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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

An algorithm for automatically arranging flight
training plans

Pengfei SUN , Jia LIU, and Hao NIAN∗
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Abstract. With a continued strong pace of artificial intelligence, the way of formulating the flight day plan has a significant impact on the
efficiency of flight training. However, through extensive research, we find that the scheduling of flight days still relies on manual work in most
military aviation academies. This method suffers from several issues, including protracted processing times, elevated error rates, and insufficient
degree of optimization. This article provides a comprehensive analysis of automated flight scheduling using a goal programming algorithm and
details the implementation of the corresponding algorithm on the LINGO platform. The study enhances the flexibility and robustness of the
model by setting bias variables, wherein the flight courses for students and instructors can be automatically and reasonably scheduled.
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1. INTRODUCTION

Flight day planning is a crucial task for military aviation col-
leges. Several factors must be coordinated throughout the plan-
ning phase, such as student preferences, weather, instructor
availability, aircraft availability, and flight schedules [1]. These
plans guarantee the safe and efficient provision of practical flight
training and experience to students. Overall, proper planning and
organization of flight day plans are essential for the effective
training and development of aviation students [2].

However, our investigation in various military aviation
academies shows that, in some aviation schools of less developed
countries, due to economic and technological development rea-
sons, the flight planning process still mostly relies on traditional
tools, such as Excel. In some large aviation schools, such as the
United States Air Force Academy, large software like AFORMS
or Flight Schedule Pro is used for crew and flight scheduling
when making the daily flight schedule. However, the software is
difficult to operate and has a complex interface, which limits its
performance and usage scope. Moreover, the model embedded
in the software lacks flexibility and requires constant parame-
ter adjustments to adapt to changing training scenarios. At this
time, a large amount of manpower is still required to rectify the
schedule. In such situations, the lack of human resources can
lead to increased costs and an overall decline in organizational
performance.

spfsciences@The topic of automatic arrangement of flight
day plans has attracted attention in recent years. Naval Post-
graduate School, located in California, is renowned for its ad-
vanced national defense research and education. In this school,
scholar Robert F. Dell has long been committed to research
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on flight day planning and operations. In 2018 and 2019, he
guided two theses, which optimized the tactical and weapons
flight training process for naval air station trainees based on in-
teger programming, creating a daily schedule within a one-week
timeframe [3, 4].

Other researchers have also analyzed the scheduling of flight
training programs from different perspectives. In 2019, Sofi Su-
vorova and Ana Novak described how a Markov decision process
(MDP) could be used to minimize costs and control recruitment
across the training continuum of helicopter pilots and optimize
the aviation training schedules for the Royal Australian Navy [5].
This method possesses a certain level of robustness. Jay Foraker
et al. discussed the problem of creating daily flight schedules
for two-week training detachments of U.S. Navy Strike Fighter
Squadron 106 (VFA-106) in Key West, Florida in 2021 [6]. They
formulated a binary integer program to automate the scheduling
of flight events to maximize daily events scheduled. In 2022,
Shuangfei Xu and Wenhao Bi introduced a multi-level opti-
mization model of flight test task allocation and sequencing to
improve flight test efficiency, where the flight test period was the
main optimization objective, and a penalty function evaluating
tasks testing dates was the minor optimization objective [7].

Many scholars have conducted systematic research on the
optimization methods of military-related flight day training
plans [8,9]. However, the establishment of flight training sched-
ules needs to consider various complex factors, and setting too
many hard constraints in the model may lead to diminished
adaptability and robustness. Moreover, if the constraints are too
strict, it might be difficult to find effective solutions. To address
these issues, this paper presents an optimization model for daily
flight planning based on goal programming [10, 11].

The model in this article involves eight flying instructors, ten
students, and eight military flight training courses. The algo-
rithm can efficiently and systematically arrange these elements
in a specific order. Lingo software is used to analyze and pro-
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cess the relevant data, by which the researchers can identify
patterns, trends, and relationships within the data that may not
be immediately apparent.

Based on the analysis above, there is still a significant research
gap in the field of automated flight plan scheduling [12]. The
findings of this study can be applied to optimize flight day plans
for military aviation academies and enhance the efficiency of
daily flight operations. This paper focuses on the actual training
situation of military aviation academies and a more flexible and
adaptive goal programming method was adopted. We allocate
a certain amount of reward points to students who complete
specific flight training courses and add up the reward points of
all students. To enhance the understanding of the model, we
begin by introducing the principles and assumptions underlying
the model settings.

2. OPTIMIZATION MODEL FOR FLIGHT DAY TRAINING
PLAN

2.1. Principles of goal programming

Goal programming, a special type of linear programming, is a
mathematical method used for decision analysis involving mul-
tiple objectives to solve practical problems in economics, the
military, and other domains that linear programming cannot ad-
dress. It aims to minimize the deviation of the objectives from
the specified values and takes the weighted sum of the objectives
as the final objective function [10].

The flight day plan can be refined as a multi-objective
decision-making problem. When formulating the flight day plan,
it is essential to consider not only the completion goals of the
flight missions but also various factors such as aircraft, person-
nel, and the sequence of tasks. These objectives are often con-
tradictory which poses challenges for balancing multiple goals
to maximize training efficiency. In this case, goal programming
offers a robust solution to this matter.

In contrast to linear programming, the objective function of
goal programming does not seek the maximum or minimum
value but seeks the gap between these goals and the expected
outcomes. The smaller the gap, the higher the possibility of
achieving the goal. In goal programming, there are two types of
gaps: exceeding the goal and not meeting the goal. We gener-
ally use 𝑑+ to represent the gap exceeding the goal and 𝑑− to
represent the gap not meeting the goal. One of 𝑑+ and 𝑑−must
be zero, or both are zero. When the goal is consistent with the
expected outcome, both are zero, i.e. there is no gap.

Hence, 𝑑+ and 𝑑− satisfy the condition below:

𝑑+× 𝑑− = 0. (1)

Thus, in goal programming, we will encounter two different
types of constraints: hard constraints and soft constraints. Hard
constraints are those that must be satisfied, which is constant
with that of linear programming. In this situation, we do not
need 𝑑+ and 𝑑− to set constraints or objectives.

Soft constraints are those that can be violated. However, these
constraints usually lead to an increase in some costs. For in-
stance, we may wish for the number of airplanes flying at the

same time to not exceed a certain specific number, but under
certain specific circumstances, this condition may not be met.
Then 𝑑+ and 𝑑− should be used to set constraints and balance
multiple goals in three scenarios:
1. The requirement to meet the target value, meaning both

positive and negative deviation variables should be as small
as possible:

min 𝑧 = 𝑑+ + 𝑑− . (2)

2. The requirement not to exceed the target value, meaning the
positive deviation variable should be as small as possible:

min 𝑧 = 𝑑+. (3)

3. The requirement to exceed the target value, where the excess
is unlimited, but the negative deviation variable should be
as small as possible:

min 𝑧 = 𝑑− . (4)

Assuming there are a total of 𝑞 biases, the objective function is:

min 𝑧 =
𝑞∑︁
𝑘=1

𝑑−
𝑘 +

𝑞∑︁
𝑘=1

𝑑+𝑘 . (5)

Based on the above analysis, the objective function contains
all 𝑑+ and 𝑑− , then greater flexibility can be demonstrated by
continually adjusting 𝑑+ and 𝑑− . That is, we can attach or re-
move 𝑑+ and 𝑑− to achieve mutual conversion between hard
constraints, soft constraints, and the objective function. There-
fore, it transforms the hard-verse-soft problem into a convertible
issue.

In actual flight training, there are both hard constraints and
soft constraints. The following conditions must be met, namely
hard constraints:
• Matching of personnel and aircraft

During the same period, a student or instructor cannot be
present in two aircraft at the same time. During a teaching
session, one instructor can only match with one student. In
formation flight missions, one lead aircraft must be matched
with two wingmen.
• Sequence of course execution

Students have strict sequence restrictions when carrying out
flight subjects, which are clearly explained in the flight training
syllabus. A student can only proceed to the next flight subject
after completing the previous one.
• Aircraft quantity limitation

The total number of aircraft used by all pilots in the same
batch must not exceed the number of available aircraft. If the
number of aircraft is exceeded, the flight plan cannot be executed
normally.

The following are soft constraints:
• Control of flight density

Before formulating each flight plan, it is necessary to desig-
nate the number of sorties each student needs to complete for
each subject, and these indicators should be achieved as much as
possible. Additionally, due to airspace restrictions, the number
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of aircraft flying in the same batch should ideally not exceed the
specified indicators. However, due to the complex nature of the
actual flight environment, the above indicators may not be met.
• Maximizing overall benefits

The learning progress and training duration can vary for each
individual based on factors such as aptitude, dedication, and the
specifics of the training program. However, it is important to
prioritize the overall training benefits rather than try to estimate
every aspect. To maximize the overall benefits, it is crucial
to identify clear goals and determine which specific benefits
should be maximized. This way, efforts, and resources can be
concentrated accordingly [13, 14].

Moreover, this article also presents the following assump-
tions, based on the actual situation of military aviation acade-
mies.
• Due to the unique nature of flight training, it is generally

assumed that one instructor can only teach one student at
a time. This approach improves the efficiency of flight in-
struction.

• Unexpected circumstances can cause disruptions to military
flight training, including bad weather, technical problems,
and safety mishaps, political or military developments. The
unexpected aspects stated above are not considered in this
essay.

• Students in flight must follow the curriculum timetable, mov-
ing on to the subsequent lesson only after finishing the pre-
ceding ones in a flying day.

2.2. Sets, parameters, and decision variable description

The following notations are defined before the presentation of
the mathematical model.
Sets
𝐸 set of flight courses, 𝑒 ∈ 𝐸

𝐸𝐹 set of formation courses, 𝑒 𝑓 ∈ 𝐸𝐹

𝑆 set of students, 𝑠 ∈ 𝑆

𝐼 set of instructors, 𝑖 ∈ 𝐼

𝑃 set of a batch of aircraft released, 𝑝 ∈ 𝑃

𝐼𝐸𝐹 set of teachers who possess the ability to fly
a leader aircraft 𝑖𝑒 𝑓 ∈ 𝐼𝐸𝐹

𝑅 ⊂ 𝐸 ×𝐸 (𝑒′, 𝑒) set of two courses that course 𝑒′ is in front
of course 𝑒

𝐶𝑆 set of courses completed by student 𝑠
Parameters
𝑣𝑒 the execution values of course 𝑒 in the first

batch
𝑟𝑒𝑝 the reward value of course 𝑒 in batch 𝑝

IL counts the instructor’s daily flight course
sorties limit

SL counts the student’s daily flight course sor-
ties limit

𝐸𝑠 the number of sortie allocations per student
each day, 𝑠 ⊂ 𝑆

𝑀𝑝 the maximum number of aircraft that can be
flown in batch 𝑝, 𝑝 ⊂ 𝑃

𝑇𝑒 flight time for course 𝑒, 𝑒 ⊂ 𝐸

Decision variables
𝑋𝑠𝑒𝑝 if course 𝑒 of student 𝑠 has been arranged in batch 𝑝,

the value is 1, otherwise the value is 0
𝑌𝑖𝑒𝑝 if the course 𝑒 of instructor 𝑖 has been arranged in

batch 𝑝, the value is 1, otherwise, the value is 0, 𝑖 ∈ 𝐼𝑒

𝐿𝑖𝑒𝑝 if the task of flying a leader aircraft was assigned to
instructor 𝑖 in batch p to formation course 𝑒, the value
is 1, otherwise, the value is 0, 𝑖 ∈ 𝐼𝐸𝐹 , 𝑒 ∈ 𝐸𝐹

𝑑+, 𝑑 − the gap between the goals and the expected outcomes

2.3. Establishment of an objective function

2.3.1. Soft constraints setting

The helicopter training syllabus at a military aviation academy
comprises eight subjects. These courses are familiarization
flight (FAM), visual flight (VF), instrument flight (IF), low-level
flight (LLF), boundary flight (BF), formation flight (FORM),
search and rescue operation flight (SROF) and reconnaissance
and patrol flights (RPF).

Familiarization flight (FAM) refers to a flight taken by a pi-
lot or crew member to become familiar with a specific aircraft,
route, or operating procedure. These flights are often conducted
before a pilot starts flying a new type of aircraft or before oper-
ating in a new area. Visual flight (VF) refers to a type of flying
where pilots rely primarily on their visual observations to navi-
gate and control the aircraft. In visual flight, pilots typically fly
at lower altitudes and in good weather conditions. Instrument
flight (IF) refers to a type of flying where pilots rely solely on
the instruments in the aircraft cockpit to navigate and control the
aircraft, rather than visual references outside the aircraft. Based
on FAM, pilots require extensive practice in VF skills and IF to
enhance their proficiency in flying.

Low-level flight (LLF) requires special skills due to the in-
creased risks and challenges involved. Pilots must be able to
navigate obstacles while maintaining a safe and controlled flight
profile. Boundary flight (BF) refers to a specific flight maneuver
that involves flying at the boundary of the aircraft performance
envelope. Formation flight (FORM) is the practice of flying
multiple aircraft in a pre-determined arrangement and pattern.
The lead aircraft plays a crucial role in this practice, with the
lead pilot responsible for setting the pace, determining the flight
path, and providing instructions to the other aircraft in the for-
mation. These three courses can significantly enhance pilots’
overall capabilities.

First, it is necessary to set the initial reward values. Since the
fundamental courses are more important for students in the early
stages, the basic courses 𝑒1(FAM), 𝑒2(VF), 𝑒3(IF), and 𝑒4(LLF)
are given relatively high initial reward values; The transitional
courses 𝑒5(BF) and 𝑒6(FORM) should be assigned moderate
initial reward values. Similarly, we set lower initial values to
𝑒7(SROF) and 𝑒8(RPF).

Assuming the eight flight courses are: 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6,
𝑒7, 𝑒8, the execution values of the course items in the first
batch are 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, respectively, with 𝑛𝑝

representing the batch number. To ensure that the course can
achieve a higher reward value if completed earlier, we divide
the execution value of the first batch by the square root of the
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batch. Square root transformation is a method often used in data
processing and statistical analysis. Applying this transformation
can reduce the adverse effects of extreme values on the overall
analysis outcome. It can enhance the robustness of data analysis.
The relationship between the reward value of the course and the
change in the batch is as follows:

𝑟𝑒𝑝 =
𝑣𝑒√
𝑛𝑝

. (6)

Based on the relative importance of each course in this stage,
the value of the first batch of courses in this stage is set to be 4,
3, 2.8, 2.8, 2.2, 2.2, 2, 2. The value of the course in each batch
is shown in the Table 1.

Table 1
Rewards for each course that changes with batch number

1 2 3 4 5

𝑒1 4.00 2.83 2.31 2.00 1.79

𝑒2 3.00 2.12 1.73 1.50 1.34

𝑒3 2.80 1.98 1.62 1.40 1.25

𝑒4 2.80 1.98 1.62 1.40 1.25

𝑒5 2.20 1.56 1.27 1.10 0.98

𝑒6 2.20 1.56 1.27 1.10 0.98

𝑒7 2.00 1.41 1.15 1.00 0.89

𝑒8 2.00 1.41 1.15 1.00 0.89

The primary objective of the military flight academy is to
train students, and the quality of their training serves as the most
crucial measure of the academy’s training ability. Therefore, we
primarily assess the reward value of the enrolled courses. A core
goal of flight training is to enhance overall training effectiveness.
Specifically, the total reward values for all training activities
should be maximized. It is calculated as follows:∑︁

𝑒

∑︁
𝑠

∑︁
𝑝

𝑟𝑒𝑝 ∗ 𝑋𝑠𝑒𝑝 . (7)

Maximizing the overall reward value is our primary goal in
pursuit. However, within the framework of goal programming,
we must convert it into the following constraints:∑︁

𝑒

∑︁
𝑠

∑︁
𝑝

𝑟𝑒𝑝 ∗ 𝑋𝑠𝑒𝑝 + 𝑑−1 − 𝑑+1 = Inf. (8)

Inf is usually a relatively large number, and this value is not
specifically defined, here we take Inf = 1000. In formation fly-
ing, there is usually a designated leader aircraft that leads the
formation. The instructor in the leader aircraft sets the pace, di-
rection, and maneuvers for the rest of the formation. In addition
to formation flying, the main task of the instructor is to provide
flight guidance on the training plane. A three-aircraft formation
comprises a lead aircraft and two wingman aircraft. Usually,
only instructors occupy the lead aircraft, while other instructors
guide students in each wingman aircraft. In this scenario, the

total number of flights for an instructor in a flight day is deter-
mined by the combined number of flights in a leader aircraft
and the number of flights dedicated to other instructional pur-
poses, the maximum number of flight sorties for each instructor
is preferable not to exceed IL:∑︁

𝑝

∑︁
𝑒

𝑌𝑖𝑒𝑝 +
∑︁
𝑝

∑︁
𝑒

𝐿𝑖𝑒𝑝 + 𝑑−
𝑖2 − 𝑑+𝑖2 = 𝐼𝐿 ∀𝑖. (9)

For students, the sum of daily flight sorties is preferable not to
exceed SL: ∑︁

𝑝

∑︁
𝑒∉𝐶𝑆

𝑋𝑠𝑒𝑝 + 𝑑−𝑠3 − 𝑑+𝑠3 = 𝑆𝐿 ∀𝑠. (10)

Each student should preferably complete the assigned sorties
each day: ∑︁

𝑒∉𝐶𝑆

∑︁
𝑝

𝑋𝑠𝑒𝑝 + 𝑑−𝑠4 − 𝑑+𝑠4 = 𝐸𝑠 , ∀𝑠. (11)

Positive and negative deviations must meet the following con-
ditions:

𝑑−𝑛 × 𝑑+𝑛 = 0. (12)

2.3.2. Hard constraints setting

Setting the sequence of pilot flight training courses can vary
depending on the specific training program. Using a specific
aviation college as an example, we illustrate the implementation
sequence of flight training courses as shown in Fig. 1.

Fig. 1. The implementation sequence of flight training courses

During a flight day, the flight courses on the left will be
executed before the flight courses on the right. The courses in
the upper and lower positions can be executed simultaneously
without any specific order. As shown in Table 2, we should
read the column index in the first before reading the row index.
Therefore, set (VF, FAM) belongs to set 𝑅, and set (FAM, VF)
does not belong to set 𝑅. Both set (LLF, BF) and set (BF, LLF)
belong to set 𝑅. To quantify the order of the courses, we set the
matrix 𝑍𝑒′𝑒.

If 𝑍𝑒′𝑒 = 1, the course 𝑒′ can be set before the course 𝑒. If
𝑍𝑒′𝑒 = 0 and 𝑍𝑒𝑒′ = 0, there is no order for two courses that can
be sorted arbitrarily. Thus, the following inequality is used to
limit the course schedule:

𝑋𝑠𝑒𝑝 ∗ 𝑍𝑒𝑒′ ≤ 𝑋𝑠𝑒′ (𝑝+𝑛) ∗ 𝑍𝑒′𝑒

∀𝑠, 𝑒, 𝑒′, 𝑝, 𝑛 ∈ 𝑁, 𝑒′ ∉ 𝐶𝑆 , 𝑒 ∉ 𝐶𝑆 , 𝑛 ∈ 𝑁.
(13)
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Table 2
Course implementation sequence quantization chart

FAM VF IF LLF BF FORM SROF RPF

FAM 0 1 1 1 1 1 1 1

VF 0 0 0 1 1 1 1 1

IF 0 0 0 1 1 1 1 1

LLF 0 0 0 0 0 0 1 1

BF 0 0 0 0 0 0 1 1

FORM 0 0 0 0 0 0 1 1

SROF 0 0 0 0 0 0 0 0

RPF 0 0 0 0 0 0 0 0

The upper limit of flight sorties in each batch can vary depending
on various factors such as aircraft availability, crew availability,
operational requirements, and maintenance schedules. However,
for the sake of simplicity in calculations, we will set the number
of flights in each batch to 𝑀𝑝 , which represents the number of
available aircraft. In each batch, the instructor and the student
share the same aircraft, and the total number of flight sorties
includes the flight sorties of the students and lead aircraft flight
sorties of the instructors:∑︁

𝑠

∑︁
𝑒∉𝐶𝑠

𝑋𝑠𝑒𝑝 +
∑︁
𝑖∈𝐼𝐸𝐹

∑︁
𝑒

𝐿𝑖𝑒𝑝 ≤ 𝑀𝑝 ∀𝑝. (14)

In three-plane formation flight training, the number of sorties
for the lead aircraft is twice that of the wingman in each batch:∑︁

𝑠

𝑋𝑠𝑒𝑝 = 2
∑︁
𝑖∈𝐼𝐸𝐹

𝐿𝑖𝑒𝑝 ∀ 𝑒 ∈ 𝐸𝐹 , 𝑝. (15)

In mentoring courses, the number of flight sorties for instructors
is equal to that of students in each batch:∑︁

𝑠

𝑋𝑠𝑒𝑝 =
∑︁
𝑖∉𝐼𝐸𝐹

𝑌𝑖𝑒𝑝 ∀ 𝑒 ∉ 𝐶𝑆 , 𝑝. (16)

In a batch, each student can only take one course:∑︁
𝑒∉𝐶𝑆

𝑋𝑠𝑒𝑝 ≤ 1, ∀ 𝑠, 𝑝. (17)

Similarly, within a batch, an instructor can only guide one
course: ∑︁

𝑒

𝑌𝑖𝑒𝑝 +
∑︁
𝑒

𝐿𝑖𝑒𝑝 ≤ 1, ∀ 𝑖, 𝑝. (18)

Based on the analysis above, the objective function is as follows:

min = 𝑑−
1 +

∑︁
𝑖

𝑑+𝑖2 +
∑︁
𝑠

𝑑+𝑠3 +
∑︁
𝑠

𝑑−𝑠4, ∀ 𝑖, ∀ 𝑠. (19)

In the above equation, the smaller 𝑑−
1 and

∑
𝑠
𝑑−
𝑠4, the larger

reward values will be in equation (6). The smaller
∑
𝑖

𝑑+
𝑖2 and∑

𝑠
𝑑+
𝑠3, the smaller the various sortie counts will be.

3. MODEL TESTING AND VALIDATION

In the previous section, we specified the objective function, de-
cision variables, and constraints of the goal programming model
that we aim to test. The next step involves the testing of data. The
generated simulated data should accurately reflect the character-
istics of the real-world problem. Subsequently, we can proceed
with the execution of the goal programming model using the
simulated data. The solver will then determine the solution that
either maximizes or minimizes the objective function while sat-
isfying the given constraints. Finally, we will analyze the outputs
of the goal programming model.

In Section 2.3.1, we set some variables, 𝑝1, 𝑝2, 𝑝3, 𝑝4, and
𝑝5 represent the batch value. Rewards for each batch are shown
in Table 1.

Based on simulated data extracted from actual flight training
data, the completion status of the students’ flight training courses
is as Table 3.

Table 3
Completed flight training courses for students

Students Completed flight training courses

𝑠1 Not started taking flight courses

𝑠2 𝑒1 𝑒2 𝑒3 𝑒4

𝑠3 𝑒1 𝑒2 𝑒3 𝑒4

𝑠4 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑠5 𝑒1

𝑠6 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6

𝑠7 Not started taking flight courses

𝑠8 𝑒1

𝑠9 Not started taking flight courses

𝑠10 Not started taking flight courses

The courses that military aviation academies require students
to complete are listed in Table 4. Courses required by the Mili-
tary Aviation Academy.

Table 4
Courses required by the Military Aviation Academy required

for students to complete

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8

𝑠1 2 0 0 0 0 0 0 0

𝑠2 0 0 0 0 2 2 0 0

𝑠3 0 0 0 0 2 3 0 0

𝑠4 0 0 0 0 0 0 2 2

𝑠5 0 1 2 2 0 0 0 0

𝑠6 0 0 0 0 0 0 2 2

𝑠7 2 0 0 0 0 0 0 0

𝑠8 0 1 2 2 0 0 0 0

𝑠9 1 2 0 0 0 0 0 0

𝑠10 1 2 0 0 0 0 0 0
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Table 5
Test results

Test
number Verification target The expected output result Test results

1 Total reward value The total reward value should be maximized. –

2 Instructor and student daily flight sorties limit The sorties of each instructor and student should
not exceed three.

Some instructors have flown
more than three sorties.

3 Student daily allocated subject sorties quantity All students are able to complete their assigned
sorties.

Some students have not
completed their task.

4 Limitations on the order of flight courses Implementation sequence of the course meets the
requirements in Fig. 1. Meeting the constraints

5 Flight density restrictions In each batch of flights, the total number of sorties
should not exceed 𝑀𝑝 . Meeting the constraints

6 The restrictions of formation course The number of sorties for lead aircraft is twice
that of the wingman. Meeting the constraints

7 The restrictions of flight sorties for students and
flight sorties for instructors

In each batch, the number of flight sorties for
students and the number of flight sorties for in-
structors are equal.

Meeting the constraints

8 The restrictions for flight sorties for students in
each batch

In each batch, the number of flight sorties for
students cannot exceed one. Meeting the constraints

9 The restrictions for flight sorties for instructors in
each batch

In each batch, the number of flight sorties for each
instructor cannot exceed one. Meeting the constraints

Assuming instructors 𝑖5, 𝑖6, 𝑖7 and 𝑖8 can drive leader aircraft,
it is best for all students and instructors not to exceed three sorties
per day, and the number of aircraft available for deployment daily
is eight.

Using the Lingo platform, we can establish a testing envi-
ronment and evaluate the model through simulations. All re-
strictions need to be verified one by one to ensure the program
executes correctly and error-free, as shown in Table 5.

Assuming each batch can accommodate a maximum of eight
aircraft, by running the lingo program, a flight schedule was
generated which can assign instructors and students to their
respective batches. The resulting reward value was 83.29, and
the arrangement of courses is shown in Table 6.

Table 6
The arrangement results of the model running

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

𝑖3 𝑠1 𝑒1 𝑖1 𝑠1 𝑒2 𝑖3 𝑠2 𝑒5
𝑖5

𝑖3 𝑠2 𝑒6
𝑖7

𝑖1 𝑠2 𝑒6

𝑖2 𝑠7 𝑒1 𝑖2 𝑠7 𝑒2 𝑖1 𝑠3 𝑒5 𝑖1 𝑠3 𝑒6 𝑖2 𝑠8 𝑒6

𝑖4 𝑠9 𝑒1 𝑖8 𝑠9 𝑒2 𝑖4 𝑠5 𝑒4 𝑖4 𝑠4 𝑒7 𝑖3 𝑠4 𝑒7

𝑖5 𝑠10 𝑒1 𝑖4 𝑠6 𝑒2 𝑖6 𝑠8 𝑒4
𝑖6

𝑖2 𝑠5 𝑒6 𝑖3 𝑠6 𝑒8

𝑖6 𝑠5 𝑒2 𝑖5 𝑠5 𝑒3 𝑖2 𝑠9 𝑒3 𝑖8 𝑠8 𝑒6
𝑖8

𝑖6 𝑠5 𝑒6

𝑖7 𝑠8 𝑒2 𝑖6 𝑠8 𝑒3 𝑖5 𝑠1 𝑒3 𝑖7 𝑠6 𝑒8 𝑖4 𝑠3 𝑒6

𝑖8 𝑠2 𝑒5 𝑖7 𝑠3 𝑒5

In batch 4 and batch 5, 𝑖5, 𝑖6, 𝑖7 and 𝑖8 are responsible for
piloting the leader aircraft of the formation. Based on the table
above, it is evident that the implementation sequence of all
students’ courses adheres to the requirements outlined in Fig. 1.
Additionally, high-value courses, specifically courses 1 and 2,
are assigned to the initial two batches, while courses 6 and 7 are
allocated to the final two batches. It is observed that no student
or instructor appeared on both aircraft at the same time during
the same batch of flights.

However, some of the soft constraints are not satisfied. For
example, in Table 4, 𝑠3 is required to conduct 𝑒6 three times, but
the result is two. Some instructors fly more than three sorties
within a single day, such as the 𝑖7 performing four sorties, and
𝑖8 also completing four sorties.

Based on the results in Table 6, the generated training sched-
ule was found highly executable. In the schedule, each student is
paired with only an instructor, and different individuals within
the same batch appear only once. Additionally, important sub-
jects are arranged early in the schedule. Also, within the same
batch, the number of aircraft sorties does not exceed the pre-
scribed limit.

4. CONCLUDING ANALYSIS AND OUTLOOK

This article systematically introduces the application method of
goal programming in the automatic scheduling of flight plans,
using deviation decision variables to control constraints and
set objective functions. The program running results show that
all hard constraints are met, but some soft constraints are not
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satisfied. However, this is more in line with the actual training
situation. In real training scenarios, due to the multitude of
limiting factors, inevitably, some constraints cannot be satisfied.
The method proposed in this paper is quite flexible, allowing
adjustments to be made between hard and soft constraints at any
time. Additionally, the designed model can generate a feasible
plan within a few seconds. In actual work situations, military
staff often spend several hours formulating plans and they easily
make mistakes. This algorithm overcomes the above drawback
and greatly improves the efficiency of plan formulation.

This article also provides an important basis for the develop-
ment of the flight day plan for the Air Force aviation unit. The
model in the article integrates algorithms and flight daily plans
which can develop the plan formulation in a quantitative direc-
tion. The model proposed in this article can be further improved
in the following aspects:
• The process of using this model requires a large amount

of actual data involving pilot flight intensity restrictions,
mission implementation requirements, and so on. The data
may still contain some errors if input manually. Integrating
the model into an advanced information management system
or software can address this issue, thereby enhancing the
model execution efficiency.

• Aircraft types and training methods are different in each unit
of the military, which leads to significant differences in the
methods of planning. This is not conducive to communica-
tion between superiors and subordinates. A more versatile
flight day planning software can be developed based on this
model to overcome the shortcomings.

The automatic generation of flight day plans in military avi-
ation colleges is a development trend that involves the use of
advanced technology and data analysis. This involves several
aspects:
• AI and machine learning: By employing machine learning

algorithms and artificial intelligence, flight day plans can be
generated automatically which can take into account mul-
tiple parameters such as weather conditions, aircraft avail-
ability, pilot schedules, mission requirements, and mainte-
nance schedules. Furthermore, AI can optimize these plans
by continuously learning from historical data and progres-
sively enhancing its performance [15, 16].

• Predictive analytics: This involves using data, statistical al-
gorithms, and machine learning techniques to identify the
likelihood of future outcomes based on historical data. In
the context of flight day planning, predictive analytics can
anticipate potential disruptions, delays, or safety concerns,
enabling better planning and risk management [17–19].

• Digital twin technology: This involves creating a digital
replica of a physical system. In this case, it refers to the en-
tire flight day operation. The digital twin enables simulation
and analysis, optimizing flight day plans and anticipating
potential issues in advance.

• Blockchain technology: Blockchain could also contribute to
the automatic generation of flight day plans by offering a
secure, transparent, and tamper-proof record of all flight day
planning activities. This implementation could result in a
more efficient and reliable system.

• Integration of IoT: IoT devices can provide real-time data on
aircraft status, weather conditions, and other critical factors.
This data can be integrated into the automatic generation of
flight plans, resulting in more accurate and efficient plan-
ning.

REFERENCES

[1] S. Telenyk, G. Nowakowski, and O. Pavlov, “Highly efficient
scheduling algorithms for identical parallel machines with suf-
ficient conditions for optimality of the solutions,” Bull. Pol.
Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148939, 2024, doi:
10.24425/bpasts.2024.148939.

[2] A. Paszkiewicz, C. Ćwikła, and M. Bolanowski, “Multifunctional
clustering based on the LEACH algorithm for edge-cloud con-
tinuum ecosystem,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1,
p. e147919, 2024, doi: 10.24425/bpasts.2023.147919.

[3] R.J. Slye and R. Dell, “Optimizing training event schedules at
naval air station Fallon,” MSc Thesis, Naval Postgraduate School,
Monterey, California, 2018.

[4] M. Meditz and R. Dell, “Optimizing training event schedules at
naval air station Kingsville,” MSc Thesis, Naval Postgraduate
School, Monterey, California, 2019.

[5] S. Suvorova and A. Novak, “The Use of Markov Decision Pro-
cesses for Australian Naval Aviation Training Schedules,” Mil.
Oper. Res., vol. 24, no. 2, pp. 31–46, 2019, doi: 10.5711/108
2598324231.

[6] J. Foraker, G. Lazzaro, and P. Nelson, “Scheduling of Daily
Flight Training for a United States Navy Strike Fighter Squadron
Detachment,” Mil. Oper. Res., vol. 26, no. 2, pp. 5–24, 2021, doi:
10.5711/1082598326205.

[7] S. Xu and W. Bi, “Optimization of flight test tasks allocation and
sequencing using genetic algorithm,” Appl. Soft Comput., vol.
115, p. 108241, 2022, doi: 10.1016/j.asoc.2021.108241.

[8] J.X. Han, M.Y. Ma, and K. Wang, “Product modeling design
based on genetic algorithm and BP neural network,” Neural Com-
put. Appl., vol. 33, pp. 4111–4117, 2023, doi: 10.1007/s00521-
022-08196-z.

[9] M. Tao, L. Ma, and Y. Ma. “Flight schedule adjustment for hub
airports using multi-objective optimization,” J. Intell. Syst., vol.
30, no. 6, pp. 931–946, 2021, doi: 10.1515/jisys-2020-0114.

[10] R.K. Pati, P. Vrat, and P. Kumar, “A Goal Programming model
for paper recycling system,” Omega, vol. 36, no. 3, pp. 405–417,
2008, doi: 10.1016/j.omega.2006.04.014.

[11] B. Aouni and O. Kettani, “Goal Programming model: A glorious
history and a promising future”, Eur. J. Oper. Res., vol. 133, no. 2,
pp. 225–231, 2001, doi: 10.1016/S0377-2217(00)00294-0.

[12] A. Teymouri and H. Sahebi, “Airline operational crew-aircraft
planning considering revenue management: A robust optimiza-
tion model under disruption,” Int. J. Ind. Eng. Comput., vol. 14,
no. 2, pp. 381–402, 2023, doi: 10.5267/j.ĳiec.2022.12.003.

[13] L. Chen, S. Han, C. Du, and Z. Luo, “A real-time integrated
optimization of the aircraft holding time and rerouting under risk
area,” Ann. Oper. Res., vol. 310, pp. 7–26, 2022, doi: 10.1007/
s10479-020-03816-0.

[14] H.Y. Jeong, B.D. Song, and S. Lee, “Optimal scheduling
and quantitative analysis for multi-flying warehouse schedul-
ing problem: Amazon airborne fulfillment center,” Transp.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 1, p. e151672, 2025 7

https://doi.org/10.24425/bpasts.2024.148939
https://doi.org/10.24425/bpasts.2023.147919
https://doi.org/10.5711/1082598324231
https://doi.org/10.5711/1082598324231
https://doi.org/10.5711/1082598326205
https://doi.org/10.1016/j.asoc.2021.108241
https://doi.org/10.1007/s00521-022-08196-z
https://doi.org/10.1007/s00521-022-08196-z
https://doi.org/10.1515/jisys-2020-0114
https://doi.org/10.1016/j.omega.2006.04.014
https://doi.org/10.1016/S0377-2217(00)00294-0
https://doi.org/10.5267/j.ijiec.2022.12.003
https://doi.org/10.1007/s10479-020-03816-0
https://doi.org/10.1007/s10479-020-03816-0


P. Sun, J. Liu, and H. Nian

Res. Part C-Emerg. Technol., vol. 143, p. 103831, 2022, doi:
10.1016/j.trc.2022.103831.

[15] I. Kabashkin and B. Misnevs, “Artificial Intelligence in Aviation:
New Professionals for New Technologies,” Appl. Sci., vol. 13,
no. 21, p. 116600, 2023, doi: 10.3390/app132111660.

[16] D. Gui, M. Li, and Z. Huang, “Optimal aircraft arrival scheduling
with continuous descent operations in busy terminal maneuver-
ing areas”, J. Air Transp. Manag., vol. 107, p. 102344, 2023, doi:
10.1016/j.jairtraman.2022.102344.

[17] M. Tavana, H. Kian, and K. Govindan, “A comprehensive
framework for sustainable closed-loop supply chain network de-

sign,” J. Clean. Prod., vol. 332, no. 15, p. 129777, 2022, doi:
10.1016/j.jclepro.2021.129777.

[18] T. Pawlak and B. Górka, “Continuous update of business pro-
cess trees using Continuous Inductive Miner,” Bull. Pol. Acad.
Sci. Tech. Sci., vol. 71, no. 1, p. e143551, 2023, doi: 10.24425/
bpasts.2022.143551.

[19] H.Y. Kang and A.H.I. Lee, “An evolutionary genetic algorithm
for a multi-objective two-sided assembly line balancing problem:
a case study of automotive manufacturing operations,” Qual.
Technol. Quant. Manag., vol. 20, no. 1, pp. 66–88, 2023, doi:
10.1080/16843703.2022.2079062.

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 1, p. e151672, 2025

https://doi.org/10.1016/j.trc.2022.103831
https://doi.org/10.3390/app132111660
https://doi.org/10.1016/j.jairtraman.2022.102344
https://doi.org/10.1016/j.jclepro.2021.129777
https://doi.org/10.24425/bpasts.2022.143551
https://doi.org/10.24425/bpasts.2022.143551
https://doi.org/10.1080/16843703.2022.2079062

	INTRODUCTION
	 Optimization model for flight day training plan
	Principles of goal programming
	Sets, parameters, and decision variable description
	 Establishment of an objective function
	Soft constraints setting
	Hard constraints setting


	Model testing and validation
	Concluding analysis and outlook

