The obtained findings reveal the success of the proposed 

battery management system and ensure the safe operation 

of the LBS by protecting it from temperature-related 

hazards while healthily extending the battery life. 
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