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Abstract. The paper concerns the problem of minimization of the total potential energy of trusses subjected to static loads in 

the presence of prescribed displacements of selected supporting nodes. The positions of the internal (free) nodes are fixed and 

the supporting nodes are imposed, the member stiffnesses being design variables, while the truss volume represents the cost of 

the design. Due to the assumption of the stiffnesses being non-negative, the problem is reduced to a problem of optimization of 

structural topology. Upon eliminating all the design variables analytically the optimum design  problem is eventually reduced 

to the two mutually dual problems expressed either in terms of member forces or in terms of displacements of free nodes. The 

problem setting concerning the  case when the prescribed displacements of supports are the only loads applied (i.e. kinematic 

loads) assumes a particularly simple form. A specific  numerical method of solving the stress-based auxiliary problem has been 

developed for the selected 2D and 3D optimal designs. The study is the first step towards topology optimization of trusses with 

distortions. 
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1. INTRODUCTION 

One of the method of rational designing engineering structures 

is introduction of distortions, or, in particular, prescribing 

displacements of supports. In case of skeletal structures under 

the term distortion one understands the presence of bars of 

initial lengths longer or shorter than the distance between the 

given nodes. By assembling the structure of such members 

one introduces an initial stress and deformations states. The 

topic of distortions in a continuum medium is indissolubly 

bonded with the theory of composites in which the Eshelby 

methods play a crucial role, see Mura [1]. Assessing 

sensitivity of  response of a structure due to the presence of  a 

local distortion in the form of a small inclusion or a small 

cavity is the subject of consideration of the series of papers on 

the topological derivative method, see e.g. Novotny and 

Sokołowski [2]. The topological derivative of the elastic 

energy stored in  a linearly elastic body is determined by the 

Eshelby tensor, see Sec. 7.1  in Lewiński and Sokołowski [3]. 

The topological derivative concept applies also to discrete 

systems, e.g. to graphs whose all nodes are connected to a 

rigid support by springs, see Leugering and Sokołowski [4]. 

Distortions in skeletal structures are the tools of optimal 

design as well as the tools of optimal control of the structure 

during its exploitation; the relevant Virtual Distortion Method 

has been developed by Holnicki-Szulc [5]. New interesting 

examples of structures designed and constructed by applying 

distortions are the subject of the study by Bessini et al  [6]. 

      The present paper focuses on optimum design of  trusses 

composed  of linearly elastic members. The theory of response 

of trusses to the given static load and to prescribed 

displacements of supports is outlined in the manner that will  

be further directly applicable to the case of general distortions. 

Indeed, the prescribed displacements of supports can be 

viewed as boundary distortions. 

    Within the continuum media theory of equilibrium of 

nonlinearly elastic bodies the boundary value problems are 

usually formulated such that the displacements vanish on the 

support. The whole Chapter 6 of the book by Ciarlet [7], in 

which the implicit function theorem is used, concerns this 

special case. In particular, the Theorems 6.4-1 and 6.7-1 

therein on the existence of solutions draw upon the assumption 

of homogeneity of the kinematic boundary conditions. The 

non-homogeneity of the kinematic conditions occurs only in 

Chapter 7 of this book in which the existence issue is 

discussed with using techniques of direct methods of calculus 

of variations.  

    The lectures on linear elasticity usually comprise the case of 

nonhomogeneous kinematic boundary conditions. The given 

field U of displacements on the supporting segment  1   of the 

boundary of a domain    is assumed to be element of the 

space    1/2

1H  , see Eq.(3.10) in Duvaut and Lions [8]. Due 

to statical admissibility of the stress field  σ  the components 

of the vector field σn on the boundary (n being the unit 

outward normal to the domain) may be viewed as elements of 

the space   1/2H   ,   Г being the boundary. Thus, the 

product of the reactions σn   and the displacement field U can 

be integrated over the support. Consequently, the Castigliano 

functional can be properly defined; its argument is a virtual  

stress field τ within the given domain  ; this functional reads 
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where  A represents the tensor of flexibilities. Let Σ be the set 

of virtual stresses τ which satisfy the equilibrium equations 

within the domain   and the natural boundary conditions   

τn = T  on 2 , being the complementary segment of the 

boundary:  2 1\    . According to Castigliano’s theorem 

the field σ , which is the stress field solving the boundary  

value problem of linear elasticity, can be constructed directly 

by the minimization process: 

                               ( ) min ( )


  
τ

σ τ                                     (2) 

The result (2) should be understood as follows: for the 

minimizer σ , being statically admissible, one can find the 

displacement field u such that 

              

 
1( )   in   ,      =    on    ε u Aσ u U                       (3) 

 

where ( )ε u  is the symmetric part of the gradient of u. 

Moreover, under known assumptions the field u is unique. 

Then the triple  , ( ),u ε u σ  solves the set of equations of linear 

elasticity and this solution is unique. The proof of the 

Castigliano theorem is delivered in Sec.3.5 of Duvaut and 

Lions[8] see also Nečas and Hlavaček [9]. 

      For better understanding of the truss optimization problem 

let us recall now the  Isotropic Material Design (IMD) 

problem of optimal distribution of the elastic moduli of 

isotropy: k(x), μ(x) within a given design domain Ω, first 

proposed in Czarnecki [10].  The unit cost is assumed as equal 

to the trace of the Hooke tensor. In the case of isotropy the 

eigenvalues of the Hooke tensor are: 3k, 2μ, 2μ , 2μ , 2μ , 2μ 

cf. Walpole [11]. Thus, the cost condition is assumed in the 

form 

 

             0(3 10 )k d


      .                     (4) 

The fields  k(x), μ(x) are the design variables of the problem. 

We shall assume that k and μ are subject to the conditions: 

0, 0k   , hence we admit the degenerated cases such that 

e.g.  k = 0 and μ > 0 or vice versa, while the case of k = 0 and   

μ = 0 means that the material is absent. The body occupying 

the given domain Ω is subjected to the tractions of intensity T 

on the given segment 2  of the boundary while the 

complementary segment 1  is a support on which the 

displacement field u vanishes. In this problem with u = 0 on   

1  maximization of the overall stiffness of the body means 

minimization of the compliance C defined by 

         

                         

2

2

1
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or, alternatively 
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2
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the integrand being 
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where tr τ  and dev τ  are the trace and deviator of the stress 

state τ ;  represents the Euclidean norm. The problem of 

maximization of the stiffness of the body means minimization 

of C over all possible layouts of the bulk and shear moduli 

keeping the mentioned cost condition. The main feature of this 

approach is reducing the problem to a sequence of two 

minimization operations over independent variables. Indeed, 

the set Σ does not depend on the layout of the elastic moduli 

and the layout of the materials has nothing to do with the trial 

stress field. Thus, the order of the minimization operations can 

be changed and then minimization operation over the moduli 

can be performed analytically.  

     The problem of minimization of the compliance given by 

(4), (5) over the non-negative bulk and shear moduli satisfying  

(4) reduces to the problem of the form 

                                              

  min ( )F d




τ
τ                   (8) 

where 
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and the problem (9) can be solved by using the rule 
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where   0ia x   are given functions in the domain Ω, Λ is a 

given positive constant while the functions   ,  1,...,iw x i n   

are unknown, see Sec.1.3 in Lewiński [12]. The solution  

 *

iw x  to the problem (10) is given by  

                  *

1

( )i

i n

j

j

a x
w x

a d


 



                             (11) 

Here    1 23 ( ),  10 ( ),  2w x k x w x x n   . Let us note: the 

explicit form of the function  F(·) can be found by using the 

rule (10), which reduces the optimum design problem to the 

auxiliary problem (8) in which the design variables are absent 

and the only unknown is the stress field σ for which the 

functional attains its minimum. 

Let us note that according to (11) the optimal  bulk modulus 
*k is proportional to tr σ  and the optimal *  is proportional 

to devσ . The effective domain of the minimizer σ is the 

material domain, the remaining part becomes a void. The 

mathematical theory of the IMD method can be found in 

Bołbotowski and Lewiński [13]. 
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    Majority of optimum design problems concerns the case of 

U = 0. Then the requirement of making the structure as stiff as 

possible reduces to the requirement of minimizing the 

compliance given by (4). It seems that almost no one paper on 

topology optimization up to 2011 discussed the case of 

kinematic loads (T = 0, U ≠ 0) or the case when both  types of 

loads are simultaneously present (T ≠ 0, U ≠ 0). The method 

of tackling such optimum design problems has been put 

forward by Barbarosie and Lopes [14], Niu et al [15], 

Klarbring and Strömberg [16]  and Klarbring [17]. These 

papers teach us that instead of minimizing the compliance one 

should minimize the functional 

                      

2 1

2 1

1 1
( )

2 2
J d d

 

      T u σn U ;  (12) 

here u and σ form the solution to the elasticity problem in 

which both the loads T and U are nonzero. In case of T ≠ 0, U 

= 0  the functional J equals C and the task reduces to the 

minimum compliance problem. In the opposite case of T = 0, 

U ≠ 0 minimization of J means maximization of the work of 

reactions  σn on given displacements U of supports on the 

boundary 
1  . This means that the designed structure is the 

stiffest, since its resistance due to the prescribed displacements 

of supports is the highest. However, the reason of choosing the 

functional (12) for the minimization process does not simply 

follows only from the discussion of the mentioned two 

extreme cases. The true reason is the equality: ( )J  σ

which defines a new meaning of the functional J and justifies 

calling it the total potential energy, as Klarbring [17] has 

suggested. The above arguments justify setting the 

minimization problem of the functional J given by (12) to 

formulate properly the optimum design problems concerning 

the structures simultaneously subjected to static and kinematic 

loads.  

     The subject of the present paper is optimum design of 

trusses: given are position of nodes, also those on which the 

structure is supported. The truss is subjected to nodal 

concentrated forces 1,..., sP P  and - to the prescribed 

displacements of supports: 1,..., mU U . The volume of the truss 

is bounded by a given value. The design variables: the axial 

stiffnesses of members EAk, k = 1,…,e, are viewed as 

nonnegative, which means that the solutions, i.e. the optimal 

trusses, are admitted to be geometrically variable. The 

problem is thus posed as a problem of optimum structural 

topology in which the total potential energy J is minimized. 

We shall show that all the design variables can be analytically 

eliminated thus reducing the problem to the two mutually dual 

problems, the dual gap between them being zero. By solving 

the stressed-based problem one obtains explicit formulae for 

the optimal stiffnesses and the theorem on the constant stress 

distribution is an easy by-product of this part of the analysis. 

These conclusions correspond to the analogous properties of 

the optimal structures formed by the mentioned method of the 

Isotropic Material Design. 

      It occurs, however, that the growth of the minimized 

function in the stress-based problem concerning optimum 

design of trusses  is very slow thus making difficulties in 

attaining the solution. For solving this problem the new 

numerical methods are proposed.  

    When the displacements U are prescribed we have no 

control of the values of reactions, hence the optimal designs 

are difficult to predict. Moreover, the kinematic load U acts on 

the  boundary and causes reactions being self-equilibrated; 

consequently one may expect that the optimal designs will  be 

composed of bars lying in a certain boundary zone only. This 

is not true in general, the Saint Venant principle does not hold 

in discrete systems - some reactions may transmit the stress 

along a line of bars to the other side of the support. 

    As mentioned, the kinematic loads U may be treated as 

boundary distortions. The formalism of internal distortions in 

trusses is similar. Thus, the present paper is an introduction to 

the problem of optimum design of trusses subjected to  

distortions of arbitrary nature.  

     A standard notation of linear algebra is applied. In 

particular, the scalar product of two vectors  , na b  is 

defined by 1 1 ... n na b a b   a b . The vectors will be viewed 

as columns, e.g.  1,...,
T

na aa , hence T a b a b , where ()T 

is the transposition operator. The identity matrix is represented 

by I. If A is a m×n matrix, then the image of the linear 

operator represented by A and the kernel of this operator are 

defined as below 

 

      ( ) ,m nIm     A b v b Av  ,           

       ( ) n mKer    A v Av 0 ,       (13) 

Above  
1

n

kj jk
j

A v


Av  is the k-the component of the vector 

Av. The diagonal matrix A of dimensions n×n will be denoted 

by  11diag ,..., nnA A . 

If x V  and the set V has a complex structure, then the 

minimization problem: min ( )
x V

f x


 will be written as: 

 min ( )  f x x V . 

 

2. EQUATIONS OF STATICS OF TRUSSES SUBJECTED 
TO NODAL FORCES AND PRESCRIBED 
DISPLACEMENTS OF SUPPORTING NODES 

Consider a truss of e bars; the supporting nodes are subject to 

given displacements 1,..., mU U ; the displacements 1,..., su u  of 

the free nodes of the truss determine the members’ elongations 

1 ,..., e   by the equations 

    
1 1

s m

k kj j kl l

j l

B u B U
 

       (14) 

where kj e s
B


   B  and kl

e m
B


   B  are so-called geometric 

matrices composed of directional cosines. The prescribed 

displacements 1,..., mU U  are accompanied by reactions 

1,..., mR R ; the work of these reactions on the prescribed 

displacements is expressed by the scalar product R·U. Along 

the displacements 1,..., su u  the nodal forces 1,..., sP P  are 

applied; their work on the unknown displacements is 

expressed by the scalar product P u . The static loads 
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1,..., sP P  and the kinematic loads 1,..., mU U  cause axial 

member forces 1,..., eN N  and reactions 1,..., mR R . The 

equations of equilibrium of all nodes are expressed by one 

variational equation 

1 1 1

+       ,    
e s m

s m

k k j j l l

k j l

N P u RU
  

        u U  (15)

  

where     

 
1 1

s m

k kj j kl l

j l

B u B U
 

        (16)

  

Substitution of (16) into (15) and making use of arbitrariness 

of , ,   1,..., ;  1,...,j lu U j s l m   leads to the nodal equilibrium 

equations 

            

 
1

  ,   1,...,
e

kj k j

k

B N P j s


    (17)

     

 
1

  ,   1,...,
e

kl k l

k

B N R l m


  .  (18) 

The constitutive equations linking the member forces 

1,..., eN N and the elongations 1 ,..., e   are assumed as linear, 

the distortions of members being not considered. Thus 

/ ( )k k k kN l EA   where E represents Young’s modulus and 

kA is the area of the  k-th bar, kl  being its length. The 

equations (14), (17), (18) and the constitutive equations  form 

a solvable set of equations. In the matrix notation it reads 

           

 ,   T T

 

 



Δ Bu BU

B N P B N R

N EΔ

    (19)    

where the constitutive matrix has the diagonal form:  

1

1

,..., e

e

EAEA
diag

l l

 
  

 
E   and 

     

     

1 1 1

1 1 1

,..., ,   ,..., ,  ,..., ,

,..., ,   ,..., ,  ,...,   

T T T

s e s

T T T

m m e

u u P P

U U R R N N

    

  

u Δ P

U R N
 

 

Let us introduce the stiffness matrix K = BTEB related to the 

unknowns 1,..., su u . These unknowns are governed by the 

equation 

          

  T Ku P B EBU     (20)    

 

The matrix K is of dimensions s×s,  is symmetric and 

det 0K . In case of det 0K  the solution of (20) is unique; 

having the displacements 1,..., su u  one can compute the 

elongations 1 ,..., e   of bars by (19)1 and then compute 

reactions by 

        

  T R B E Bu BU     (21)     

For future convenience let us introduce the new entities 

       

 ,    o   Δ Δ BU Δ BU     (22)   

The set of equations (19) assumes now the form 

        

 

 

T

o





 

Δ Bu

B N P

N E Δ Δ

     (23)    

while reactions at supports are computed by 
TR B N . The 

equations (23) have now the form naturally appearing in the 

static problem of trusses  with internal distortions. Let us 

introduce the Lagrange functional 

     
1

( ) ,   
2

o o sL         v P v Bv Δ E Bv Δ v   (24)   

and the Castigliano functional, the counterpart of the 

functional (1) 

    11
,      

2

o e     n n E n n Δ n   (25)    

where the component  1n E n  should be  understood as 

below     

 

 
 1   if  Im( ),   ,     

  if           Im( )                                

e


    

  
 

d Ed n E n Ed d
n E n

n E
(26) 

The following theorems deliver  useful reformulations of the 

problem (23)  

 

Theorem 2.1 

The following statements are equivalent 

a1) u is the solution to the system (23)  

a2) u is the solution to the maximization problem 

     max ( )
s

L
v

v     (27)

  

Theorem 2.2 

The following statements are equivalent 

b1) N is the solution to the system (23) and then there exist u,  

Δ  satisfying (23)  

b2) N is the solution to the minimization problem 

       

   min   ,  e T  n n B n P    (28)   

The proofs of these theorems are given in the Appendices A 

and B, for the readers’ convenience.  

Let us note that if E is reversible, then 

        

   ( )L  u N     (29)
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Proof. Since N is statically admissible (statically compatible 

with the load P), we have     Bu N P u . Due to  

 
1 o Bu E N Δ      (30) 

one gets 

    1 o    E N Δ N u P     (31) 

hence 

      1 11 1

2 2

o       N E N N Δ P u N E N  (32) 

By virtue of 

        

       1 o o    N E N Δ Δ E Δ Δ   (33) 

we find   

 

 

11

2

1
                =  ( )

2

o

o o

   

      

N E N N Δ

P u Bu Δ E Bu Δ

   (34)    

which is  equivalent to (29). We conclude that the duality gap 

between the problems (27) and (28)  vanishes. 

The following notation will be used in the sequel 

 
1

s

k kj j

j

d B v


v     
1

m
U

k k kl l

l

d d B U


 v v  (35)     

Hence (14) can be re-written by   U

k kd  u  . 

3. THE TOTAL POTENTIAL ENERGY OF A TRUSS AND 
ITS LINK TO CASTIGLIANO’S THEOREM 

 

The total potential energy of a truss is understood as in (12), or 

        

   
1 1

2 2
J     P u R U    (36)  

By assuming u u  and U U  in (15) one obtains the 

equality 

          

      N Δ P u R U    (37)  

By virtue of  (19)3 we have 

        

   1    N E N P u R U   (38)  

and hence 

        

   12 2J    N E N R U   (39)   

while by using (19)2 we get 

        

   12 2( )TJ    N E N B N U  (40)  

hence, see (25)   

      J   N     (41)  

We conclude that the function subjected to minimization in 

Castigliano’s theorem (28) represents the total potential 

energy of a truss.  

4.  TRUSSES OF MINIMAL POTENTIAL ENERGY 

4.1.  Formulation of the optimization problem   

In case of P 0  and U = 0 the total potential energy equals 

/ 2J  P u  and represents  the compliance of the truss. In 

case of a one unit force   applied at a node the value 2J is 

equal to the projection of the displacement of this node on the 

direction of the force. Minimization of J means minimization 

of this displacement. In case of many loads applied the 

compliance is the weighted sum of the displacements with 

weights proportional to the magnitudes of the forces. 

Minimization of J means maximization of stiffness.  

     In case of   P = 0, U 0  the total potential energy equals  

/ 2J   R U . Minimization of J means maximization of the 

work of reactions done on the prescribed displacements of 

nodes of the supports. Thus, R U  measures the resistance of 

the truss subjected to the imposed displacements of supports 

and the value  R U  is the compliance due to prescribed 

displacements. The bigger the resistance the better the  design 

of the truss.  

In case of P 0  and U 0  the total potential energy J is a 

linear combination of both the compliances with the same 

weights ½. Thus, minimization of J is a certain compromise 

between compliances due to these two various loading 

conditions. 

     Assume that the positions of nodes are given, hence also 

the bars’ lengths  are prescribed. We consider the designs in 

which the cost is given as EV, V being the volume of the 

material of all bars; we require that this cost does not exceed a 

limit cost o  or,  we require that   

   
1

e

k k o

k

EA l


    

 (42)     

We note the units: [ o  ] = Nm.  

Consider the optimum design problem 

1

1

min 0,..., 0 such that 
e

opt e k k o

k

J J EA EA EA l


 
     

 
                                                                                               

                                                                                              (43)  

where J is viewed as a function of:  the design variables 

1,..., eEA EA  and the behavioural variables according to 

Secs.2,3. According to (41) and (28)  the problem (43) can be 

re-written in the explicit form 

    
1

1

1

0,..., 0

1
min  min

2e
e

e T

k k o

k

T

opt
EA EA

EA l

J





  




 
    

 


n

B n P

n E n B n U  (44)   

where the first component in the curly brackets should be 

understood as in (26). The matrix B does not involve the 

design variables  1,..., eEA EA  , hence problem (44) can be re-

written as below, where the order of minimization operations 

is interchanged 

 
1

1

2

0,..., 0
1

( )1
 min  min

2e
e

eT

k k o

k

e
Tk k

opt
EA EA

k k

EA l

n l
J

EA



 





 
   

 



n

B n P

B n U  (45)   
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4.2. Elimination of the design variables-problem 
formulation in terms of member forces   

The minimization operation over 1,..., eEA EA  can be 

performed analytically with using the rule (a discrete 

counterpart of  the rule (10)) 

  
1 1

2

1

min    over  0 such that 

1
                                               

e

e e
k

i k o

k kk

e

k

ko

a
x x

x

a


 



 
   

 

 
  
  

 



x

   (46) 

 

where 1,..., ea a  are given positive numbers.  Let us assume 

        

  2( ) ,    k k k k k ka n l x l EA     (47)   

Since 

 
2

1 1

( )
  

e e
k k k

k kk k

n l a

EA x 

     (48)   

we can make use of the equality (46)  thus reducing the 

problem (45)  to the form in which all the design variables are 

eliminated: 

      

  
2

1

1
 min  

2e

T

e
T

opt k k

ko

J n l





   
    

    


n

B n P

B n U  (49)  

Let 
1 ,..., en n     be the minimizer of this problem. The 

minimizer of the problem (46)  reads (cf. (11) being its 

continuum counterpart) 

       

  *

1

k

k o e

i

i

a
x

a


 


   (50)   

This formula determines the optimal stiffnesses  in terms of 

the quantities 
1 ,..., en n      

        

  

*

*

*

1

k

k o e

i i

i

n
EA

n l


 


  (51)   

The formula above means that the absolute values of the 

stresses in bars are independent of k, or the stresses in the 

optimal truss are made uniform, like in the standard problem 

concerning the case of P 0 , U = 0, see Hemp [18]. 

4.3. ELIMINATION OF THE DESIGN VARIABLES-
PROBLEM FORMULATION IN TERMS OF 
DISPLACEMENTS   

The problem (49)  can be rearranged to the form in which the 

displacements of nodes will be unknowns, namely: 

         

 

2

1
1

( )
max max

2s

Us
o k

opt j j
k e

j k

d
J P v

l 


   
     

   


v

v
 (52) 

where ( )U

kd v  is given by  (35). This is just the problem dual 

to (49). 

Proof of (52).  The member forces  1,..., en n  are statically 

compatible with the load P, hence 

        

       s    n Bv P v v    (53)   

Let Tr B n . Then       U s      n d v P v U r v , which 

can be re-written in the form 

       

    , 0p n v   (54)    

where 

   
1 1 1 1

( , ) 2 2 2
s m e e

U

j j kl k l k k

j l k k

p P v B n U n d
   

    n v v  (55)   

Let 

        

 

2

1 1 1

1
( ) 2

e m e

k k kl k l

k l ko

G n l B n U
  

 
  
  

 n  (56)   

and then 

 

2

1

1 1

1
( ) ( , )

2 2

e

k k

ko

s e
U

j j k k

j k

G p n l

P v n d



 

 
   

  

 



 

n n v

v

  (57)   

Let us express   (49)  in the form 

 2  min  max ( ) ( , )
e soptJ G p

 

 
n v

n n v  (58)    

By arguments similar to those used in the theory of the Free 

Material Design (see Bołbotowski and Lewiński [13]) one can 

interchange the orders of min and max operations to arrive at 

   
1

1
max ( )

2s

s
U

opt j j

j

J P v Y




 
  

 


v

d v   (59)   

where 

  
2

1 1

1
 min  2

e

e e

k k k k

k ko

Y n l n


 

   
    

    
 

n

Δ  (60)  

and here Δ  is an arbitrary vector in 
e
. Let us construct an 

explicit form of  Y Δ . To this end we insert 

,   ,   e

k kn tn t  n  with   

  
1 1

  ,  1
e e

k k k k

k k

t n l n l
 

    (61)   

Thus, 

 

1

2

    
1

1

1
( )  min min 2

e

e

k k

k

e

k k
t

ko

n l

Y t n t








  
    

   



n

Δ  (62)   

Let       

 
1

1
,   

e

k k

ko

a b n


  


    (63)   

Since    

 
2

2min 2
t

b
at bt

a
     (64)   
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with the minimizer:   

   
1

e

o k k

k

b
t t n

a





        (65)   

one can reduce the problem (60) to the form 

       

  

1

2

    
1

1

 min  
e

e

k k

k

e

o k k

k

n l

Y n








   
    

   



n

Δ  (66)   

or     

    
2

 ( )oY K Δ Δ    (67)   

where   

   
1 1

( ) max      ,  1
e e

e

k k k k

k k

K n n l
 

 
    

 
 Δ n

(68) 

Let k,  /k k k k km n l l   ,    1 1,..., , ,...,
T T

e em m   m ε . 

The function 

   
1

( )
e

k

k

m


m     (69)   

is a norm known from the Michell theory, see Lewiński et al 

[19]. The function polar to ( )   is given by  

 
     

( ) 1 ( ) 1

( ) max max
e e

o

 


 
 

   
m m

m m

ε m ε m ε   (70)    

Hence 

   ( ) ( )oK Δ ε    (71) 

 

and we know that, see Rockafellar ( [20], Sec.15) 

        

 
1

( ) maxo

k
k e

 
 

ε     (72) 

Thus, 
1

( ) max k

k e
k

K
l 


Δ  and, according to  (67),  

 

2

1
( )   max k

o
k e

k

Y
l 

 
    

 
Δ   (73)   

which ends the proof.  ■ 

 

4.4  THE CONDITIONS OF OPTIMALITY  

Let 
v  be the maximizer of  (52) and 


Δ  be the associated 

vector of relative elongations. Let 


n  be the minimizer of 

(49). These solutions of the mutually dual problems  are 

linked by the conditions of optimality which read: 

       

 , T    Δ Bv BU B n P   (74) 

                       

1

1

1 1

1
0

1
0

1 1
0

e
k

k i i

ik o

e
k

k i i

ik o

e e
k

k i i i i

i io k o

n n l
l

n n l
l

n n l n l
l



 





 





  

 


  




   




    

 





 

   (75)  

One can write the optimality conditions (75)  in the manner  

George Rozvany used to write them  in case of , P 0 U 0 , 

namely    

  ˆ sgn  if   0k

k k

k

k n n
l



 
    (76)   

and    

 ˆ   if    0k

k

k

k n
l




     (77)   

where  

   
1

1ˆ
e

i i

io

k n l





     (78)  

We see that the above conditions determine the values of 

strains /k kl
  in terms of the member forces, if the latter do 

not vanish. For vanishing bars the virtual strains /k kl
  are 

subject to the lower and upper bounds: ˆ ˆ,  k k . An inverse 

procedure is not available: one cannot easy adjust the 

member forces to the values of strains.    

The optimization procedure results in the strain values 

/k kl
  saturating both the lower and upper bounds in the 

bars of non-zero cross sections; these bars are subject to a 

non-zero stress. Here the bound k  is determined by the 

collection of the values  jn . 

In the bars of non-zero cross sections(which remain upon the 

optimization process) the following constitutive equations 

hold 

k

k k

k

n EA
l



      (79)    

where 
kEA  are given by  (51). Indeed, let us insert (51) into 

the r.h.s. of (79) and compute 

 
 

 

1

1 1

sgn

sgn

e

i i
k kk i

o o ke e

k o
i i i i

i i

k k k

n l
n n

n
l

n l n l

n n n


 



 

 

  


   



 



   (80)   

which proves that the equations (79) are fulfilled. 

To recapitulate we state that the problem (43) reduces to the 

two mutually dual problems which can be expressed: 

-in terms of membrane forces, (49)   

-in terms of displacements of free nodes, (52)  

The solution to the problem  (49) determines directly the 

optimal stiffnesses according to (51) and thus determines the 

topology of the optimal truss, since some values of 
kn  

vanish and these bars will disappear. The optimal truss may 

be geometrically variable. 

 

Remark 4.1 

A truss is called internally statically determinate if the 

member forces can be uniquely computed by solving the 

equilibrium equations of all nodes, i.e. on the basis of the 

knowledge of the given loads and reactions. The outlined 

method of topology optimization of trusses admits vanishing 

of selected areas of the cross sections of members. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Consequently, the optimum truss has a topology different 

than the initial design. These initial designs are usually 

internally statically indeterminate. It occurs, however,  that 

for each optimum design problem there exists at least one 

optimal truss which is internally statically determinate. In 

other words, the optimization procedure changes the 

topology such that in the optimum truss the state of member 

forces can be uniquely determined by the reactions (created 

by the optimization) process and by the given set of loads. 

This property of optimal designs becomes clear while 

analysing particular examples. Usually, the set of optimal 

solutions is a singleton. 

5. THE CASE OF ,    P 0 U 0 : TRUSSES OF MINIMAL 

COMPLIANCE  

We consider the case of  U = 0 and show that the problems 

(49), (52) reduce to the known problems forming the theory of 

trusses of optimal compliance. By assuming U = 0 in (49)  we 

obtain 

  21

2
opt

o

J Z


   (81)   

        

 
1

min  
e

T

e

k k

k

Z n l





 
  

 


n

B n P

   (82)   

and we see that the problem assumes the well-known form, 

see Bendsøe et al. [21], Achtziger[22], Lewiński et al.[19].       

      Now we shall perform a similar reduction of the problem 

(52).  If  U = 0  then    U

k kd dv v , see (35). Let 
j jv tv ,   

j=1,…,s  and then    k kd tdv v . Let 

       

  
1

( )
max 1k

k e
k

d

l 


v
   (83)    

Then    

 
1 1

( ) ( )
max maxk k

k e k e
k k

d d
t t

l l   
 

v v
  (84)  

The problem (52) can be written as below 

       

  

1

2

       

( )
max 1

2 max max 2
s

k

k e k

opt o
t

d

l

J t t

 

 



  
v

v

P v  (85)   

Let ,   ob a   P v . We have  2 2max 2 /
t

bt at b a


   and 

the maximizer equals:       

 
1

o

b
t

a

   


P v     (86)  

Thus (87) assumes the form 

   
2

1

( )1
2 max   ,  max 1s k

opt
k e

o k

d
J

l 

  
    
   

v
P v v  (87)  

or 

 21

2
opt

o

J Z


    (88)  

      

 
1

( )
max    , max 1 s k

k e
k

d
Z

l 

  
    

  

v
P v v  (89)   

The equality in the curly brackets in (89) can be replaced by 
.  The problems (82) and (89)  are mutually dual, which is 

known from the theory of truss optimization, see Hemp[18], 

Achtziger[22] and Lewiński et al [19]. 

Let 
n  be the minimizer of (82) and let 

v  be the maximizer  

of (89). These vectors are linked by the optimality conditions: 
T 

 





B n P

Δ Bv
 

      

 

0 1

0 1

0 1 1

k

k

k

k

k

k

k

k

k

n
l

n
l

n
l














  


   


    

   (90) 

Note that 

     

 

 sgn    if   0

1              if   0

k

k k

k

k

k

k

n n
l

n
l



 






 


 

   (91)  

and we see that now the bound for the relative elongation 

/k kl
  does not depend on  the values of the membrane 

forces: 
1 ,..., en n    .  

In the case considered among the optimal trusses at least one 

is statically determinate; the proof can be found  in Achtziger 

[22]. 

 

6. THE CASE OF ,    P 0 U 0    

 

We shall now derive the particular forms of the problems (49), 

(52) in case of a truss with  prescribed displacements of 

supports: ,    P 0 U 0 . The optimal value of the total 

potential energy equals 

       

 
21

2
opt oJ Z       (92)  

   
1

max    ( ),   1
e

T T

k k

k

Z Ker n l


 
    

 
B n U n B  (93)  

or 

                         

 
1             

1 1

1
min max

s

s m

kj j kl l
k e

j lk

Z B v B U
l 

 

   
    

   
 

v

 (94)   
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and the problems (93) and (94) are mutually dual.  The 

solution 
n  to the problem (93) defines the optimal stiffnesses 

by  
k o kEA n      (95)   

Those bars in which 0kn   disappear. 

Proof. 

The virtual vector n in (49) satisfies the homogeneous 

equation: T B n 0 , hence one can represent  the components 

of n as  k kn tn  with t  and   

 
1 1

1,     
e e

k k k k

k k

n l t n l
 

      (96)  

Now we re-write (49)  in the form 

   

1

2

( )

1

1
2  min min 2

T

e

k k

k

T

opt
tKer

o

n l

J t t







 
   

 


n B

B n U   (97)  

Let 

   
1

,    T

o

a b  


B n U   (98)  

but 

   
2

2min 2
t

b
at bt

a
     (99)   

and the minimizer  equals     

  T

o

b
t t

a

    B n U    (100)    

The new form of (6.2) reads 

                 

    
1

2

( )

1

2 min  
T

e

k k

k

T

opt o
Ker

n l

J







  



n B

B n U   (101)    

which confirms (92), (93). Let 


n  be the maximizer of this 

problem. Then    

  T

ot   B n U    (102)   

and the optimal forces in bars are   

  t  n n    (103)   

The optimal member forces determine the optimal stiffnesses 

by (51). Thus, they can be expressed by (95), since the 

denominator in (51) equals t . The stress-based formulation is 

now justified. 

      Now we shall find the problem dual to (92), (93) with 

using (52). We insert P = 0 and obtain  

 

2

1 

( )
2 min max

s

U

k

opt o
k e

k

d
J

l 

   
        

v

v
  (104)   

where (.)U

kd  is given by the equation (35). We arrive at (92) 

with      

 
1             

( )
min max

s

U

k

k e
k

d
Z

l 

  
  

  
v

v
   (105)   

which is equivalent to (94). 

The displacement-based formulation of the problem is now 

derived. 

As follows from the derivation,  the problems (93) and (94)  

are mutually dual with zero duality gap between them. ■ 

The problem (94) has a very clear meaning: the aim is to 

minimize the state of strain in the  norm  o   given by (72) . 

By solving this problem one  obtains the layout of the 

optimum structure, but to find its optimal stiffnesses one 

should solve the stress-based  problem (93).  

 

Remark 6.1 

It is thought appropriate to derive the formula (94)  directly 

from (93). To this end we introduce 

  

 

 

1

1,  ,..., ,  ,  

1
( ) ( ),  

U e U U

kk

k

diag l l

d
l

    

 

BU L ε L

ε v v m Ln
 

The condition ( )TKern B  implies   0 s   n Bv v . 

Thus, the problem (93) can be written and then rearranged as 

below 

  

 

 

  

 

    

 

 

 

  

 

( )
1

1

1

1

1

1

1

1

1

max

max min ( )

max min ( )

max min ( )

min max ( )

min ( ) min (

T

se

se

se

s e

s s

U
Ker

U

U

U

U

o o

U

Z











 



















 




 

  

   

    

   

   

  

n B
m

vn
Ln

vn
Ln

vτ
τ

v τ
τ

v v

m ε

Ln ε n Bv

Ln ε Ln L Bv

τ ε τ L Bv

τ ε L Bv

L Bv ε ε ) Uv ε

 (106)   

where swapping the operations  max and min  is justified, like 

in the free material design problems, see Bołbotowski and 

Lewiński [13]. We conclude that the problems (93) and  (94)  

are mutually dual. ■ 

Let us derive now the optimality conditions for the problem 

considered. Let 
v be the maximizer of (94)  and 


n  be the 

minimizer of (93). These vectors are linked by the optimality 

conditions as below  
T 

 



 

B n 0

Δ Bv BU
 

 

0

0

0

k

k

k

k

k

k

k

k

k

n Z
l

n Z
l

n Z Z
l














  


   


    

  (107)   

and 

     TZ  B n U    (108)  

Thus 

     

 sgn( )  ,             if    0k k

k k

k k

n Z Z n
l l

 

  
    (109) 
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According to (109) in all members the absolute values of the 

strains are the same and equal Z. A remarkable feature of this 

design is that the bound Z depends on the collection of values: 

,  1,...,kn k e  . Let us remind that in the case of  

,    P 0 U 0 this bound was equal to 1, hence independent of 

the values of the member forces. 

 

7. NUMERICAL CONSTRUCTION OF THE STATICALLY 
ADMISSIBLE MEMBER FORCES 

The solution  1 2, ,..., e

en n n n  of the equilibrium 

equation (19)2 , i.e. T B n P , can be written as follows 

       

  
1

r

k k

k




 n n h    (110)  

where  1 2 ...
T

e
en n n n  is an arbitrary solution of 

the equilibrium equation T B n P ,  Tdimr Ker B  is the 

dimension of the kernel of the matrix T
B and 

 
1 2

...
e

T
e

k k k kh h h h  are the basis vectors that 

span the vector subspace  TKer B ; k  (k = 1,2,…,r) are 

arbitrary real numbers. For the given position of the nodes, 

bars and the known load sP , any statically admissible 

member forces 
en  can be identified with the vector  

           

  0 1 1...
T r

r    α   (111)

   

upon establishing the particular solution n  and the vectors 

kh  (k = 1,2,…,r)  spanning the kernel of the equilibrium 

matrix. In other words, any statically admissible solution 
en  can be identified with a certain vector rα . 

Therefore,  the minimization of any functional over statically 

admissible forces n can be reduced to its minimization over 

all vectors α.  Thus, according to (49), the minimized 

function J can be equivalently defined as the function 

: rJ   (we do not change the notation J adopted in 

(36)): 

    
 

  

2

2

10

1

2
k

e
T

k k

k

n

J n l


 
 

     
 


α

α α B n α U  (112) 

where  0 1 1, ,... r

r    α , 

        1 2, ,...,
T e

en n n n α α α α and   

  1

1
k

r

kk i i

i

n n h 



 α , k = 1,2,…,e (113) 

Except for such α for which   0kn α  for some index k, the 

gradient of the function (112) is defined by the vector: 

        
0 1

... ...

T

r

i r

J J J
J

   

   
   

   
α α α α  

                                                                             (114)  

where 

 

 
 

 
 

1

1 1

, 1, 2,...,
k

i

e e
k T

k k k i i

k k k

J

n
n l l h i r

n

 

 






  
       

 

α

α
α B h U

α

  

                                                                             (115) 

Finally, the minimization of the function (49) over statically 

admissible member forces ,e T n B n P  is reduced to its 

minimization over all vectors  0 1 1, ,... r   α , or 

  
 

 
0 1 1, ,...

min
r

r

optJ J
    


α

α   (116) 

thus arriving at a fully non-constrained minimization 

problem. 

8. OPTIMUM DESIGN OF PLANAR AND SPATIAL 
TRUSSES. CASE STUDIES 

The Singular Value Decomposition algorithm (SVD) along 

with the routines (available in  Press et al [23]) implementing 

algorithms of non-linear mathematical programming (e.g. 

Fletcher-Reeves (FR), Polak-Ribiere (PR) or Broyden-

Fletcher-Goldfarb-Shanno (BFGS)) will be used  in the 

process of constructing the statically admissible  

representation (110) and the optimal solution of  the problem 

(116). The Young modulus E and the initial cross-sectional 

area 
1

init

kA 
, k = 1,2,…, e of each element of the truss (planar 

or spatial) to be optimized are assumed as equal to E = 

7.2∙106 [N/cm2] and 1.0 [cm2], respectively. In all examples, 

the bound   in the resource condition (42) is assumed 

according to the rule 

 0 1 1

1

[ ]
e

init

k k

k

EA l N cm 



   

where now 1,  1,2,...,kl k e  , the lengths of the truss 

elements are numbered from 0. Red/blue colour indicates the 

bar in tension/compression state, respectively. In all the 

figures the green stars   show the position of the 

supporting nodes. 

 
8.1 PLANAR 38-BAR TRUSS 

The 38-bar truss (Fig.1) is supported at the four lower nodes 

and loaded kinematically (skew-symmetrically with respect 

to the vertical axis of symmetry) with vertical downward and 

upward displacements of magnitudes U of the left and right 

middle nodes, respectively (see Fig. 1). 
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      a)      

                                                                              

b)       

 

Fig. 1. a) 38-bar truss with marked vertical displacements of 

supports with the same values but opposite signs. b) Optimal 

(skew-symmetric with respect to the vertical axis) layout. 

Red/blue means the bar is in tension/compression. The 

optimal layout of bars is internally statically determinate. 

 

The consequence of the optimum designing process is 

vanishing of 20 bars such that the emerging optimal truss 

becomes internally statically determinate, cf. Remark 4.1. 

Thus, the reactions which emerge in the optimal truss 

determine the state of member forces uniquely. 

Let us  consider now the consequences of removing the two 

middle pin supports and  replacing them, in an equivalent 

way, with support reactions appearing in the optimized truss. 

These reactions are then treated as  known static loads and 

numerical calculations are again performed to find the 

optimal cross-sections to minimize the compliance of this 

38-bar truss supported this time only at the two extreme 

nodes, see Fig. 2a). 

 

a)   

 
b)  

Fig. 2. a) The equivalent to the skew-symmetric kinematic 

load: the skew-symmetric static load is applied to the two 

central nodes where the truss was supported; b) Equivalent to 

the skew-symmetric kinematic load, the self-balanced skew-

symmetric static load is applied to the lower four nodes. The 

truss is supported only at the central node in the second row 

from the bottom, remaining externally geometrically 

variable. 

 

The optimal areas of the cross-sections of the  bars turn out 

to be identical to those found in the previous case, see Fig. 

1b), which confirms correctness of the algorithm. 

      Let us remove now all supports, only adding (to ensure 

stability in numerical calculations) a pin non-movable 

support at the lower central node (see Fig. 2b)). After 

replacing the removed constraints with support reactions 

appearing in the optimal truss, these reactions are treated, 

similarly to the previous case, as a known static load. 

Numerical calculations are again carried out in order to find 

the optimal bar sections minimizing the compliance of this 

38-bar truss, supported at the only one node (the structure is 

externally geometrically variable) and loaded with a self-

balanced static load (composed of the previous reactions) 

applied to the four lower nodes of the 38-bar truss. Of 

course, the reaction in the only supporting  node is (due to 

the load being self-balanced) equal to zero. As in the 

previous case, the optimal cross-sections of the  bars are 

obtained identical as before (up to high accuracy). However, 

it should be emphasized that during the numerical 

simulations, the calculations were found to be very sensitive 

even to very small changes in the values of the reaction 

forces (with an accuracy of up to several decimal places).  

     Finally (only for testing purposes), the process of 

optimization of this 38-bar truss is carried out for the 

kinematic load corresponding to a small rigid body rotation 

around the point S, see Fig.3. Let us stress that this kinematic 

load corresponds to a rigid rotation only within the linearized 

theory used here. 
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Fig. 3. A kinematic load applied to the 38-bar truss that 

realizes (within the geometrically linear theory) a rigid 

rotation of the entire structure around  the  point S. 

 

The optimal value of the function J* turns out to be exactly 

equal to zero and the values of all forces in the bars and the 

reactions in the four lower support nodes are also equal to 

zero, which confirms correctness of the algorithms. 
 
8.2 LATTICE SHELL FORMED ON AN ELLIPTIC 
PARABOLOID 
 

Consider the one-layer lattice shell formed on the elliptic 

paraboloid            

  
2 2

,
x y

z x y
a b


    

           

  (118)  

covering the rectangle    / 2, / 2 / 2, / 2x x y yL L L L   ; our 

data will be: a = b = 50 [cm],  Lx = Ly = 1500 [cm]. The 

structure is pin-supported at all 16 boundary nodes, see Fig. 

4. 

 

  
 

Fig. 4. The lattice shell pin-supported at all 16 boundary 

nodes (green stars).  

The diagonal bars pass each other in the middle of the cells, 

i.e. they do not have  common nodes there. Two kinds of 

loads are considered.  Either all the internal nodes of the 

truss are subjected to the vertical concentrated forces of the 

same magnitude P = –200000 [N] (the negative sign means 

that they are directed downwards) or the truss is 

kinematically loaded: all the boundary nodes are displaced 

downwards according to the interpolation rule 

  
2 2

,
x y

U x y
c d


    

           

 

where we have chosen: c = d = 300 [cm]; the parameter  is  

determined from the condition that U = –12.5 [cm] at four 

corners; then U = –6.25 [cm] at four middle edge nodes. 

 

The optimization results for the purely kinematic loading       

(P = 0) read : J* = –2.65305∙106 [N cm].  

The optimal cross-sections of 8 corner bars are: 
* 210.24 cmkA     ; the optimal cross-sections of the 

remaining bars are numerically equal to 0, see Fig.5a. 

To explain  this phenomenon let us note that the kinematic 

load acts along the boundary while the surface (118) on 

which the nodes of the structure are placed has a positive 

Gauss curvature; consequently, the stiffest members are 

placed around the corners.  

The optimization results for the purely static loading (U = 0) 

read: J* = 282453,5[N cm] 

The maximal optimal area of the cross-section of bars is: 
* 21.68792 cmkA     , the optimal cross-sections of the 

remaining bars are slightly smaller and all the cross-sections 

of the bars on the edges are exactly equal to 0. A view of the 

optimal truss is shown in Fig. 5b. 

The optimization results for the static and kinematic loadings 

acting simultaneously are: J* = 273504.5[N cm].  

The maximal optimal area of the cross-section of bars is: 
* 28.57222 cmkA     , the optimal cross-sections of the 

remaining bars are smaller or vanish.  

Thus,  when both the loads are applied the solution 

represents a certain compromise and the design depends 

heavily on the values of the ratios :P U . A view of the 

optimal truss is shown in Fig. 5c. 

 

 

a) 
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b) 

  

c) 

   

Fig. 5. Optimal layouts of the lattice shell truss from Fig. 4 

in: a) purely kinematic-, b) purely static-, and c) kinematic 

and static case of loading. 

 
8.3 LATTICE SHELL FORMED ON A HYPERBOLIC 
PARABOLOID 

 

Consider  two one-layer lattice shells formed on the 

hyperbolic paraboloid :  

        

   ,z x y x y    (120)    

covering the rectangular domain: 

   / 2, / 2 / 2, / 2x x y yL L L L   , for the data: 3 110 cm   , 

Lx = Ly = 1500 [cm]. The structures are pin-supported at all 

40 boundary nodes, see Fig. 6a, 6b 

a)   

b)   

Fig. 6. The two lattice shells a) and b), pin-supported at all 

40 boundary nodes (green stars).  

 

Two kinds of loads are considered. The static vertical load is 

applied to all truss nodes. In each node the vertical force is 

directed downwards and has the same value P = –2000 [N]. 

The kinematic vertical load is applied to all boundary nodes. 

The vertical displacements directed downwards are equal U 

= –5.625 [cm] at four corners and U = 0 [cm] at four middle 

edge nodes. The vertical directed downward displacements 

U of the remaining edge nodes are interpolated by the 

equation  ,U x y x y   and we choose 5 110 cm   .    

The optimization results for the purely kinematic loading 

(P=0) are the same for the a) and b) cases:  

J* = –2.83431∙106 [N cm]. The optimal cross-sections of all 

boundary bars: * 28.1 cmkA     , the optimal cross-sections of 

the remaining bars are (numerically) equal to 0. A view of 

the optimal truss is shown in Fig. 7a). 

The optimization results for the purely static loading (U=0) : 

 J* = 242903.5 [N cm] and J* = 17691 [N cm], for a) and b) 

case, respectively. 

The maximal optimal cross-sections of bars: 
* 22.32128 cmkA      or * 21.66245 cmkA      for a) or b) 

cases respectively, and the optimal cross-sections of the 

remaining bars are smaller, other cross-sections of the bars 

on the edges are (at least numerically) equal to 0. A view of 

the optimal trusses is shown in Fig. 7b, 7c). 

The optimization results for the static and the kinematic 

loading acting simultaneously : 

 J* =–62236 [N cm]  and   J* = –1.09688∙106 [N cm] for a) 

and b) case respectively. 

The maximal optimal cross-sections of bars: 
* 26.82712 cmkA      and * 26.72158 cmkA      for a) and b) 

cases, respectively, and optimal cross-sections of the 

remaining bars are smaller, other cross-sections of the bars 

are (at least numerically) equal to 0. A view of the optimal 

truss is shown in Fig. 7d, 7e. 
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a)  

b)             

c)  

d)     

     e)  

 

Fig. 7. The optimal layouts of the lattice shell trusses from 

Fig. 6a) and 6b) in: a) pure kinematic-, b), c) pure static- and 

d), e) kinematic and static case of loading, respectively.  

 

The kinematic load leads to the identical optimal designs for 

both layouts (see Fig.6a, 6b) reducing to an empty  frame 

surrounding the structure, see Fig.7a.  The optimum designs 

for the static loads do depend on the initial layout of 

members, see  Fig.7b,c. If both the loads are applied, the 

optimal designs assume a compromise topology depending 

on the initial layout of bars, see (d), (e) in Fig.7, and on the 

ratio :P U .  The specific topologies in (a,d,e) are 

consequences of the surface (120) having a negative Gauss 

curvature. 

9. REMARKS ON THE PROGRAMMING PROBLEMS      

The chosen numerical method for solving the optimum 

design problems considered reduces to the minimization of 

functions without constraints. For solving this problem the 

three different C-codes have been used: powell(...), 

frprmn(...), dfpmin(...), expounded in Press et al [23], which  

allowed in most cases to find the solution (i.e. the minimizer 
*

α ) with a reliable accuracy.  The answer to the question 

whether in each problem the numerical solution is unique 

turned out to be negative. Moreover, some doubts arise 

whether the obtained numerical solutions can always be 

treated as global ones in each case of the numerical search 

for the minimum, especially if  both the loads: static and 

kinematic are applied simultaneously. It often turned out that 

after calling the three functions powell(...), frprmn(...), 

dfpmin(...), the minima values were significantly different in 

numerical terms, although the layouts of optimal topologies 

obtained on their bases were very similar to each other. The 

simplest explanation is such that the minimum of the 

difference of two functions has been sought and the absolute 

values of both of these functions reach big and often very 

high values. The second reason is the non-differentiability of 

the function (112)  when the force disappears in at least one 

truss element, which usually appears at the end of iteration. 

This obviously suggests the use of algorithms using the 

concept of  a subgradient instead of a gradient, but not 

necessary for e.g. the non-gradient powell(...) method. 

However, powell(…) method quite often returned optimal 

value that was worse (i.e. greater) than those returned by 

algorithms using the gradients e.g. frprmn(...), dfpmin(...). 

To increase the probability of finding the best optimal value 

of the function (112) often all three procedures mentioned 

above, together with the own optimization procedure, have 

been called (in different orders) in the program. 

10.  FINAL REMARKS      

The problem of minimization of the total potential energy of a 

truss has been reduced, upon eliminating all the design 

variables,  to the two mutually dual problems: the stress-based 

(49) and the displacement-based (52). The solution to the 

stress-based problem determines directly the optimal 

stiffnesses of the truss members, and, consequently, the layout 

of the optimal truss. The optimum design process loosens the 

initial layout of bars thus leading to internally statically 
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determinate  layouts: the loads and the reactions found by the 

optimization process determine the state of axial forces in bars 

directly by the equilibrium equations. Thus, minimization of 

the total potential energy relaxes the state of stress. 

     The theory developed is a prerequisite of the theory of 

optimum design of distortions in truss structures. 
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APPENDIX A 

The aim is to prove that the statements: (a1) and (a2)  in 

Theorem 2.1 are equivalent. 

Let Im( )TP B . 

1.Let u satisfy (23) We rearrange  L(v)  as follows 

                

     

    

      

    

_____________________________________________________

1
( )

2

( )

1
( )

2

o o

o

L L

L

       

          

         

     

v v u u P v u P u

B v u Bu Δ E B v u Bu Δ

u P v u B v u E Bu Δ

B v u E B v u

 (A1) 

Note that     

 ( )o E Bu Δ N     (A2) 

and due to Im( )TP B  we have   

  ˆ ˆ ˆ     s    Bv N P v v   (A3) 

Substitution of ˆ  v v u  gives the equality which makes zero 

the component underscored in (A1). Thus 

           
1

( )
2

L L L       v u B v u E B v u u  (A4) 

and the equality takes place only if   v = u. 

2.Assume now that u is the maximizer of (27). Then the term 

underscored in (A1) must vanish. Due to v being arbitrary  one 

has  

           
ˆ ˆ,    ( )T o  B N P N E Bu Δ    (A5)  

but then ˆ ,  ,  N u Δ Bu  satisfy (23). 

APPENDIX B 

The aim is to prove that the statements: (b1) and (b2) in 

Theorem 2.2 are equivalent. 

1.Let 
en , Im( )TP B , 

T B n P . Let N satisfy  (23). We 

shall prove that     

      n N     (B1) 

Indeed, let us write 

          

   

1

1

___________________________

1

2
o





          

   

n n N N n N E n N N

n N E N Δ
 

(B2) 

Since N satisfies (23), or 

       

 

1

0

o

T T

      

   

n N E N Δ n N Bu

B n B N u
   (B3) 

we see that (B1) holds; if Im( ) n N E  then    n .   

2. Let now N be the minimizer of (28). Then the term 

underscored in (B2) vanishes, which implies 
1 , ando s T    E N Δ Bv v B N P , hence v = u or N 

is the solution of (23). 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


