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Abstract. With a continued strong pace of artificial intelligence, the way of formulating the flight day plan has a significant 

impact on the efficiency of flight training. However, through extensive research we find that the scheduling of flight days still 

relies on manual work in most military aviation academies. This method suffers from several issues, including protracted processing 

times, elevated error rates, and insufficient degree of optimization. This article provides a comprehensive analysis of automated 

flight scheduling using Goal Programming algorithm and details the implementation of the corresponding algorithm on the 

LINGO platform. The study enhances the flexibility and robustness of the model by setting bias variables, wherein the flight courses 

for students and instructors can be automatically and reasonably scheduled. 
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1. INTRODUCTION 

Flight day planning is a crucial task for military aviation 

colleges. A number of factors must be coordinated throughout 

the planning phase, such as student preferences, weather, 

instructor availability, aircraft availability, and flight schedules 

[1].  These plans guarantee the safe and efficient provision of 

practical flight training and experience to students. Overall, 

proper planning and organization of flight day plans are 

essential for effectively training and developing aviation 

students [2]. 

However, our investigation in various military aviation 

academies has shown that, in some aviation schools of less 

developed countries, due to economic and technological 

development reasons, the flight planning process still mostly 

relies on traditional tools, such as Excel. In some large aviation 

schools, such as the United States Air Force Academy, large 

software like AFORMS or Flight Schedule Pro is used for crew 

and flight scheduling when making the daily flight schedule. 

However, the software is difficult to operate and has a complex 

interface, which limits its performance and usage scope；
Moreover, the model embedded in the software lacks flexibility 

and requires constant parameter adjustments to adapt to 

changing training scenarios. At this time, a large amount of 

manpower is still required to rectify the schedule. In such 

situations, the waste of human resources can lead to increased 

costs and an overall decline in organizational performance. 

The topic of automatic arrangement of flight day plans has 

attracted concentration in recent years. Naval Postgraduate 

School, located in California, is renowned for its advanced 

national defense research and education. In this school, scholar 

Robert F. Dell has long been committed to research on flight 

day planning and operations. In 2018 and 2019,  he guided two 

thesis, which optimized the tactical and weapons flight training 

process for naval air station trainees based on integer 

programming, creating a daily schedule within a one-week 

timeframe[3,4]. 

Other researchers have also analyzed the scheduling of flight 

training programs from different perspectives. In 2019, Sofi 

Suvorova and Ana Novak described how a Markov Decision 

Processes (MDP) could be used to minimize costs and control 

recruitment across the training continuum of helicopter pilots 

and optimize the aviation training schedules for the Royal 

Australian Navy [5]. This method possesses a certain level of 

robustness. Jay Foraker, Gary Lazzaro and Parker Nelson 

discussed the problem of creating daily flight schedules for two-

week training detachments of U.S. Navy Strike Fighter 

Squadron 106 (VFA-106) in Key West, Florida in 2021[6]. 

They formulated a binary integer program to automate the 

scheduling of flight events with the goal of maximizing daily 

events scheduled. In 2022, Shuangfei Xu and Wenhao Bi 

introduced a multi-level optimization model of flight test tasks 

allocation and sequencing to improve flight test efficiency, 

where flight test period was the main optimization objective, 

and a penalty function evaluating tasks testing dates was the 

minor optimization objective [7]. 
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Many scholars have conducted systematic research on the 

optimization methods of military-related flight day training 

plans[8,9]. However, the establishment of flight training 

schedules needs to consider various complex factors, and 

setting too many hard constraints in the model may lead to a 

decrease in adaptability and robustness. Moreover, if the 

constraints are too strict, it might be difficult to find effective 

solutions. To address these issues, this article has designed an 

optimization model for daily flight planning based on Goal 

Programming [10,11]. 

The model in this article involves 8 flying instructors, 10 

students, and 8 military flight training courses. The algorithm 

can efficiently and systematically arrange these elements in a 

specific order. Lingo software is used to analyze and process 

the relevant data, by which the researchers can identify patterns, 

trends, and relationships within the data that may not be 

immediately apparent. 

Based on the analysis above, there is still a significant research 

gap in the field of automated flight plan scheduling [12]. The 

findings of this study can be applied to optimize flight day plans 

for military aviation academies and enhance the efficiency of 

daily flight operations. This article focuses on the actual 

training situation of military aviation academies and a more 

flexible and adaptive Goal Programming method has been 

adopted. We allocate a certain amount of reward points to 

students who complete specific flight training courses and add 

up the reward points of all students. To enhance the 

understanding of the model, we begin by introducing the 

principles and assumptions underlying the model settings. 

2. Optimization Model for Flight Day Training Plan 

2.1. Principles of Goal Programming 

Goal Programming, a special type of Linear Programming, is a 

mathematical method used for decision analysis involving 

multiple objectives to solve practical problems in economics, 

military, and other domains that Linear Programming cannot 

address. It aims to minimize the deviation of the objectives from 

the specified values and takes the weighted sum of the 

objectives as final objective function [10]. 

The flight day plan can be refined as a multi-objective decision-

making problem. When formulating the flight day plan, it is 

essential to consider not only the completion goals of the flight 

missions but also various factors such as aircraft, personnel, and 

the sequence of tasks. These objectives are often contradictory 

which pose challenges for balancing multiple goals to 

maximize training efficiency. In this case, Goal Programming 

offers a robust solution on this matter. 

In contrast to Linear Programming, the objective function of 

Goal Programming does not seek the maximum or minimum 

value but seeks the gap between these goals and the expected 

outcomes. The smaller the gap, the higher the possibility of 

achieving the goal. In Goal Programming, there are two types 

of gaps: exceeding the goal and not meeting the goal. We 

generally use d 
 to represent the gap exceeding the goal and 

-d  to represent the gap not meeting the goal. One of d 
 and 

-d must be zero, or both are zero. When the goal is consistent 

with the expected outcome, both are zero, that is, there is no gap. 

Hence, d 
 and 

-d  satisfy the following condition: 

0d d                                          (1) 

Thus, in Goal Programming, we will encounter two different 

types of constraints: hard constraints and soft constraints. Hard 

constraints are those that must be satisfied, which is constant 

with that of Liner Programming. In this situation, we do not 

need d 
and

-d to set constrains or objectives.  

Soft constraints are those that can be violated. However, these 

constraints usually leads to an increase in some costs. For 

instance, we may wish for the number of airplanes flying at the 

same time to not exceed a certain specific number, but under 

certain specific circumstances, this condition may not be met. 

Then d 
and

-d should be used to set constrains and balance 

multiple goals in three scenarios: 

1. The requirement to meet the target value, meaning both 

positive and negative deviation variables should be as small as 

possible: 

min z d d                                       (2) 

2. The requirement not to exceed the target value, meaning the 

positive deviation variable should be as small as possible:    

                                        +min z d                                      (3) 
3. The requirement to exceed the target value, where the excess 

is unlimited, but the negative deviation variable should be as 

small as possible: 
-min z d                                      (4) 

Assuming there are a total of q biases, the objective function is: 

                              
1 1

min +
q q

k k

k k

z d d 

 

                           (5) 

Based on the above analysis, the objective function contains all  

d 
 and

-d , then greater flexibility can  be demonstrated by 

continually adjusting d 
 and

-d . That is, we can attach or 

remove d 
and 

-d to achieve mutual conversion between hard 

constrains, soft constrains and the objective function. Therefore, 

it transforms the hard-verse-soft problem into a convertible 

issue. 

In actual flight training, there are both hard constraints and soft 

constraints. The following conditions must be met, namely hard 

constraints: 

• Matching of Personnel and Aircraft 

During the same time period, a student or instructor cannot be 

present in two aircraft at the same time. During a teaching 

session, one instructor can only match with one student. In 

formation flight missions, one lead aircraft must be matched 

with two wingmen. 

• Sequence of Course Execution 

Students have strict sequence restrictions when carrying out 

flight subjects, which are clearly explained in the flight training 

syllabus. A student can only proceed to the next flight subject 

after completing the previous one. 

• Aircraft Quantity Limitation 

The total number of aircraft used by all pilots in the same batch 

must not exceed the number of available aircraft. If the number 

of aircraft is exceeded, the flight plan cannot be executed 

normally. 

The following are soft constraints: 
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• Control of Flight Density 

Before formulating each flight plan, it is necessary to designate 

the number of sorties each student needs to complete for each 

subject, and these indicators should be achieved as much as 

possible. Additionally, due to airspace restrictions, the number 

of aircraft flying in the same batch should ideally not exceed the 

specified indicators. However, due to the complex nature of the 

actual flight environment, the above indicators may not be met. 

• Maximizing overall benefits 

The learning progress and training duration can vary for each 

individual based on factors such as aptitude, dedication, and the 

specifics of the training program. However, it is important to 

prioritize the overall training benefits rather than trying to 

estimate every aspect. To maximize the overall benefits, it is 

crucial to identify clear goals and determine which specific 

benefits should be maximized. This way, efforts and resources 

can be focused accordingly [13,14]. 

Moreover, this article also presents the following assumptions, 

based on the actual situation of military aviation academies. 

• Due to the unique nature of flight training, it is 

generally assumed that one instructor can only teach one 

student at a time. This approach improves the efficiency of 

flight instruction. 

• Unexpected circumstances can cause disruptions to 

military flight training, including bad weather, technical 

problems, and safety mishaps, political or military 

developments. The unexpected aspects stated above are not 

considered in this essay. 

• Students in flight must follow the curriculum's 

timetable, moving on to the subsequent lesson only after 

finishing the preceding ones in a flying day. 

2.2. Sets, Parameters, and Decision Variable 
Description 

The following notations are defined prior to the presentation of 

the mathematical model.  

Sets 

E   set of flight courses, e E  

EF   set of formation courses,
f Fe E  

S     set of students, s S  

I      set of instructors, i I  

P     set of batch of aircraft released, p P  

EFI  set of teachers who possess the ability to  fly a  leader 

aircraft 
ef EFi I  

 ,R E E e e    set of two courses that course e  is in front 

of course e  

SC   set of courses completed by student s  

Parameters 

ve     the execution values of course e in the first batch 

rep    the reward value of course e in batch p 

IL    counts instructor's daily flight course sorties limit 

SL   counts student's daily flight course sorties limit 

Es     the number of sortie allocation per student each day, s S  

pM  the maximum number of aircraft that can be flown in batch 

p, p P  

eT    flight time for course e, e E  

Decision variables 

sepX   if course e of student s has been arranged in batch p, the 

value is 1,otherwise the value is 0. 

iepY     if course e of instructor i has been arranged in batch p, 

the value is 1,otherwise the  value is 0, ei I  

iepL   if the task of flying a leader aircraft was assigned to 

instructor i in batch p to formation course e, the value is 

1,otherwise the value is 0, EFi I , Fe E  

d d ，  the gap between the goals and the expected outcomes 

2.3. Establishment of Objective Function 

2.3.1 Soft Constraints Setting 

The helicopter training syllabus at a military aviation academy 

comprises eight subjects.  These courses are familiarization 

flight (FAM), visual flight (VF), instrument flight (IF), low 

level flight (LLF), boundary flight (BF), formation flight 

(FORM), search and rescue operation flight (SROF) and 

reconnaissance and patrol flights (RPF). 

Familiarization flight (FAM) refers to a flight taken by a pilot 

or crew member to become familiar with a specific aircraft, 

route, or operating procedures. These flights are often 

conducted before a pilot starts flying a new type of aircraft or 

before operating in a new area. Visual flight (VF) refers to a 

type of flying where pilots rely primarily on their own visual 

observations to navigate and control the aircraft. In visual flight, 

pilots typically fly at lower altitudes and in good weather 

conditions. Instrument flight (IF) refers to a type of flying 

where pilots rely solely on the instruments in the aircraft’s 

cockpit to navigate and control the aircraft, rather than visual 

references outside the aircraft. Based on FAM, pilots require 

extensive practice in VF skills and IF to enhance their 

proficiency in flying. 

Low level flight (LLF) requires special skills due to the 

increased risks and challenges involved. Pilots must be able to 

navigate obstacles while maintaining a safe and controlled 

flight profile. Boundary flight (BF) refers to a specific flight 

maneuver that involves flying at the boundary of the aircraft’s 

performance envelope. Formation flight (FORM) is a practice 

of flying multiple aircraft in a pre-determined arrangement and 

pattern. The lead aircraft plays a crucial role in this practice, 

with the lead pilot responsible for setting the pace, determining 

the flight path, and providing instructions to the other aircraft in 

the formation. These three courses can significantly enhance 

pilots’ overall capabilities. 

First, it is necessary to set the initial reward values. Since the 

fundamental courses are more important for students in early 

stages, the basic courses e1 (FAM）、e2 (VF）、 e3(IF)  and 

e4(LLF) are given relatively high initial reward values; The 

transitional courses e5(BF) and e6(FORM) should be assigned 

moderate initial reward values; Similarly, we set lower initial 

values to  e7(SROF) and e8(RPF) . 

Assuming the eight flight courses are: e1 ,e2 ,e3 ,e4,e5 ,e6 ,e7 ,e8.The 

execution values of the course items in the first batch are 

v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8 respectively, np represents the batch 
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number.  To ensure that the course can achieve a higher reward 

value if completed earlier, we divide the execution value of the 

first batch by the square root of the batch. Square root 

transformation is a method often used in data processing and 

statistical analysis. Applying this transformation can reduce the 

adverse effects of extreme values on the overall analysis 

outcome. It can enhance the robustness of data analysis. The 

relationship between the reward value of the course and the 

change in the batch is as follows: 

                                        e

ep

p

v
r

n
                                        (6) 

Based on the relative importance of each course in this stage, 

the value of the first batch of courses in this stage is set to be 4, 

3, 2.8, 2.8, 2.2, 2.2, 2, 2. The value of the course in each batch 

is shown in the TABLE 1: 

TABLE 1. Rewards for Each Course that Changes with Batch Number 

 The primary objective of the military flight academy is to train 

students, and the quality of their training serves as the most 

crucial measure of the academy’s training ability. Therefore, we 

primarily assess the reward value of the enrolled courses. A 

core goal of flight training is to enhance overall training 

effectiveness. Specifically, the total reward values for all 

training activities should be maximized. It is calculated as 

follows: 

                                   *ep sep

e s p

r X                                (7) 

Maximizing the overall reward value is our primary goal in 

pursuit. However, within the framework of Goal Programming, 

we must convert it into the following constraints: 

                         1 1* + Infep sep

e s p

r X d d                  (8) 

Inf is usually a relatively large number, and this value is not 

specifically defined, here we take Inf = 1000. In formation 

flying, there is usually a designated leader aircraft that leads the 

formation. The instructor in leader aircraft sets the pace, 

direction, and maneuvers for the rest of the formation. In 

addition to formation flying, the main task of the instructor is to 

provide flight guidance on the training plane. A three-aircraft 

formation comprises a lead aircraft and two wingman aircraft. 

Usually, only instructors occupy the lead aircraft, while other 

instructors guide students in each wingman aircraft. In this 

scenario, the total number of flights for an instructor in a flight 

day is determined by the combined number of flights in a leader 

aircraft and the number of flights dedicated to other 

instructional purposes, the maximum number of flight sorties 

for each instructor is preferable not to exceed IL: 

2 2+ =iep iep i i

p e p e

Y L d d IL i                     (9) 

For students, the sum of daily flight sorties is preferable not to 

exceed SL: 

                          
3 3+ =

S

sep s s

p e C

X d d SL s 



                         (10) 

It is preferable for each student to complete the assigned sorties 

each day: 

4 4+ ,
S

sep s s s

e C p

X d d E s 



                      (11) 

Positive and negative deviations must meet the following 

conditions:  

=0n nd d                                       (12) 

2.3.2 Hard Constraints Setting 

Setting the sequence of pilot flight training courses can vary 

depending on the specific training program. Using a specific 

aviation college as an example, we illustrate the implementation 

sequence of flight training courses as shown in Fig. 1: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Implementation Sequence of Flight Training Courses 

During a flight day, the flight courses on the left will be 

executed prior to the flight courses on the right. The courses in 

the upper and lower positions can be executed simultaneously 

without any specific order. As shown in TABLE 2, we should read 

the column index in the first before reading the row index. 

Therefore, set (VF, FAM) belongs to set R, set (FAM, VF) does 

not belong to set R. Both set (LLF, BF) and set (BF, LLF) 

belong to set R. In order to quantify the order of the courses, we 

set the matrix e eZ  . 

TABLE 2. Course Implementation Sequence Quantization Chart 

 FAM VF IF LLF BF FORM SROF RPF 

FAM 0 1 1 1 1 1 1 1 

VF 0 0 0 1 1 1 1 1 

IF 0 0 0 1 1 1 1 1 

LLF 0 0 0 0 0 0 1 1 

BF 0 0 0 0 0 0 1 1 

FORM 0 0 0 0 0 0 1 1 

SROF 0 0 0 0 0 0 0 0 

RPF 0 0 0 0 0 0 0 0 

If 1e eZ   , course e  can be set before course e .If 0e eZ   and

0eeZ   , there is no order for two courses that can be sorted 

 1 2 3 4 5 

e1 4.00 2.83 2.31 2.00 1.79 

e2 3.00 2.12 1.73 1.50 1.34 

e3 2.80 1.98 1.62 1.40 1.25 

e4 2.80 1.98 1.62 1.40 1.25 

e5 2.20 1.56 1.27 1.10 0.98 

e6 2.20 1.56 1.27 1.10 0.98 

e7 2.00 1.41 1.15 1.00 0.89 

e8 2.00 1.41 1.15 1.00 0.89 
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arbitrarily. Thus, the following inequality is used to limit the 

course schedule: 

        
( )* *

, , , , , ,

sep ee se p n e e

S S

X Z X Z

s e e p n N e C e C n N

  

     ，
                  (13) 

The upper limit of flight sorties in each batch can vary 

depending on various factors such as aircraft availability, crew 

availability, operational requirements, and maintenance 

schedules. However, for the sake of simplicity in calculations, 

we will set the number of flights in each batch to 
pM  which 

represents the number of available aircraft. In each batch, the 

instructor and the student share the same aircraft, the total 

number of flight sorties include the flight sorties of the students 

and lead aircraft flight sorties of the instructors:  

                      
s EF

sep iep p

s e C i I e

X L M p
 

                    (14) 

In 3-plane formation flight training, the number of sorties for 

the lead aircraft is twice that of the wingman in each batch: 

                          2 ,
EF

sep iep F

s i I

X L e E p


                      (15) 

In mentoring courses, the number of flight sorties for instructors 

is equal to that of students in each batch: 

                           ,
EF

sep iep S

s i I

X Y e C p


                         (16) 

In a batch, each student can only take one course: 

                                   1, ,
S

sep

e C

X s p


                                (17) 

Similarly, within a batch, an instructor can only provide 

guidance for one course: 

                               1, ,iep iep

e e

Y L i p                            (18) 

Based on the analysis above, the objective function is as follows:                

1 2 3 4min ,i s s

i s s

d d d d i s           ，         (19) 

In the above equation, the smaller -

1d and 4s

s

d  are, the larger 

reward values in equation (6) will be. The smaller 2i

i

d  and

3s

s

d  are, the smaller various sortie counts will be. 

3. Model Testing and Validation 

 In the previous section, we clearly specified the objective 

function, decision variables, and constraints of the Goal 

Programming model that we aim to test. The next step involves 

the testing of data. The generated simulated data should 

accurately reflect the characteristics of the real-world problem. 

Subsequently, we can proceed with the execution of the Goal 

Programming model using the simulated data. The solver will 

then determine the solution that either maximizes or minimizes 

the objective function while satisfying the given constraints. 

Finally, we will analyze the outputs of the Goal Programming 

model. 

In part 2.3.1, we set some variables, p1, p2, p3, p4 and p5 represent 

the batch value.  Rewards for each batch are shown in Table 1. 

Based on simulated data extracted from actual flight training 

data, the completion status of the students’ flight training 

courses is as TABLE 3: 

 

 

TABLE 3. Completed Flight Training Courses of Students 

Students Completed flight training courses 

s1 Not started learning flight courses 

s2 e1 e2 e3 e4 

s3 e1 e2 e3 e4 

s4 e1 e2 e3 e4 e5 e6 

s5 e1 

s6 e1 e2 e3 e4 e5 e6 

s7 Not started learning flight courses 

s8 e1 

s9 Not started learning flight courses 

s10 Not started learning flight courses 

The courses that military aviation academy require students to 

complete are listed in Table TABLE 4. Courses that Military Aviation 

Academy: 

TABLE 4. Courses that Military Aviation Academy 

 Require Students to Complete 

 e1 e2 e3 e4 e5 e6 e7 e8 

s1 2 0 0 0 0 0 0 0 

s2 0 0 0 0 2 2 0 0 

s3 0 0 0 0 2 3 0 0 

s4 0 0 0 0 0 0 2 2 

s5 0 1 2 2 0 0 0 0 

s6 0 0 0 0 0 0 2 2 

s7 2 0 0 0 0 0 0 0 

s8 0 1 2 2 0 0 0 0 

s9 1 2 0 0 0 0 0 0 

s10 1 2 0 0 0 0 0 0 

Assuming instructor i5, i6, i7 and i8 have the ability to drive 

leader aircraft. Supposing that it is best for all students and 

instructors not to exceed 3 sorties per day, and the number of 

aircraft available for deployment daily is 8. 

Using the Lingo platform, we can establish a testing 

environment and evaluate the model through simulations. All 

restrictions need to be verified one by one to ensure the program 

executes correctly and error-free, as shown in TABLE 5: 

TABLE 5. Test Results 

Test 

number 

Verification 

target 

The expected output 

result 
Test results 

1 
Total reward 

value 

The total reward value 

should be maximized 
---------- 

2 
Instructor and 
student daily 

flight sorties limit 

The sorties of each 
instructor and student 

should not exceed 3  

Some 

instructors 
have flown 

more than 3 

sorties 

3 
Student daily 

allocated subject 

sorties quantity 

All students are able to 
complete their assigned 

sorties 

Some students 

have not 

completed 
their task 

4 
Limitations on 

the order of flight 

courses 

Implementation 

sequence of the course 

meets the requirements 
in figure 1 

Meeting the 

constraints 

5 
Flight density 

restrictions 
In each batch of flights, 

the total number of 
Meeting the 
constraints 
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sorties should not 

exceed Mp. 

6 

The restrictions 

of formation 
course 

The number of sorties 

for lead aircraft is twice 
that of the wingman. 

Meeting the 

constraints 

7 

The restrictions 

of flight sorties 

for students and 
flight sorties for   

instructors 

In each batch, the 

number of flight sorties 

for students and the 
number of flight sorties 

for instructors are equal. 

Meeting the 

constraints 

8 

The restrictions 
for flight sorties 

for students in 

each batch 

In each batch, the 
number of flight sorties 

for students cannot 

exceed 1 

Meeting the 

constraints 

9 

The restrictions 
for flight sorties 

for instructors in 
each batch 

In each batch, the 
number of flight sorties 

for  each instructor 
cannot exceed 1 

Meeting the 

constraints 

Assuming each batch can accommodate a maximum of 8 

aircraft. By running the lingo program, a flight schedule was 

generated which can assign instructors and students to their 

respective batches. The resulting reward value was 83.29, and 

the arrangement of courses is shown in the TABLE 6: 

TABLE 6. The Arrangement Results of the Model Running 

 

 

 

 

 

 

 

 

 

In batch 4 and batch 5, i5, i6, i7 and i8 are responsible for piloting 

the leader aircraft of the formation. Based on the table above, it 

is evident that the implementation sequence of all students’ 

courses adheres to the requirements outlined in Figure 1. 

Additionally, high-value courses, specifically courses 1 and 2, 

are assigned to the initial two batches, while courses 6 and 7 are 

allocated to the final two batches. It is observed that no student 

or instructor appeared on both aircrafts at the same time during 

the same batch of flights. 

However, some of the soft constraints are not satisfied. For 

example, in Table 4, s3 is required to conduct e6 3 times, but the 

result is 2. Some instructors fly more than 3 sorties within a 

single day, such as i7 who flies 4 sorties, and i8 also completes 

4 sorties. 

Based on the results in Table 6, the generated training schedule 

has been found highly executable. In the schedule, each student 

is paired with only an instructor, and different individuals 

within the same batch appear only once. Additionally, 

important subjects are arranged early in the schedule. Also, 

within the same batch, the number of aircraft sorties does not 

exceed the prescribed limit. 

4. Conclusion Analysis and Outlook 

This article systematically introduces the application method of 

Goal Programming in the automatic scheduling of flight plans, 

using deviation decision variables to control constraints and set 

objective functions. The program's running results show that all 

hard constraints are met, but some soft constraints are not 

satisfied. However, this is more in line with the actual training 

situation. In real training scenarios, due to the multitude of 

limiting factors, it is inevitable that some constraints cannot be 

satisfied. The method proposed in this paper is quite flexible, 

allowing adjustments to be made between hard and soft 

constraints at any time. Additionally, the designed model can 

generate a feasible plan within a few seconds. In actual work 

situations, military staffs often spend several hours to formulate 

plans and they are very easy to make mistakes. This algorithm 

overcomes the above drawback and greatly improves the 

efficiency of plan formulation. 

This article also provides important basis for the development 

of the flight day plan for the Air Force aviation unit. The model 

in the article integrates algorithms and flight daily plans which 

can develop the plan formulation in a quantitative direction. The 

model proposed in this article can be further improved in the 

following aspects: 

• The process of using this model requires a large 

amount of actual data involving pilot flight intensity 

restrictions, mission implementation requirements and so on. 

The data may still contain some errors if input manually. 
Integrating the model into an advanced information 

management system or software can address this issue, 

thereby enhancing the model’s execution efficiency. 

• Aircraft types and training methods are different in 

each unit of the military, which leads to significant differences 

in the methods of planning. This is not conducive to 

communication between superiors and subordinates. A more 

versatile flight day planning software can be developed based 

on this model to overcome the shortcomings.  

The automatic generation of flight day plans in military aviation 

colleges is a development trend that involves the use of 

advanced technology and data analysis. This involves several 

aspects: 

• AI and Machine Learning: By employing machine 

learning algorithms and artificial intelligence, flight day plans 

can be generated automatically which can take into account 

multiple parameters such as weather conditions, aircraft 

availability, pilot schedules, mission requirements, and 

maintenance schedules. Furthermore, AI can optimize these 

plans by continuously learning from historical data and 

progressively enhancing its performance [15,16]. 

• Predictive Analytics: This involves using data, 

statistical algorithms, and machine learning techniques to 

identify the likelihood of future outcomes based on historical 

data. In the context of flight day planning, predictive analytics 

can anticipate potential disruptions, delays, or safety concerns, 

enabling better planning and risk management [17,18,19]. 

• Digital Twin Technology: This involves creating a 

digital replica of a physical system. In this case, it refers to the 

entire flight day operation. The digital twin enables simulation 

and analysis, optimizing flight day plans and anticipating 

potential issues in advance. 

• Blockchain Technology: Blockchain could also 

contribute to the automatic generation of flight day plans by 
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offering a secure, transparent, and tamper-proof record of all 

flight day planning activities. This implementation could 

result in a more efficient and reliable system. 

• Integration of IoT: IoT devices can provide real-time 

data on aircraft status, weather conditions, and other critical 

factors. This data can be integrated into the automatic 

generation of flight plans, resulting in more accurate and 

efficient planning.  
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