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SPECIAL SECTION

Trusses of the smallest total potential energy
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Warsaw University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics and Computer Aided Engineering,
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Abstract. The paper concerns the problem of minimization of the total potential energy of trusses subjected to static loads in the presence
of prescribed displacements of selected supporting nodes. The positions of the internal (free) nodes are fixed and the supporting nodes are
imposed, the member stiffnesses being design variables, while the truss volume represents the cost of the design. Due to the assumption of
the stiffnesses being non-negative, the problem is reduced to a problem of optimization of structural topology. Upon eliminating all the design
variables analytically the optimum design problem is eventually reduced to the two mutually dual problems expressed either in terms of member
forces or in terms of displacements of free nodes. The problem setting concerning the case when the prescribed displacements of supports are the
only loads applied (i.e. kinematic loads) assumes a particularly simple form. A specific numerical method of solving the stress-based auxiliary
problem has been developed for the selected 2D and 3D optimal designs. The study is the first step towards topology optimization of trusses with
distortions.
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1. INTRODUCTION

One of the methods of rational designing engineering structures
is the introduction of distortions, or, in particular, prescribing
displacements of supports. In the case of skeletal structures un-
der the term distortion one understands the presence of bars of
initial lengths longer or shorter than the distance between the
given nodes. By assembling the structure of such members one
introduces an initial stress and deformations states. The topic of
distortions in a continuum medium is indissolubly bonded with
the theory of composites in which the Eshelby methods play a
crucial role, see Mura [1]. Assessing the sensitivity of a struc-
ture response due to the presence of a local distortion in the form
of a small inclusion or a small cavity is the subject of considera-
tion of the series of papers on the topological derivative method,
see e.g. Novotny and Sokołowski [2]. The topological derivative
of the elastic energy stored in a linearly elastic body is deter-
mined by the Eshelby tensor, see Section 7.1 in Lewiński and
Sokołowski [3]. The topological derivative concept applies also
to discrete systems, e.g. to graphs whose all nodes are connected
to a rigid support by springs, see Leugering and Sokołowski [4].

Distortions in skeletal structures are the tools of optimal de-
sign as well as the tools of optimal control of the structure
during its exploitation; the relevant virtual distortion method
was developed by Holnicki-Szulc [5]. New interesting examples
of structures designed and constructed by applying distortions
are the subject of the study by Bessini et al. [6].

The present paper focuses on the optimum design of trusses
composed of linearly elastic members. The theory of response
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of trusses to the given static load and prescribed displacements
of supports is outlined in a manner that will be further directly
applicable to the case of general distortions. Indeed, the pre-
scribed displacements of supports can be viewed as boundary
distortions.

Within the continuum media theory of equilibrium of non-
linearly elastic bodies the boundary value problems are usually
formulated such that the displacements vanish on the support.
The entire Chapter 6 of the book by Ciarlet [7], in which the
implicit function theorem is used, concerns this special case. In
particular, Theorems 6.4-1 and 6.7-1 therein on the existence
of solutions draw upon the assumption of homogeneity of the
kinematic boundary conditions. The non-homogeneity of the
kinematic conditions occurs only in Chapter 7 of this book in
which the existence issue is discussed using techniques of direct
methods of calculus of variations.

The lectures on linear elasticity usually comprise the case
of nonhomogeneous kinematic boundary conditions. The given
field U of displacements on the supporting segment Γ1 of the
boundary of a domain Ω is assumed to be element of the space
𝐻1/2 (Γ1), see equation (3.10) in Duvaut and Lions [8]. Due to
statical admissibility of the stress field 𝝈 the components of
the vector field 𝝈n on the boundary (n being the unit outward
normal to the domain) may be viewed as elements of the space
𝐻−1/2 (Γ), Γ being the boundary. Thus, the product of the reac-
tions 𝝈n and the displacement field U can be integrated over the
support. Consequently, the Castigliano functional can be prop-
erly defined; its argument is a virtual stress field 𝝉 within the
given domain Ω; this functional reads

℘(𝝉) = 1
2

∫
Ω

𝝉 · (A𝝉) dΩ−
∫
Γ1

(𝝉n) ·UdΓ1 , (1)
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where A represents the tensor of flexibilities. Let Σ be the set of
virtual stresses 𝜏 which satisfy the equilibrium equations within
the domainΩ and the natural boundary conditions 𝝉n =T on Γ2,
being the complementary segment of the boundary: Γ2 = Γ\Γ1.
According to Castigliano’s theorem the field 𝜎, which is the
stress field solving the boundary value problem of linear elas-
ticity, can be constructed directly by the minimization process:

℘(𝝈) = min
𝝉∈Σ

℘(𝝉). (2)

The result (2) should be understood as follows: for the minimizer
𝜎, being statically admissible, one can find the displacement
field u such that

𝜺(u) = A𝝈 in Ω, u = U on Γ1 , (3)

where 𝜺(u) is the symmetric part of the gradient of u. Moreover,
under known assumptions the field u is unique. Then the triple
(u,𝜺(u),𝝈) solves the set of equations of linear elasticity and
this solution is unique. The proof of the Castigliano theorem is
delivered in Section 3.5 of Duvaut and Lions [8], see also Nečas
and Hlavaček [9].

For a better understanding of the truss optimization problem
let us recall now the isotropic material design (IMD) problem
of optimal distribution of the elastic moduli of isotropy: 𝑘 (𝑥),
𝜇(𝑥) within a given design domain Ω, first proposed in Czar-
necki [10]. The unit cost is assumed as equal to the trace of
the Hooke tensor. In the case of isotropy, the eigenvalues of the
Hooke tensor are 3𝑘 , 2𝜇, 2𝜇, 2𝜇, 2𝜇, 2𝜇 cf. Walpole [11]. Thus,
the cost condition is assumed in the form∫

Ω

(3𝑘 +10𝜇) dΩ ≤ Λ0 . (4)

The fields 𝑘 (𝑥) and 𝜇(𝑥) are the design variables of the problem.
We shall assume that 𝑘 and 𝜇 are subject to the conditions:
𝑘 ≥ 0, 𝜇 ≥ 0, hence we admit the degenerated cases such that
e.g. 𝑘 = 0 and 𝜇>0 or vice versa, while the case of 𝑘 = 0 and 𝜇 = 0
means that the material is absent. The body occupying the given
domainΩ is subjected to the tractions of intensity T on the given
segment Γ2 of the boundary while the complementary segment
Γ1 is a support on which the displacement field u vanishes.
In this problem with u = 0 on Γ1 maximization of the overall
stiffness of the body means minimization of the compliance 𝐶
defined by

𝐶 =
1
2

∫
Γ2

T ·udΓ2, (5)

or, alternatively,

𝐶 =
1
2

min
𝝉∈Σ

∫
Ω

𝝉 ·A𝝉dΩ, (6)

the integrand being

𝝉 · (A𝝉) = 1
9𝑘

(tr𝝉)2 + 1
2𝜇

∥dev𝝉∥2 , (7)

where tr𝝉 and dev𝝉 are the trace and deviator of the stress
state 𝝉; ∥ ∥ represents the Euclidean norm. The problem of
maximization of the stiffness of the body means minimization of
𝐶 over all possible layouts of the bulk and shear moduli keeping
the mentioned cost condition. The main feature of this approach
is reducing the problem to a sequence of two minimization
operations over independent variables. Indeed, the set Σ does
not depend on the layout of the elastic moduli and the layout of
the materials has nothing to do with the trial stress field. Thus,
the order of the minimization operations can be changed and
then minimization operation over the moduli can be performed
analytically.

The problem of minimization of the compliance given by (4),
(5) over the non-negative bulk and shear moduli satisfying (4)
reduces to the problem of the form

min
𝝉∈Σ

∫
Ω

𝐹 (𝝉) dΩ, (8)

where

𝐹 (𝝉) = min

∫
Ω

(
1

9𝑘
(tr𝝉)2 + 1

2𝜇
∥dev𝝉∥2

)
dΩ

���
over 𝑘 ≥ 0, 𝜇 ≥ 0,

∫
Ω

(3𝑘 +10𝜇) dΩ ≤ Λ0

 (9)

and the problem (9) can be solved by using the rule

min

∫
Ω

(
𝑛∑︁
𝑖=1

𝑎𝑖 (𝑥)
𝑤𝑖 (𝑥)

)
dΩ

������ over: 𝑤𝑖 ≥ 0,
∫
Ω

(
𝑛∑︁
𝑖=1
𝑤𝑖 (𝑥)

)
dΩ ≤ Λ


=

1
Λ

©«
∫
Ω

(
𝑛∑︁
𝑖=1

√︁
𝑎𝑖 (𝑥)

)
dΩª®¬

2

, (10)

where 𝑎𝑖 (𝑥) > 0 are given functions in the domain Ω, Λ is a
given positive constant while the functions 𝑤𝑖 (𝑥), 𝑖 = 1, . . . , 𝑛
are unknown, see Section 1.3 in Lewiński [12]. The solution
𝑤∗
𝑖
(𝑥) to the problem (10) is given by

𝑤∗
𝑖 (𝑥) = Λ

√︁
𝑎𝑖 (𝑥)∫

Ω

𝑛∑︁
𝑗=1

√
𝑎 𝑗 dΩ

. (11)

Here 𝑤1 (𝑥) = 3𝑘 (𝑥), 𝑤2 (𝑥) = 10𝜇(𝑥), 𝑛 = 2. Let us note: the
explicit form of the function 𝐹 (·) can be found by using the rule
(10), which reduces the optimum design problem to the auxiliary
problem (8) in which the design variables are absent and the only
unknown is the stress field 𝜎 for which the functional attains its
minimum.

Let us note that according to (11) the optimal bulk modulus
𝑘∗ is proportional to |tr𝝈 | and the optimal 𝜇∗ is proportional to
∥dev𝝈∥. The effective domain of the minimizer𝜎 is the material
domain, the remaining part becomes a void. The mathematical
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theory of the IMD method can be found in Bołbotowski and
Lewiński [13].

The majority of optimum design problems concern the case
of U = 0. Then the requirement of making the structure as stiff as
possible reduces to the requirement of minimizing the compli-
ance given by (4). It seems that almost no one paper on topology
optimization up to 2011 discussed the case of kinematic loads
(T = 0, U ≠ 0) or the case when both types of loads are simul-
taneously present (T ≠ 0, U ≠ 0). The method of tackling such
optimum design problems has been put forward by Barbarosie
and Lopes [14], Niu et al. [15], Klarbring and Strömberg [16],
and Klarbring [17]. These papers teach us that instead of mini-
mizing compliance one should minimize the functional

𝐽 =
1
2

∫
Γ2

T ·udΓ2 −
1
2

∫
Γ1

(𝝈n) ·UdΓ1 , (12)

here u and 𝝈 form the solution to the elasticity problem in which
both the loads T and U are nonzero. In the case of T ≠ 0, U = 0
the functional 𝐽 equals 𝐶 and the task reduces to the minimum
compliance problem. In the opposite case of T = 0, U ≠ 0 min-
imization of 𝐽 means maximization of the work of reactions
𝝈n on given displacements U of supports on the boundary Γ1.
This means that the designed structure is the stiffest since its
resistance due to the prescribed displacements of supports is the
highest. However, the reason for choosing the functional (12) for
the minimization process does not simply follow only from the
discussion of the mentioned two extreme cases. The true rea-
son is equality: 𝐽 = ℘(𝝈) which defines a new meaning of the
functional 𝐽 and justifies calling it the total potential energy, as
Klarbring [17] has suggested. The above arguments justify set-
ting the minimization problem of the functional 𝐽 given by (12)
to formulate properly the optimum design problems concerning
the structures simultaneously subjected to static and kinematic
loads.

The subject of the present paper is an optimum design of
trusses given the position of nodes, also those on which the
structure is supported. The truss is subjected to nodal concen-
trated forces 𝑃1, . . . , 𝑃𝑠 and - to the prescribed displacements of
supports: 𝑈1, . . . ,𝑈𝑚. The volume of the truss is bounded by a
given value. The design variables: the axial stiffnesses of mem-
bers EA𝑘 , 𝑘 = 1, . . . , 𝑒, are viewed as nonnegative, which means
that the solutions, i.e. the optimal trusses, are admitted to being
geometrically variable. The problem is thus posed as a prob-
lem of optimum structural topology in which the total potential
energy 𝐽is minimized. We shall show that all the design vari-
ables can be analytically eliminated thus reducing the problem
to the two mutually dual problems, the dual gap between them
being zero. By solving the stressed-based problem one obtains
explicit formulae for the optimal stiffnesses and the theorem on
the constant stress distribution is an easy by-product of this part
of the analysis. These conclusions correspond to the analogous
properties of the optimal structures formed by the mentioned
method of isotropic material design.

It occurs, however, that the growth of the minimized func-
tion in the stress-based problem concerning optimum design
of trusses is very slow thus making difficulties in attaining the

solution. For solving this problem new numerical methods are
proposed.

When the displacements U are prescribed, we have no con-
trol over the values of reactions, hence the optimal designs are
difficult to predict. Moreover, the kinematic load U acts on the
boundary and causes reactions to be self-equilibrated; conse-
quently one may expect that the optimal designs will be com-
posed of bars lying in a certain boundary zone only. This is
not true in general, the Saint Venant principle does not hold in
discrete systems – some reactions may transmit the stress along
a line of bars to the other side of the support.

As mentioned, the kinematic loads U may be treated as bound-
ary distortions. The formalism of internal distortions in trusses
is similar. Thus, the present paper is an introduction to the prob-
lem of optimum design of trusses subjected to distortions of
arbitrary nature.

A standard notation of linear algebra is applied. In particular,
the scalar product of two vectors a,b ∈ R𝑛 is defined by a ·b =

𝑎1𝑏1+ . . .+𝑎𝑛𝑏𝑛. The vectors will be viewed as columns, e.g. a=
[𝑎1, . . . , 𝑎𝑛]𝑇 , hence a ·b = a𝑇b, where ( )𝑇 is the transposition
operator. The identity matrix is represented by I. If A is a 𝑚×𝑛
matrix, then the image of the linear operator represented by A
and the kernel of this operator are defined below

Im(A) =
{
b ∈ R𝑚

�� ∃ v ∈ R𝑛, b = Av
}
,

Ker(A) =
{
v ∈ R𝑛

�� Av = 0 ∈ R𝑚
}
.

(13)

Above (Av)𝑘 =
𝑛∑︁
𝑗=1
𝐴𝑘 𝑗𝑣 𝑗 is the 𝑘-component of the vector A v.

The diagonal matrix A of dimensions 𝑛× 𝑛 will be denoted by
diag {𝐴11, . . . , 𝐴𝑛𝑛}.

If 𝑥 ∈𝑉 , the set𝑉 has a complex structure, then the minimiza-
tion problem: min

𝑥∈𝑉
𝑓 (𝑥) will be written as: min { 𝑓 (𝑥) | 𝑥 ∈ 𝑉}.

2. EQUATIONS OF STATICS OF TRUSSES SUBJECTED TO
NODAL FORCES AND PRESCRIBED DISPLACEMENTS
OF SUPPORTING NODES

Consider a truss of e bars; the supporting nodes are subject to
given displacements𝑈1, . . . ,𝑈𝑚; the displacements 𝑢1, . . . , 𝑢𝑠 of
the free nodes of the truss determine the member elongations
Δ1, . . . ,Δ𝑒 by the equations

Δ𝑘 =

𝑠∑︁
𝑗=1
𝐵𝑘 𝑗𝑢 𝑗 +

𝑚∑︁
𝑙=1

�̆�𝑘𝑙𝑈𝑙 , (14)

where B =
[
𝐵𝑘 𝑗

]
𝑒×𝑠 and B̆ =

[
�̆�𝑘𝑙

]
𝑒×𝑚 are so-called geo-

metric matrices composed of directional cosines. The pre-
scribed displacements𝑈1, . . . ,𝑈𝑚 are accompanied by reactions
𝑅1, . . . , 𝑅𝑚; the work of these reactions on the prescribed dis-
placements is expressed by the scalar product R ·U. Along the
displacements 𝑢1, . . . , 𝑢𝑠 the nodal forces 𝑃1, . . . , 𝑃𝑠 are applied;
their work on the unknown displacements is expressed by the
scalar product P · u. The static loads 𝑃1, . . . , 𝑃𝑠 and the kine-
matic loads 𝑈1, . . . ,𝑈𝑚 cause axial member forces 𝑁1, . . . , 𝑁𝑒
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and reactions 𝑅1, . . . , 𝑅𝑚. The equations of equilibrium of all
nodes are expressed by one variational equation

𝑒∑︁
𝑘=1

𝑁𝑘Δ̄𝑘 =

𝑠∑︁
𝑗=1
𝑃 𝑗 �̄� 𝑗 +

𝑚∑︁
𝑙=1

𝑅𝑙�̄�𝑙 ∀ ū ∈ R𝑠 ,∀ Ū ∈ R𝑚, (15)

where

Δ̄𝑘 =

𝑠∑︁
𝑗=1
𝐵𝑘 𝑗 �̄� 𝑗 +

𝑚∑︁
𝑙=1

�̆�𝑘𝑙�̄�𝑙 . (16)

Substitution of (16) into (15) and making use of arbitrariness of
�̄� 𝑗 , �̄�𝑙 , 𝑗 = 1, . . . , 𝑠; 𝑙 = 1, . . . ,𝑚 leads to the nodal equilibrium
equations

𝑒∑︁
𝑘=1

𝐵𝑘 𝑗𝑁𝑘 = 𝑃 𝑗 , 𝑗 = 1, . . . , 𝑠, (17)

𝑒∑︁
𝑘=1

�̆�𝑘𝑙𝑁𝑘 = 𝑅𝑙 , 𝑙 = 1, . . . ,𝑚. (18)

The constitutive equations linking the member forces 𝑁1, . . . , 𝑁𝑒

and the elongations Δ1, . . . ,Δ𝑒 are assumed as linear, the distor-
tions of members being not considered. ThusΔ𝑘 = 𝑁𝑘 𝑙𝑘/(𝐸𝐴𝑘),
where 𝐸 represents Young’s modulus and 𝐴𝑘 is the area of the
𝑘-th bar, 𝑙𝑘 being its length. The equations (14), (17), (18) and
the constitutive equations form a solvable set of equations. In
the matrix notation, it reads

𝚫 = Bu+ B̆U,

B𝑇N = P, B̆𝑇N = R,

N = E𝚫,

(19)

where the constitutive matrix has the diagonal form: E =

diag
{
𝐸𝐴1
𝑙1

, . . . ,
𝐸 𝐴𝑒

𝑙𝑒

}
and

u = [𝑢1, . . . , 𝑢𝑠]𝑇 , 𝚫 = [Δ1, . . . ,Δ𝑒]𝑇 , P = [𝑃1, . . . , 𝑃𝑠]𝑇 ,
U = [𝑈1, . . . ,𝑈𝑚]𝑇 , R = [𝑅1, . . . , 𝑅𝑚]𝑇 , N = [𝑁1, . . . , 𝑁𝑒]𝑇 .

Let us introduce the stiffness matrix K = B𝑇EB related to the
unknowns 𝑢1, . . . , 𝑢𝑠 . These unknowns are governed by the equa-
tion

Ku = P−B𝑇EB̆U. (20)

The matrix K is of dimensions 𝑠× 𝑠, is symmetric, and detK ≥
0. In case of detK > 0 the solution of (20) is unique; having
the displacements 𝑢1, . . . , 𝑢𝑠 one can compute the elongations
Δ1, . . . ,Δ𝑒 of bars by (19)1 and then compute reactions by

R = B̆𝑇E
(
Bu+ B̆U

)
. (21)

For future convenience let us introduce the new entities

�̃� = 𝚫− B̆U, �̃�𝑜
= −B̆U. (22)

The set of equations (19) assumes now the form

�̃� = Bu,
B𝑇N = P,

N = E
(
�̃�− �̃�

𝑜
) (23)

while reactions at supports are computed by R= B̆𝑇N. The equa-
tions (23) have now the form naturally appearing in the static
problem of trusses with internal distortions. Let us introduce the
Lagrange functional

𝐿 (v) = P ·v− 1
2

(
Bv− �̃�

𝑜
)
·
[
E(Bv− �̃�

𝑜)
]
, v ∈ R𝑠 (24)

and the Castigliano functional, the counterpart of the functional
(1)

Υ(n) = 1
2

n ·
(
E−1n

)
+n · �̃�𝑜

,n ∈ R𝑒, (25)

where the component n ·
(
E−1n

)
should be understood as below

n ·
(
E−1n

)
=

{
d · (Ed) if n ∈ Im(E), n = Ed, d ∈ R𝑒,

+∞ if n ∉ Im(E).
(26)

The following theorems deliver useful reformulations of the
problem (23).

Theorem 1. The following statements are equivalent
a1) u is the solution to the system (23).
a2) u is the solution to the maximization problem

max
v∈R𝑠

𝐿 (v). (27)

Theorem 2. The following statements are equivalent
b1) N is the solution to the system (23) and then there exists u,

�̃� satisfying (23).
b2) N is the solution to the minimization problem

min
{
Υ(n)

��n ∈ R𝑒, B𝑇n = P
}
. (28)

The proofs of these theorems are given in Appendices A
and B, for the readers’ convenience.

Let us note that if E is reversible, then

𝐿 (u) = Υ(N). (29)

Proof. Since N is statically admissible (statically compatible
with the load P), we have (Bu) ·N = P ·u. Due to

Bu = E−1N+ �̃�𝑜
, (30)

one gets (
E−1N+ �̃�𝑜

)
·N = u ·P, (31)

hence

1
2

N ·
(
E−1N

)
+N · �̃�𝑜

= P ·u− 1
2

N ·
(
E−1N

)
. (32)
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By virtue of

N ·
(
E−1N

)
=

(
�̃�− �̃�

𝑜
)
·
(
E

(
�̃�− �̃�

𝑜
))
, (33)

we find

1
2

N ·
(
E−1N

)
+N · �̃�𝑜

= P ·u− 1
2

(
Bu− �̃�

𝑜
)
·
[
E(Bu− �̃�

𝑜)
]

(34)

which is equivalent to (29). We conclude that the duality gap
between the problems (27) and (28) vanishes.

The following notation will be used in the sequel

𝑑𝑘 (v) =
𝑠∑︁
𝑗=1
𝐵𝑘 𝑗𝑣 𝑗 𝑑𝑈𝑘 (v) = 𝑑𝑘 (v) +

𝑚∑︁
𝑙=1

�̆�𝑘𝑙𝑈𝑙 . (35)

Hence (14) can be rewritten by Δ𝑘 = 𝑑
𝑈
𝑘
(u) .

3. THE TOTAL POTENTIAL ENERGY OF A TRUSS AND ITS
LINK TO CASTIGLIANO’S THEOREM

The total potential energy of a truss is understood as in (12), or

𝐽 =
1
2

P ·u+ 1
2
(−R ·U) . (36)

By assuming u = u and U = U in (15) one obtains the equality

N ·𝚫 = P ·u+R ·U. (37)

By virtue of (19)3, we have

N ·
(
E−1N

)
= P ·u+R ·U, (38)

and hence
2𝐽 = N ·

(
E−1N

)
−2R ·U, (39)

while by using (19)2 we get

2𝐽 = N ·
(
E−1N

)
−2(B̆𝑇N) ·U. (40)

Hence, see (25)
𝐽 = Υ(N). (41)

We conclude that the function subjected to minimization in
Castigliano’s theorem (28) represents the total potential energy
of a truss.

4. TRUSSES OF MINIMAL POTENTIAL ENERGY

4.1. Formulation of the optimization problem

In the case of P ≠ 0, U = 0, the total potential energy equals
𝐽 = P · u/2 and represents the compliance of the truss. In the
case of a one-unit force applied at a node, the value 2𝐽 is equal

to the projection of the displacement of this node on the direc-
tion of the force. Minimization of 𝐽 means minimization of this
displacement. In the case of many loads applied, the compliance
is the weighted sum of the displacements with weights propor-
tional to the magnitudes of the forces. Minimization of 𝐽 means
maximization of stiffness.

In the case of P = 0, U ≠ 0 the total potential energy equals
𝐽 = −R ·U/2. Minimization of 𝐽 means maximization of the
work of reactions done on the prescribed displacements of nodes
of the supports. Thus, R ·U measures the resistance of the truss
subjected to the imposed displacements of supports and the
value −R ·U is the compliance due to prescribed displacements.
The bigger the resistance, the better the design of the truss.

In the case of P ≠ 0, U ≠ 0 the total potential energy 𝐽 is
a linear combination of both the compliances with the same
weight ½. Thus, the minimization of 𝐽 is a certain compromise
between compliances due to these two various loading condi-
tions.

Assume that the positions of nodes are given, hence also the
bar lengths are prescribed. We consider the designs in which the
cost is given as EV, 𝑉 being the volume of the material of all
bars; we require that this cost does not exceed a limit cost Λ𝑜

or, we require that

𝑒∑︁
𝑘=1

𝐸𝐴𝑘 𝑙𝑘 ≤ Λ𝑜 . (42)

We note the units: [Λ𝑜] = Nm.
Consider the optimum design problem

𝐽opt = min

{
𝐽
��𝐸𝐴1 ≥ 0, . . . , 𝐸 𝐴𝑒 ≥ 0

such that
𝑒∑︁

𝑘=1
𝐸𝐴𝑘 𝑙𝑘 ≤ Λ𝑜

}
, (43)

where 𝐽 is viewed as a function of the design variables
𝐸𝐴1, . . . , 𝐸 𝐴𝑒 and the behavioural variables according to Sec-
tions 2 and 3. According to (41) and (28), the problem (43) can
be re-written in the explicit form

𝐽opt = min
𝐸𝐴1≥0,...,𝐸𝐴𝑒≥0

𝑒∑
𝑘=1

𝐸𝐴𝑘 𝑙𝑘≤Λ𝑜

min
n∈R𝑒

B𝑇n=P

{
1
2

n ·
(
E−1n

)
−

(
B̆𝑇n

)
·U

}
, (44)

where the first component in the curly brackets should be un-
derstood as in (26). The matrix B does not involve the design
variables 𝐸𝐴1, . . . , 𝐸 𝐴𝑒, hence problem (44) can be re-written
as below, where the order of minimization operations is inter-
changed

𝐽opt = min
n∈R𝑒

B𝑇n=P

min
𝐸𝐴1≥0,...,𝐸𝐴𝑒≥0

𝑒∑
𝑘=1

𝐸𝐴𝑘 𝑙𝑘≤Λ𝑜

{
1
2

𝑒∑︁
𝑘=1

(𝑛𝑘)2𝑙𝑘
𝐸𝐴𝑘

−
(
B̆𝑇n

)
·U

}
.

(45)
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4.2. Elimination of the design variables-problem
formulation in terms of member forces

The minimization operation over 𝐸𝐴1, . . . , 𝐸 𝐴𝑒 can be per-
formed analytically using the rule (a discrete counterpart of
the rule (10))

min
x∈R𝑒

{
𝑒∑︁

𝑘=1

𝑎𝑘

𝑥𝑘

�����over 𝑥𝑖 ≥ 0 such that
𝑒∑︁

𝑘=1
𝑥𝑘 ≤ Λ𝑜

}
=

1
Λ𝑜

(
𝑒∑︁

𝑘=1

√
𝑎𝑘

)2

, (46)

where 𝑎1, . . . , 𝑎𝑒 are given positive numbers. Let us assume

𝑎𝑘 = (𝑛𝑘 𝑙𝑘)2, 𝑥𝑘 = 𝑙𝑘𝐸𝐴𝑘 . (47)

Since
𝑒∑︁

𝑘=1

(𝑛𝑘)2𝑙𝑘
𝐸𝐴𝑘

=

𝑒∑︁
𝑘=1

𝑎𝑘

𝑥𝑘
, (48)

we can make use of equality (46) thus reducing the problem (45)
to the form in which all the design variables are eliminated:

𝐽opt = min
n∈R𝑒

B𝑇n=P


1

2Λ𝑜

(
𝑒∑︁

𝑘=1
|𝑛𝑘 | 𝑙𝑘

)2

−
(
B̆𝑇n

)
·U

 . (49)

Let
[
𝑛∗1, . . . , 𝑛

∗
𝑒

]
be the minimizer of this problem. The mini-

mizer of the problem (46) reads (cf. (11) being its continuum
counterpart)

𝑥∗𝑘 = Λ𝑜

√
𝑎𝑘

𝑒∑︁
𝑖=1

√
𝑎𝑖

. (50)

This formula determines the optimal stiffnesses in terms of the
quantities

[
𝑛∗1, . . . , 𝑛

∗
𝑒

]
𝐸𝐴∗

𝑘 = Λ𝑜

��𝑛∗
𝑘

��
𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 . (51)

The formula above means that the absolute values of the stresses
in bars are independent of 𝑘 , or the stresses in the optimal truss
are made uniform, like in the standard problem concerning the
case of P ≠ 0, U = 0, see Hemp [18].

4.3. Elimination of the design variables-problem
formulation in terms of displacements

The problem (49) can be rearranged to the form in which the
displacements of nodes will be unknowns, namely:

𝐽opt = max
v∈R𝑠


𝑠∑︁
𝑗=1
𝑃 𝑗𝑣 𝑗 −

Λ𝑜

2

(
max

1≤𝑘≤𝑒

�����𝑑𝑈𝑘 (v)𝑙𝑘

�����
)2 , (52)

where 𝑑𝑈
𝑘
(v) is given by (35). This is just the problem dual

to (49).

Proof of (52). The member forces [𝑛1, . . . , 𝑛𝑒] are statically
compatible with the load P, hence

n · (Bv) = P ·v∀ v ∈ R𝑠 . (53)

Let r = B̆𝑇n. Then n ·d𝑈 (v) = P · v+U · r ∀ v ∈ R𝑠 , which can
be re-written in the form

𝑝 (n,v) = 0, (54)

where

𝑝(n,v) = 2
𝑠∑︁
𝑗=1
𝑃 𝑗𝑣 𝑗 +2

𝑚∑︁
𝑙=1

𝑒∑︁
𝑘=1

�̆�𝑘𝑙𝑛𝑘𝑈𝑙 −2
𝑒∑︁

𝑘=1
𝑛𝑘𝑑

𝑈
𝑘 (v). (55)

Let

𝐺 (n) = 1
Λ𝑜

(
𝑒∑︁

𝑘=1
|𝑛𝑘 | 𝑙𝑘

)2

−2
𝑚∑︁
𝑙=1

𝑒∑︁
𝑘=1

�̆�𝑘𝑙𝑛𝑘𝑈𝑙 (56)

and then

𝐺 (n) + 𝑝(n,v) = 1
Λ𝑜

(
𝑒∑︁

𝑘=1
|𝑛𝑘 | 𝑙𝑘

)2

+ 2
𝑠∑︁
𝑗=1
𝑃 𝑗𝑣 𝑗 −2

𝑒∑︁
𝑘=1

𝑛𝑘𝑑
𝑈
𝑘 (v). (57)

Let us express (49) in the form

2𝐽opt = min
n∈R𝑒

max
v∈R𝑠

{𝐺 (n) + 𝑝(n,v)} . (58)

By arguments similar to those used in the theory of the free
material design (see Bołbotowski and Lewiński [13]) one can
interchange the orders of min and max operations to arrive at

𝐽opt = max
v∈R𝑠


𝑠∑︁
𝑗=1
𝑃 𝑗𝑣 𝑗 +

1
2
𝑌

(
d𝑈 (v)

) , (59)

where

𝑌 (𝚫) = min
n∈R𝑒

 𝑓 𝑟𝑎𝑐1Λ𝑜

(
𝑒∑︁

𝑘=1
|𝑛𝑘 | 𝑙𝑘

)2

−2
𝑒∑︁

𝑘=1
𝑛𝑘Δ𝑘

 (60)

and here 𝚫 is an arbitrary vector in R𝑒. Let us construct an
explicit form of 𝑌 (𝚫). To this end we insert 𝑛𝑘 = 𝑡�̃�𝑘 , 𝑡 ∈ R,
ñ ∈ R𝑒 with

𝑡 =

𝑒∑︁
𝑘=1

|𝑛𝑘 | 𝑙𝑘 ,
𝑒∑︁

𝑘=1
|�̃�𝑘 | 𝑙𝑘 = 1. (61)

Thus,

𝑌 (𝚫) = min
ñ∈R𝑒

𝑒∑
𝑘=1

| �̃�𝑘 |𝑙𝑘=1

min
𝑡∈R

{
1
Λ𝑜

𝑡2 −2

(
𝑒∑︁

𝑘=1
�̃�𝑘Δ𝑘

)
𝑡

}
. (62)
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Let

𝑎 =
1
Λ𝑜

, 𝑏 =

𝑒∑︁
𝑘=1

�̃�𝑘Δ𝑘 . (63)

Since

min
𝑡∈R

{
𝑎𝑡2 −2𝑏𝑡

}
= −𝑏

2

𝑎
(64)

with the minimizer:

𝑡 = 𝑡∗ =
𝑏

𝑎
= Λ𝑜

𝑒∑︁
𝑘=1

�̃�𝑘Δ𝑘 , (65)

one can reduce the problem (60) to the form

𝑌 (𝚫) = min
ñ∈R𝑒

𝑒∑
𝑘=1

| �̃�𝑘 |𝑙𝑘=1

−Λ𝑜

(
𝑒∑︁

𝑘=1
�̃�𝑘Δ𝑘

)2 , (66)

or
𝑌 (𝚫) = −Λ𝑜 (𝐾 (𝚫))2 , (67)

where

𝐾 (𝚫) = max

{
𝑒∑︁

𝑘=1
�̃�𝑘Δ𝑘

����� ñ ∈ R𝑒,

𝑒∑︁
𝑘=1

|�̃�𝑘 | 𝑙𝑘 = 1

}
. (68)

Let 𝑚𝑘 = �̃�𝑘 𝑙𝑘 , 𝜀𝑘 = Δ𝑘/𝑙𝑘 , m̃ = [𝑚1, . . . ,𝑚𝑒]𝑇 , 𝜺 =

[𝜀1, . . . , 𝜀𝑒]𝑇 . The function

𝜌(m̃) =
𝑒∑︁

𝑘=1
|𝑚𝑘 | (69)

is a norm known from the Michell theory, see Lewiński et
al. [19]. The function polar to 𝜌(·) is given by

𝜌𝑜 (𝜺) = max
m̃∈R𝑒

𝜌(m̃)≤1

m̃ · 𝜺 = max
m̃∈R𝑒

𝜌(m̃)=1

m̃ · 𝜺. (70)

Hence
𝐾 (𝚫) = 𝜌𝑜 (𝜺) (71)

and we know that, see Rockafellar ( [20], Section 15),

𝜌𝑜 (𝜺) = max
1≤𝑘≤𝑒

|𝜀𝑘 | . (72)

Thus, 𝐾 (𝚫) = max
1≤𝑘≤𝑒

����Δ𝑘

𝑙𝑘

���� and, according to (67),

𝑌 (𝚫) = −Λ𝑜

(
max

1≤𝑘≤𝑒

����Δ𝑘

𝑙𝑘

����)2
, (73)

which ends the proof. □

4.4. The conditions of optimality

Let v∗ be the maximizer of (52) and 𝚫∗ be the associated vec-
tor of relative elongations. Let n∗ be the minimizer of (49).
These solutions of the mutually dual problems are linked by the
conditions of optimality which read:

𝚫∗ = Bv∗ + B̆U, B𝑇n∗ = P, (74)

𝑛∗𝑘 > 0 ⇒
Δ∗
𝑘

𝑙𝑘
=

1
Λ𝑜

𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 ,
𝑛∗𝑘 < 0 ⇒

Δ∗
𝑘

𝑙𝑘
= − 1

Λ𝑜

𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 ,
𝑛∗𝑘 = 0 ⇒ − 1

Λ𝑜

𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 ≤ Δ∗
𝑘

𝑙𝑘
≤ 1

Λ𝑜

𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 .
(75)

One can write the optimality conditions (75) in the manner
George Rozvany used to write them in case of P ≠ 0, U = 0,
namely

Δ∗
𝑘

𝑙𝑘
= �̂�sgn

(
𝑛∗𝑘

)
if 𝑛∗𝑘 ≠ 0, (76)

and ����Δ∗
𝑘

𝑙𝑘

���� ≤ �̂� if 𝑛∗𝑘 = 0, (77)

where

�̂� =
1
Λ𝑜

𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖 . (78)

We see that the above conditions determine the values of strains
Δ∗
𝑘
/𝑙𝑘 in terms of the member forces if the latter do not vanish.

For vanishing bars, the virtual strains Δ∗
𝑘
/𝑙𝑘 are subject to the

lower and upper bounds: −�̂� , �̂� . An inverse procedure is not
available: one cannot easily adjust the member forces to the
values of strains.

The optimization procedure results in the strain values Δ∗
𝑘
/𝑙𝑘

saturating both the lower and upper bounds in the bars of nonzero
cross sections; these bars are subject to nonzero stress. Here the
bound �̂� is determined by the collection of the values

{
𝑛∗
𝑗

}
.

In the bars of nonzero cross sections (which remain upon the
optimization process), the following constitutive equations hold

𝑛∗𝑘 = 𝐸𝐴
∗
𝑘

Δ∗
𝑘

𝑙𝑘
, (79)

where 𝐸𝐴∗
𝑘

are given by (51). Indeed, let us insert (51) into the
r.h.s. of (79) and compute

Λ𝑜

��𝑛∗
𝑘

��
𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖
Δ∗
𝑘

𝑙𝑘
= Λ𝑜

��𝑛∗
𝑘

��
𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖
𝑒∑︁
𝑖=1

��𝑛∗𝑖 �� 𝑙𝑖
Λ𝑜

sgn
(
𝑛∗𝑘

)
=

��𝑛∗𝑘 ��sgn
(
𝑛∗𝑘

)
= 𝑛∗𝑘 , (80)

which proves that the equations (79) are fulfilled.
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To recapitulate we state that the problem (43) reduces to two
mutually dual problems which can be expressed:
• In terms of membrane forces (49) .
• In terms of displacements of free nodes (52) .
The solution to the problem (49) determines directly the opti-

mal stiffnesses according to (51) and thus determines the topol-
ogy of the optimal truss since some values 𝑛∗

𝑘
vanish and these

bars will disappear. The optimal truss may be geometrically
variable.
Remark 1. A truss is called internally statically determinate
if the member forces can be uniquely computed by solving the
equilibrium equations of all nodes, i.e. based on the knowl-
edge of the given loads and reactions. The outlined method of
topology optimization of trusses admits the vanishing of se-
lected areas of the cross sections of members. Consequently, the
optimum truss has a topology different than the initial design.
These initial designs are usually internally statically indetermi-
nate. It occurs, however, that for each optimum design problem,
there exists at least one optimal truss which is internally stat-
ically determinate. In other words, the optimization procedure
changes the topology such that in the optimum truss the state of
member forces can be uniquely determined by the reactions (cre-
ated by the optimization) process and by the given set of loads.
This property of optimal designs becomes clear while analyzing
particular examples. Usually, the set of optimal solutions is a
singleton.

5. THE CASE OF P ≠ 0, U = 0: TRUSSES OF MINIMAL
COMPLIANCE

We consider the case of U = 0 and show that the problems (49)
and (52) reduce to the known problems forming the theory of
trusses of optimal compliance. By assuming U = 0 in (49) we
obtain

𝐽opt =
1

2Λ𝑜

𝑍2, (81)

𝑍 = min
n∈R𝑒

B𝑇n=P

{
𝑒∑︁

𝑘=1
|𝑛𝑘 | 𝑙𝑘

}
, (82)

and we see that the problem assumes the well-known form, see
Bendsøe et al. [21], Achtziger [22], Lewiński et al. [19].

Now we shall perform a similar reduction of the problem (52).
If U = 0 then 𝑑𝑈

𝑘
(v) = 𝑑𝑘 (v), see (35). Let 𝑣 𝑗 = 𝑡�̃� 𝑗 , 𝑗 = 1, . . . ,

𝑠 and then 𝑑𝑘 (v) = 𝑡𝑑𝑘 (ṽ). Let

max
1≤𝑘≤𝑒

����𝑑𝑘 (ṽ)𝑙𝑘

���� = 1. (83)

Then
max

1≤𝑘≤𝑒

����𝑑𝑘 (v)𝑙𝑘

���� = |𝑡 | max
1≤𝑘≤𝑒

����𝑑𝑘 (ṽ)𝑙𝑘

���� = |𝑡 |. (84)

The problem (52) can be written as below

2𝐽opt = max
ṽ∈R𝑠

max
1≤𝑘≤𝑒

��� 𝑑𝑘 (ṽ)
𝑙𝑘

���=1

max
𝑡∈R

{
2𝑡P · ṽ−Λ𝑜𝑡

2} . (85)

Let 𝑏 = P · ṽ, 𝑎 = Λ𝑜. We have max
𝑡∈R

{
2𝑏𝑡 − 𝑎𝑡2

}
= 𝑏2/𝑎 and the

maximizer equals:

𝑡∗ =
𝑏

𝑎
=

1
Λ𝑜

P · ṽ. (86)

Thus (87) assumes the form

2𝐽opt =
1
Λ𝑜

max
{
(P · ṽ)2

����ṽ ∈ R𝑠 , max
1≤𝑘≤𝑒

����𝑑𝑘 (ṽ)𝑙𝑘

���� = 1
}

(87)

or

𝐽opt =
1

2Λ𝑜

𝑍2, (88)

𝑍 = max
{

P · ṽ| ṽ ∈ R𝑠 , max
1≤𝑘≤𝑒

����𝑑𝑘 (ṽ)𝑙𝑘

���� = 1
}
. (89)

The equality in curly brackets in (89) can be replaced by ≤. The
problems (82) and (89) are mutually dual, which is known from
the theory of truss optimization, see Hemp [18], Achtziger [22],
and Lewiński et al. [19].

Let n∗ be the minimizer of (82) and let ṽ∗ be the maximizer
of (89). These vectors are linked by the optimality conditions:

B𝑇n∗ = P,
�̃�
∗
= Bṽ∗,

𝑛∗𝑘 > 0 ⇒
Δ̃∗
𝑘

𝑙𝑘
= 1,

𝑛∗𝑘 < 0 ⇒
Δ̃∗
𝑘

𝑙𝑘
= −1,

𝑛∗𝑘 = 0 ⇒ −1 ≤
Δ̃∗
𝑘

𝑙𝑘
≤ 1.

. (90)

Note that
Δ̃∗
𝑘

𝑙𝑘
= sgn

(
𝑛∗
𝑘

)
if 𝑛∗

𝑘
≠ 0,����� Δ̃∗

𝑘

𝑙𝑘

����� ≤ 1 if 𝑛∗
𝑘
= 0

(91)

and we see that now the bound for the relative elongation��Δ̃∗
𝑘
/𝑙𝑘

�� does not depend on the values of the membrane forces:[
𝑛∗1, . . . , 𝑛

∗
𝑒

]
.

In the case considered among the optimal trusses at least one is
statically determinate; the proof can be found in Achtziger [22].

6. THE CASE OF P = 0, U ≠ 0

We shall now derive the particular forms of the problems (49),
and (52) in the case of a truss with prescribed displacements of
supports: P = 0, U ≠ 0. The optimal value of the total potential
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energy equals

𝐽opt = −1
2
Λ𝑜𝑍

2, (92)

𝑍 = max

{(
B̆𝑇 ñ

)
·U

�����ñ ∈ Ker(B𝑇 ),
𝑒∑︁

𝑘=1
|�̃�𝑘 | 𝑙𝑘 = 1

}
, (93)

or

𝑍 = min
v∈R𝑠

 max
1≤𝑘≤𝑒

������ 1
𝑙𝑘

©«
𝑠∑︁
𝑗=1
𝐵𝑘 𝑗𝑣 𝑗 +

𝑚∑︁
𝑙=1

�̆�𝑘𝑙𝑈𝑙
ª®¬
������
 , (94)

and the problems (93) and (94) are mutually dual. The solution
ñ∗ to the problem (93) defines the optimal stiffnesses by

𝐸𝐴∗
𝑘 = Λ𝑜�̃�

∗
𝑘 . (95)

Those bars in which �̃�∗
𝑘
= 0 disappear.

Proof. The virtual vector n in (49) satisfies the homogeneous
equation: B𝑇n = 0, hence one can represent the components of
n as 𝑛𝑘 = 𝑡�̃�𝑘 with 𝑡 ∈ R and

𝑒∑︁
𝑘=1

|�̃�𝑘 | 𝑙𝑘 = 1, 𝑡 =

𝑒∑︁
𝑘=1

|𝑛𝑘 | 𝑙𝑘 . (96)

Now we re-write (49) in the form

2𝐽opt = min
ñ∈Ker(B𝑇 )
𝑒∑

𝑘=1
| �̃�𝑘 |𝑙𝑘=1

min
𝑡∈R

{
1
Λ𝑜

𝑡2 −2𝑡
(
B̆𝑇 ñ

)
·U

}
. (97)

Let
𝑎 =

1
Λ𝑜

, 𝑏 =

(
B̆𝑇 ñ

)
·U (98)

but
min
𝑡∈R

{
𝑎𝑡2 −2𝑏𝑡

}
= −𝑏

2

𝑎
, (99)

and the minimizer equals

𝑡 = 𝑡∗ =
𝑏

𝑎
= Λ𝑜

(
B̆𝑇 ñ

)
·U. (100)

The new form of (6.2) reads

2𝐽opt = min
ñ∈Ker(B𝑇 )
𝑒∑

𝑘=1
| �̃�𝑘 |𝑙𝑘=1

{
−Λ𝑜

((
B̆𝑇 ñ

)
·U

)2
}
, (101)

which confirms (92), (93). Let ñ∗ be the maximizer of this
problem. Then

𝑡∗ = Λ𝑜

(
B̆𝑇 ñ∗

)
·U (102)

and the optimal forces in bars are

n∗ = 𝑡∗ñ∗. (103)

The optimal member forces determine the optimal stiffnesses
with (51). Thus, they can be expressed by (95), since the de-
nominator in (51) equals 𝑡∗. The stress-based formulation is
now justified.

Now we shall find the problem dual to (92), (93) by using
(52). We insert P = 0 and obtain

2𝐽opt = −Λ𝑜

(
min
v∈R𝑠

{
max

1≤𝑘≤𝑒

�����𝑑𝑈𝑘 (v)𝑙𝑘

�����
})2

, (104)

where 𝑑𝑈
𝑘
(.) is given by equation (35). We arrive at (92) with

𝑍 = min
v∈R𝑠

{
max

1≤𝑘≤𝑒

�����𝑑𝑈𝑘 (v)𝑙𝑘

�����
}
, (105)

which is equivalent to (94).
The displacement-based formulation of the problem is now

derived.
As follows from the derivation, the problems (93) and (94)

are mutually dual with zero duality gap between them. □

The problem (94) has a very clear meaning: the aim is to
minimize the state of strain in the norm 𝜌𝑜 (·) given by (72).
By solving this problem one obtains the layout of the optimum
structure, but to find its optimal stiffnesses one should solve the
stress-based problem (93).

Remark 2. It is thought appropriate to derive the formula (94)
directly from (93). To this end, we introduce

Δ𝑈 = B̆U, L = diag {𝑙1, . . . , 𝑙𝑒} , 𝜺𝑈 = L−1Δ𝑈 ,

(𝜺(v))𝑘 =
1
𝑙𝑘
𝑑𝑘 (v), m̃ = Lñ.

The condition ñ ∈ Ker(B𝑇 ) implies ñ · (Bv) = 0 ∀ v ∈ R𝑠 .
Thus, the problem (93) can be written and then rearranged as
below

𝑍 = max
ñ∈Ker(B𝑇 )
𝜌(m̃)≤1

m̃ · 𝜺𝑈

= max
ñ∈R𝑒

𝜌(Lñ)≤1

min
v∈R𝑠

{(Lñ) · 𝜺𝑈 + ñ · (Bv)}

= max
ñ∈R𝑒

𝜌(Lñ)≤1

min
v∈R𝑠

{
(Lñ) · 𝜺𝑈 + (Lñ) · (L−1Bv)

}
= max

𝝉∈R𝑒

𝜌(𝝉)≤1

min
v∈R𝑠

{
𝝉 · 𝜺𝑈 +𝝉 · (L−1Bv)

}
= min

v∈R𝑠
max
𝝉∈R𝑒

𝜌(𝝉)≤1

{
𝝉 ·

(
𝜺𝑈 +L−1Bv

)}
= min

v∈R𝑠
𝜌𝑜

(
(L−1Bv) +𝜺𝑈

)
= min

v∈R𝑠
𝜌𝑜 (𝜺(v) +𝜺𝑈) , (106)

where swapping the operations max. and min. is justified, like
in the free material design problems, see Bołbotowski and
Lewiński [13]. We conclude that the problems (93) and (94)
are mutually dual. 2
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Let us derive now the optimality conditions for the prob-
lem considered. Let v∗ be the minimizer of (94) and ñ∗ be the
maximizer of (93). These vectors are linked by the optimality
conditions below

B𝑇 ñ∗ = 0,
𝚫∗ = Bv∗ + B̆U,

�̃�∗𝑘 > 0 ⇒
Δ∗
𝑘

𝑙𝑘
= 𝑍,

�̃�∗𝑘 < 0 ⇒
Δ∗
𝑘

𝑙𝑘
= −𝑍,

�̃�∗𝑘 = 0 ⇒ −𝑍 ≤
Δ∗
𝑘

𝑙𝑘
≤ 𝑍

(107)

and
𝑍 =

(
B̆𝑇 ñ∗

)
·U. (108)

Thus
Δ∗
𝑘

𝑙𝑘
= sgn(�̃�∗𝑘)𝑍,

����Δ∗
𝑘

𝑙𝑘

���� ≤ 𝑍 if �̃�∗𝑘 = 0. (109)

According to (109) in all members, the absolute values of the
strains are the same and equal 𝑍 . A remarkable feature of this
design is that the bound 𝑍 depends on the collection of values:
�̃�∗
𝑘
, 𝑘 = 1, . . . , 𝑒. Let us remember that in the case of P ≠ 0, U = 0

this bound was equal to 1, hence independent of the values of
the member forces.

7. NUMERICAL CONSTRUCTION OF THE STATICALLY
ADMISSIBLE MEMBER FORCES

The solution n = (𝑛1, 𝑛2, . . . , 𝑛𝑒) ∈ R𝑒 of the equilibrium equa-
tion (19)2, i.e. B𝑇n = P, can be written as follows

n = n+
𝑟∑︁

𝑘=1
𝛼𝑘h𝑘 , (110)

where n = (𝑛1 𝑛2 . . . 𝑛𝑒)𝑇 ∈ R𝑒 is an arbitrary solution
of the equilibrium equation B𝑇n = P, 𝑟 = dimKer

(
B𝑇

)
is

the dimension of the kernel of the matrix B𝑇 , and h𝑘 =(
ℎ𝑘1 ℎ𝑘2 . . . ℎ𝑘𝑒

)𝑇
∈ R𝑒 are the basis vectors that span

the vector subspace Ker
(
BT); 𝛼𝑘 (𝑘 = 1,2, . . . , 𝑟) are arbitrary

real numbers. For the given position of the nodes, bars, and the
known load P ∈ R𝑠 , any statically admissible member forces
n ∈ R𝑒 can be identified with the vector

𝜶  =  
(
𝛼1, 𝛼2, .  .  ., 𝛼𝑟  

)𝑇
∈ R𝑟 (111)

upon establishing the particular solution n and the vectors h𝑘

(𝑘 = 1,2, . . . , 𝑟) spanning the kernel of the equilibrium matrix.
In other words, any statically admissible solution n ∈ R𝑒 can be
identified with a certain vector 𝜶 ∈ R𝑟 . Therefore, the minimiza-
tion of any functional over statically admissible forces n can be
reduced to its minimization over all vectors 𝛼. Thus, according

to (49), the minimized function 𝐽 can be equivalently defined
as the function 𝐽 : R𝑟 → R (we do not change the notation 𝐽
adopted in (36)):

𝐽 (𝜶) = 1
2Λ0

©«
𝑒∑︁

𝑘=1

√︃
(𝑛𝑘 (𝜶))2︸       ︷︷       ︸
|𝑛𝑘 (𝜶) |

𝑙𝑘

ª®®®®¬
2

−
(
B̆𝑇n(𝜶)

)
·U, (112)

where n(𝜶) = (𝑛1 (𝜶), 𝑛2 (𝜶), . . . , 𝑛𝑒 (𝜶))𝑇 ∈ R𝑒 and

𝑛𝑘 (𝜶) = 𝑛𝑘 +
𝑟∑︁
𝑖=1
𝛼𝑖ℎ𝑖𝑘 , 𝑘 = 1,2, . . . , 𝑒. (113)

Except for such 𝛼 for which 𝑛𝑘 (𝜶) = 0 for some index 𝑘 , the
gradient of the function (112) is defined by the vector:

∇𝐽 (𝜶) =
(
𝜕𝐽

𝜕𝛼1
(𝜶) . . . 𝜕𝐽

𝜕𝛼𝑖
(𝜶) . . . 𝜕𝐽

𝜕𝛼𝑟
(𝜶)

)𝑇
∈ R𝑟, (114)

where

𝜕𝐽

𝜕𝛼𝑖
(𝜶) = 1

Λ0

(
𝑒∑︁

𝑘=1
|𝑛𝑘 (𝜶) | 𝑙𝑘

) (
𝑒∑︁

𝑘=1

𝑛𝑘 (𝜶)
|𝑛𝑘 (𝜶) |

𝑙𝑘ℎ𝑖𝑘

)
−

(
B̆𝑇h𝑖

)
·U, 𝑖 = 1,2, . . . , 𝑟 .(115)

Finally,  the  minimization  of  the  function  (49)  over  statically 
admissible  member  forces  n  ∈  R𝑒,  B𝑇  n  =  P  is  reduced  to  its
minimization  over  all  vectors  𝜶,  or

𝐽opt = min
𝜶∈R𝑟

𝐽 (𝜶), (116)

thus, arriving at a fully non-constrained minimization problem.

8. OPTIMUM DESIGN OF PLANAR AND SPATIAL
TRUSSES. CASE STUDIES

The singular value decomposition algorithm (SVD) along with
the routines (available in Press et al. [23]) implementing algo-
rithms of non-linear mathematical programming (e.g. Fletcher-
Reeves (FR), Polak-Ribiere (PR) or Broyden-Fletcher-Goldfarb-
Shanno (BFGS)) will be used in the process of constructing the
statically admissible representation (110) and the optimal so-
lution of the problem (116). The Young modulus 𝐸 and the
initial cross-sectional area 𝐴init

𝑘−1, 𝑘 = 1,2, . . . , 𝑒 of each element
of the truss (planar or spatial) to be optimized are assumed as
equal to 𝐸 = 7.2 ·106 [N/cm2] and 1.0 [cm2], respectively. In all
examples, the bound in the resource condition (42) is assumed
according to the rule

Λ0 =

𝑒∑︁
𝑘=1

𝐸𝐴init
𝑘−1𝑙𝑘−1 [Ncm], (117)

where now 𝑙𝑘−1, 𝑘 = 1,2, . . . , 𝑒, the lengths of the truss elements
are numbered from 0. The red/blue colour indicates the bar in
tension/compression state, respectively. In all the figures the
green stars ★ show the position of the supporting nodes.
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8.1. Planar 38-bar truss

The 38-bar truss (Fig. 1) is supported at the four lower nodes and
loaded kinematically (skew-symmetrically with respect to the
vertical axis of symmetry) with vertical downward and upward
displacements of magnitudes 𝑈 of the left and right middle
nodes, respectively (see Fig. 1).

(a)

(b)

Fig. 1. (a) 38-bar truss with marked vertical displacements of supports
with the same values but opposite signs. (b) Optimal (skew-symmetric
with respect to the vertical axis) layout. Red/blue means the bar is in
tension/compression. The optimal layout of bars is internally statically

determined

The consequence of the optimum designing process is the
vanishing of 20 bars such that the emerging optimal truss be-
comes internally statically determinate, cf. Remark 1. Thus, the
reactions that emerge in the optimal truss determine the state of
member forces uniquely.

Let us consider now the consequences of removing the two
middle pin supports and replacing them, in an equivalent way,
with support reactions appearing in the optimized truss. These
reactions are then treated as known static loads and numeri-
cal calculations are again performed to find the optimal cross-
sections to minimize the compliance of this 38-bar truss sup-
ported this time only at the two extreme nodes, see Fig. 2a.

The optimal areas of the cross-sections of the bars turn out
to be identical to those found in the previous case, see Fig. 1b,
which confirms the correctness of the algorithm.

Let us remove now all supports, only adding (to ensure stabil-
ity in numerical calculations) a pin non-movable support at the

(a)

(b)

Fig. 2. (a) The equivalent to the skew-symmetric kinematic load: the
skew-symmetric static load is applied to the two central nodes where the
truss was supported; (b) Equivalent to the skew-symmetric kinematic
load, the self-balanced skew-symmetric static load is applied to the
lower four nodes. The truss is supported only at the central node in
the second row from the bottom, remaining externally geometrically

variable

lower central node (see Fig. 2b). After replacing the removed
constraints with support reactions appearing in the optimal truss,
these reactions are treated, similarly to the previous case, as a
known static load. Numerical calculations are again carried out
in order to find the optimal bar sections minimizing the com-
pliance of this 38-bar truss, supported at only one node (the
structure is externally geometrically variable) and loaded with
a self-balanced static load (composed of the previous reactions)
applied to the four lower nodes of the 38-bar truss. Of course,
the reaction in the only supporting node is (due to the load being
self-balanced) equal to zero. As in the previous case, the opti-
mal cross-sections of the obtained bars are identical as before
(up to high accuracy). However, it should be emphasized that
during the numerical simulations, the calculations were found
to be very sensitive even to very small changes in the values of
the reaction forces (with an accuracy of up to several decimal
places).

Finally (only for testing purposes), the process of optimiza-
tion of this 38-bar truss is carried out for the kinematic load
corresponding to a small rigid body rotation around the point S,
see Fig. 3. Let us stress that this kinematic load corresponds to
a rigid rotation only within the linearized theory used here.
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Fig. 3. A kinematic load applied to the 38-bar truss that realizes (within
the geometrically linear theory) a rigid rotation of the entire structure

around point S

The optimal value of the function 𝐽∗ turns out to be exactly
equal to zero and the values of all forces in the bars and the
reactions in the four lower support nodes are also equal to zero,
which confirms the correctness of the algorithms.

8.2. Lattice shell formed on an elliptic paraboloid

Consider the one-layer lattice shell formed on the elliptic
paraboloid

𝑧(𝑥, 𝑦) = −𝛽
(( 𝑥
𝑎

)2
+

( 𝑦
𝑏

)2
)

(118)

covering the rectangle (−𝐿𝑥/2, 𝐿𝑥/2) ×
(
−𝐿𝑦/2, 𝐿𝑦/2

)
; our

data will be 𝑎 = 𝑏 = 50 [cm], 𝐿𝑥 = 𝐿𝑦 = 1500 [cm]. The structure
is pin-supported at all 16 boundary nodes, see Fig. 4.

Fig. 4. The lattice shell pin-supported at all 16 boundary nodes
(green stars)

The diagonal bars pass each other in the middle of the cells,
i.e. they do not have common nodes there. Two kinds of loads
are considered. Either all the internal nodes of the truss are
subjected to the vertical concentrated forces of the same mag-
nitude 𝑃 = −200000 [N] (the negative sign means that they are
directed downwards) or the truss is kinematically loaded: all

the boundary nodes are displaced downwards according to the
interpolation rule

𝑈 (𝑥, 𝑦) = −𝛼
(( 𝑥
𝑐

)2
+

( 𝑦
𝑑

)2
)
, (119)

where we have chosen 𝑐 = 𝑑 = 300 [cm]; the parameter 𝛼 is de-
termined from the condition that𝑈 =−12.5 [cm] at four corners;
then𝑈 = −6.25 [cm] at four middle edge nodes.

The optimization results for the purely kinematic loading
(P = 0) read: 𝐽∗ = −2.65305 ·106 [N cm].

The optimal cross-sections of eight corner bars are 𝐴∗
𝑘
=

10.24 [cm2]; the optimal cross-sections of the remaining bars
are numerically equal to 0, see Fig. 5a.

(a)

(b)

(c)

Fig. 5. Optimal layouts of the lattice shell truss from Fig. 4 in (a) purely
kinematic, (b) purely static, and (c) kinematic and static case of loading
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To explain this phenomenon let us note that the kinematic load
acts along the boundary while the surface (118) on which the
nodes of the structure are placed has a positive Gauss curvature;
consequently, the stiffest members are placed around the corners.

The optimization results for the purely static loading (U = 0)
read 𝐽∗ = 282453.5 [N cm].

The maximal optimal area of the cross-section of bars is:
𝐴∗
𝑘
= 1.68792 [cm2], the optimal cross-sections of the remaining

bars are slightly smaller and all the cross-sections of the bars on
the edges are exactly equal to 0. A view of the optimal truss is
shown in Fig. 5b.

The optimization results for the static and kinematic loadings
acting simultaneously are 𝐽∗ = 273504.5 [N cm].

The maximal optimal area of the cross-section of bars is:
𝐴∗
𝑘
= 8.57222 [cm2], the optimal cross-sections of the remaining

bars are smaller or vanish.
Thus, when both the loads are applied the solution represents

a certain compromise and the design depends heavily on the
values of the ratios 𝑃 :𝑈. A view of the optimal truss is shown
in Fig. 5c.

8.3. Lattice shell formed on a hyperbolic paraboloid

Consider two one-layer lattice shells formed on the hyperbolic
paraboloid:

𝑧(𝑥, 𝑦) = 𝛾𝑥𝑦, (120)

covering the rectangular domain:
(−𝐿𝑥/2, 𝐿𝑥/2) ×

(
−𝐿𝑦/2, 𝐿𝑦/2

)
, for the data: 𝛾 = 10−3 cm−1,

𝐿𝑥 = 𝐿𝑦 = 1500 [cm]. The structures are pin-supported at all 40
boundary nodes, see Fig. 6a, 6b.

Two kinds of loads are considered. The static vertical load
is applied to all truss nodes. In each node, the vertical force
is directed downwards and has the same value 𝑃 = −2000 [N].
The kinematic vertical load is applied to all boundary nodes.
The vertical displacements directed downwards are equal to
𝑈 = −5.625 [cm] at four corners and 𝑈 = 0 [cm] at four middle

edge nodes. The vertically directed downward displacements𝑈
of the remaining edge nodes are interpolated by the equation
𝑈 (𝑥, 𝑦) = −|𝜂𝑥𝑦 | and we choose 𝜂 = 10−5 cm−1.

The optimization results for the purely kinematic loading
(P = 0) are the same for the (a) and (b) cases: 𝐽∗ = −2.83431 ·
106 [N cm]. The optimal cross-sections of all boundary bars:
𝐴∗
𝑘
= 8.1 [cm2], the optimal cross-sections of the remaining

bars are (numerically) equal to 0. A view of the optimal truss is
shown in Fig. 7a.

The optimization results for the purely static loading (U = 0)
are 𝐽∗ = 242903.5 [N cm] and 𝐽∗ = 17691 [N cm], for (a) and
(b) cases, respectively.

The maximal optimal cross-sections of bars are 𝐴∗
𝑘
=

2.32128 [cm2] or 𝐴∗
𝑘
= 1.66245 [cm2] for (a) or (b) cases re-

spectively, and the optimal cross-sections of the remaining bars
are smaller, other cross-sections of the bars on the edges are (at
least numerically) equal to 0. A view of the optimal trusses is
shown in Fig. 7b, 7c.

The optimization results for the static and the kinematic
loading acting simultaneously are 𝐽∗ = −62236 [N cm] and
𝐽∗ = −1.09688 ·106 [N cm] for (a) and (b) cases, respectively.

The maximal optimal cross-sections of bars are 𝐴∗
𝑘
=

6.82712 [cm2] and 𝐴∗
𝑘
= 6.72158 [cm2] for (a) and (b) cases,

respectively, and optimal cross-sections of the remaining bars
are smaller, other cross-sections of the bars are (at least nu-
merically) equal to 0. A view of the optimal truss is shown in
Fig. 7d, 7e.

The kinematic load leads to the identical optimal designs
for both layouts (see Fig. 6a, 6b) reducing to an empty frame
surrounding the structure, see Fig. 7a. The optimum designs for
the static loads do depend on the initial layout of members, see
Fig. 7b, 7c. If both loads are applied, the optimal designs assume
a compromise topology depending on the initial layout of bars,
see Fig. 7d, 7e, and on the ratio 𝑃 :𝑈. The specific topologies in
(a,d,e) are consequences of the surface (120) having a negative
Gauss curvature.

(a) (b)

Fig. 6. The two lattice shells (a) and (b), are pin-supported at all 40 boundary nodes (green stars)
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(a)

(b)

(c)

(d)

Fig. 7

(e)

Fig. 7. The optimal layouts of the lattice shell trusses from Fig. 6a
and 6b in (a) pure kinematic, (b), (c) pure static, and (d), (e) kinematic

and static case of loading, respectively

9. REMARKS ON THE PROGRAMMING PROBLEMS

The chosen numerical method for solving the optimum de-
sign problems considered reduces the minimization of functions
without constraints. For solving this problem, the three different
C-codes have been used: powell(. . . ), frprmn(. . . ), dfpmin(. . . ),
expounded in Press et al. [23], which facilitated finding a reli-
able and accurate solution in most cases (i.e. the minimizer 𝜶∗).
The answer to the question of whether in each problem the nu-
merical solution is unique turned out to be negative. Moreover,
some doubts arise whether the obtained numerical solutions can
always be treated as global ones in each case of the numerical
search for the minimum, especially if both the loads: static and
kinematic are applied simultaneously. It often turned out that
after calling the three functions powell(. . . ), frprmn(. . . ), dfp-
min(. . . ), the minima values differed significantly in numerical
terms, although the layouts of optimal topologies obtained on
their bases were remarkably similar to each other. The simplest
explanation is such that the minimum of the difference of two
functions was sought and the absolute values of both of these
functions reach big and often very high values. The second rea-
son is the non-differentiability of the function (112) when the
force disappears in at least one truss element, which usually
appears at the end of an iteration. This suggests the use of algo-
rithms utilizing the concept of a subgradient instead of a gradi-
ent, but not necessarily the non-gradient powell(. . . ) method, for
example. However, powell(. . . ) method quite often returned an
optimal value that was worse (i.e. greater) than those returned by
algorithms using the gradients, e.g. frprmn(. . . ), dfpmin(. . . ).
To increase the probability of finding the best optimal value of
the function (112), all three procedures mentioned above, to-
gether with their own optimization procedure, were often called
(in different orders) in the program.

10. FINAL REMARKS

The problem of minimization of the total potential energy of
a truss was reduced, upon eliminating all the design variables,
to the two mutually dual problems: the stress-based (49) and
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the displacement-based (52). The solution to the stress-based
problem determines directly the optimal stiffnesses of the truss
members, and, consequently, the layout of the optimal truss. The
optimum design process loosens the initial layout of bars thus
leading to internally statically determinate layouts: the loads and
the reactions found by the optimization process determine the
state of axial forces in bars directly by the equilibrium equations.
Thus, minimization of the total potential energy relaxes the state
of stress.

The theory developed is a prerequisite of the theory of opti-
mum design of distortions in truss structures.

APPENDIX A

The aim is to prove that the statements: a1) and a2) in Theorem 1
are equivalent.

Let P ∈ 𝐼𝑚(B𝑇 ).
1. Let u satisfy (23) We rearrange 𝐿 (v) as follows
𝐿 (v) = 𝐿 (v−u+u) = P · (v−u) +P ·u

− 1
2

(
B (v−u) +Bu− �̃�

𝑜
)
·
[
E

(
B(v−u) +Bu− �̃�

𝑜
)]

= 𝐿 (u) +P · (v−u) − (B(v−u)) ·
[
E(Bu− �̃�

𝑜)
]

− 1
2
(B(v−u)) · [E (B(v−u))] .

(A1)
Note that

E(Bu− �̃�
𝑜) = N (A2)

and due to P ∈ Im(B𝑇 ) we have

(Bv̂) ·N = P · v̂ ∀ v̂ ∈ R𝑠 . (A3)

Substitution of v̂ = v−u gives equality which makes zero the
component underscored in (A1). Thus

𝐿 (v) = 𝐿 (u) − 1
2
(B(v−u)) · [E(B(v−u))] ≤ 𝐿 (u) (A4)

and the equality takes place only if v = u.
2. Let us assume now that u is the maximizer of (27). Then

the term underscored in (A1) must vanish. Due to v being
arbitrary one has

B𝑇 N̂ = P, N̂ = E
(
Bu− �̃�

𝑜
)

(A5)

but then N̂, u, �̃� = Bu satisfy (23).

APPENDIX B

The aim is to prove that the statements: b1) and b2) in Theorem 2
are equivalent.
1. Let n ∈ R𝑒, P ∈ Im(B𝑇 ), B𝑇n = P. Let N satisfy (23). We

shall prove that
Υ(n) ≥ Υ(N). (B1)

Indeed, let us write

Υ(n) = Υ (n−N+N) = 1
2
(n−N) ·

(
E−1 (n−N)

)
+Υ(N)

+ (n−N) ·
(
E−1N+ �̃�𝑜

)
.

(B2)
Since N satisfies (23), or

(n−N) ·
(
E−1N+ �̃�𝑜

)
= (n−N) · (Bu)

=

(
B𝑇n−B𝑇N

)
·u = 0, (B3)

we see that (B1) holds; if n−N ∈ Im(E) then Υ(n) < +∞.
2. Let now N be the minimizer of (28). Then the term un-

derscored in (B2) vanishes, which implies E−1N+ �̃�𝑜
= Bv,

v ∈ R𝑠 and B𝑇N = P, hence v = u or N is the solution of (23).
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