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Abstract
Accurate information about the vehicle state such as sideslip angle is critical for both advanced assisted
driving systems and driverless driving. These vehicle states are used for active safety control and motion
planning of the vehicle. Since these state parameters cannot be directly measured by onboard sensors, this
paper proposes an adaptive estimation scheme in case of unknown measurement noise. Firstly, an estimation
method based on the bicycle model is established using a square-root cubature Kalman filter (SQCKF), and
secondly, the expectation maximization (EM) approach is used to dynamically update the statistic parameters
of measurement noise and integrate it into SQCKF to form a new expectation maximization square-root
cubature Kalman filter (EMSQCKF) algorithm. Simulations and experiments show that EMSQCKF has
higher estimation accuracy under different driving conditions compared to the unscented Kalman filter.
Keywords: vehicle state estimation, square-root cubature Kalman filter, measurement noise, expectation-
maximization method.

1. Introduction

With the advancement of intelligent vehicle technology, the significance of advanced driver
assistance systems, such as electronic stability control systems and collision avoidance systems,
among active safety systems is progressively escalating. Ensuring optimal performance of these life-
saving systems necessitates a precise comprehension of the vehicle motion state [1]. Unfortunately,
some states such as sideslip angle and longitudinal velocity cannot be directly measured using in-
vehicle sensors [2]. Consequently, there is a pressing need for reliable online estimation algorithms.

Kinematics-based approaches, commonly employing diverse sensor measurements, have found
extensive application in vehicle state estimation. One such approach is the utilization of data
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from the Global Positioning System (GPS) to estimate the states like the sideslip angle and tire
cornering stiffness [3]. Similar studies such as [4, 5] have also demonstrated that this type of
method has higher estimation accuracy when the vehicle is in linear operating conditions. Even
though kinematics-based methods are easy to be implemented, they are vulnerable to sensor error,
potential sensor failures, and the risk of GPS malfunctions. Furthermore, their effectiveness is
hampered by either low update frequency or high cost associated with GPS equipment [6]. In
response to the challenges posed by kinematics-based estimation methods, numerous experts have
advocated for dynamic-based state estimation approaches. These methods typically necessitate
information on vehicle inertial parameters and tire model parameters. Methods that utilize these
dynamics models in combination with advanced filtering are receiving increasing attention. For
example, the Kalman filter was utilized to predict the roll angle and sideslip angle [7]. Due to
the fact that the traditional Kalman filter is primarily designed for linear problems, whereas the
Extended Kalman Filter (EKF) excels in addressing nonlinear filtering challenges, and considering
the inherent complexity of a vehicle as a nonlinear system, methodologies based on EKF have been
extensively employed for vehicle state estimation. Exemplary instances include the application
of EKF for the estimation of sideslip angle [8] and tire forces [9], as well as the estimation of
other vehicle states leveraging tire force information [10]. To enhance the adaptability of the
EKF, some improved variants, such as the variable structure EKF [11] and interactive multiple
model EKF [12], have proven to be effective estimation methods. Concurrently, the H-infinity
EKF designed to accommodate noise uncertainties [13] has also been developed for the estimation
of vehicle speed and mass parameters.

Due to its superior performance in handling nonlinear filtering challenges, the Unscented
Kalman Filter (UKF) often outperforms the EKF in terms of estimation accuracy of vehicle state.
Examples include the double UKF [14] and the adaptive UKF [15,16]. Additionally, estimating
longitudinal velocity while considering the impact of tire deformation is an effective method to
enhance estimation accuracy [17]. To further enhance the estimation accuracy, a hybrid UKF [18]
and a variable structure UKF [19] as well as a weight fusion UKF [20] have been proposed. To
enhance the adaptive nature of the algorithm, the interactive multi-model UKF is also a worthwhile
research direction [21]. The UKF is proficient at enhancing the estimation performance of nonlinear
systems; however, when dealing with certain high-dimensional nonlinear dynamical systems,
stability may be a concern. The Cubature Kalman Filter (CKF) adopts a numerical integration
approach for Gaussian filters and it surpasses the UKF in numerical stability and estimation
performance. Therefore, CKF is promising for vehicle state estimation [22]. Addressing the
challenge posed by unknown noise, robust CKFs have been introduced to improve estimation
performance [23–25]. Furthermore, higher-order CKFs have been employed to predict vehicle
states [26]. The estimation performance can also be effectively improved by dynamically updating
the measurement noise matrix of the CKF using fuzzy logic systems [27]. Some researchers
have taken a model adaptation approach to enhance the estimation accuracy. The interactive
multi-model CKF [28] fuses the results from different models to enhance overall accuracy.
Furthermore, the square-root CKF (SQCKF) exhibits several advantages over the traditional
CKF. Firstly, it enhances numerical stability by representing the covariance matrix in the square
root (SR) form. Unlike CKF, SQCKF avoids the Cholesky decomposition. Additionally, SQCKF
tends to be more computationally efficient, especially in large-scale systems or high-dimensional
state spaces. Considering the performance advantages of SQCKF, this paper utilizes SQCKF for
vehicle state estimation. In addition, considering the uncertainty of measurement noise, a noise
covariance online updating algorithm based on expectation maximization (EM) is designed, which
is embedded in the SQCKF to form the EMSQCKF for estimating vehicle state. The special
contributions of this paper are listed below:
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1. A SQCKF-based estimator based on in-vehicle sensors is designed to simultaneously predict
sideslip angle, yaw rate, and vehicle speed. The estimation performance of the proposed
method outperforms the conventional UKF and also saves estimation costs by avoiding the
utilization of additional sensors.

2. Considering the effect of measurement noise, an EM algorithm is used to optimize the
performance of the SQCKF, and by combining the two to form a new EMSQCKF, it is
possible to achieve more accurate estimation with unknown noise.

3. Simulations and experiments show that EMSQCKF has the highest estimation accuracy
under different driving conditions compared to UKF and SQCKF and further show that
the proposed algorithm is insensitive to the changes in driving conditions and has a strong
adaptive capability.

The rest of this paper is organized as follows. The vehicle model and problem formation
are depicted in Section 2. The EMSQCKF is presented in Section 3. Experimental results and
discussion are shown in Section 4. Section 5 concludes the work.

2. Vehicle model and problem formation

We opt for the bicycle model as delineated in reference [25] to characterize the dynamic
response of the vehicle. The impact of air resistance and the suspension system is disregarded. The
front wheels share identical steering angles, while the rear wheels do not have steering capabilities.
Additionally, the centre of vehicle gravity is presumed to coincide with the origin of the coordinate
system. For a more detailed derivation of the bicycle model see [29]. Fig. 1 shows a schematic
representation of this model. The expressions are provided in the following equations.
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Fig. 1. Bicycle model.
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r +
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Iz
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(
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Ûvx = rβvx + ax, (3)

ay =
ak1 − bk2

mvx
r +

k1 + k2
m

β −
k1
m
δ, (4)

where β is sideslip angle, vx represents longitudinal vehicle velocity, vy represents lateral vehicle
velocity, k1 and k2 are the front and rear tire cornering stiffnesses, L is the wheelbase, m is vehicle
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mass, a and b are distances from the center of gravity to front axle and rear axle, ax and ay are
longitudinal and lateral acceleration, δ is front wheel steering angle, r is yaw rate. Fx and Fy

represent the longitudinal and lateral tire forces, respectively.
Based upon the formulations above, the discrete vehicle state-space model is articulated as

follows {
xk = f (xk−1, uk−1) +Wk−1
zk = h(xk, uk) + Vk

(5)

xk = [r, β, vx]T , zk = [ay]T , uk = [δ, ax]
T .

The discrete vehicle state-space model is given by:
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∆t


, (6)

where h is the measurement output function, ∆t is the sampling interval, Wk represents the process
noise with a covariance matrix Qk,Vk denotes the measurement noise with a covariance matrix
Rk , f is the state transition function, xk is the state vector, k signifies the sampling instant, the
measurement vector is denoted as zk , the input vector is uk .

3. Methodology

In this section, the comprehensive estimation flowchart utilizing EMSQCKF is pictured in
Fig. 2. Initially, sensor signals from the actual vehicle are simultaneously input into both EM
algorithm module and time update steps of SQCKF. Specifically, the input signal in the EM is
the lateral acceleration, while the SQCKF input signal mainly includes the front wheel angle and
longitudinal acceleration. The EM algorithm dynamically adjusts the measurement noise based on
the vehicle model, a priori statistic parameters of measurement noise, and the lateral acceleration
signal. Subsequently, the updated noise is integrated into the measurement update process of
SQCKF, creating EMSQCKF, which facilitates the simultaneous estimation of sideslip angle, yaw
rate, and vehicle velocity. The iterative intricacies of the internal EMSQCKF process are detailed
in Table 1.

3.1. SQCKF

The SQCKF [30] stands out as an optimal state estimator, harnessing the power of a deterministic
sampling mechanism. It not only involves the transmission of the SR of the prediction error
covariance but also integrates the crucial element of the posterior error covariance. This ensures
that the covariance matrix maintains both symmetry and positive definiteness [31].

The SQCKF unfolds through the following iterative steps:
1. Initialization:

x̂0 = E(x0), (7)

S0 = E[(x0 − x̂0)(x0 − x̂0)
T ], (8)

where E is mathematical expectation, S is the covariance matrix.
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Fig. 2. Scheme of the EMSQCKF.

Calculate cubature points ξi and weights ωi can be defined as follows:

ωi =
1
c
, ξi =

√
c
2
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· · ·
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
, i = 1, 2, · · · c, c = 2n, (9)

where variable c represents the quantity of cubature points, and n is the dimension of xk .∏
k−1/k−1

= Sk−1/k−1STk−1/k−1, (10)

Qk−1 = SQ/k−1STQ/k−1, (11)

Rk = SR/kSTR/k, (12)

Sk−1/k−1 is a SR of the covariance matrix,
∏

k−1/k−1
, SQ/k−1 is a SR of the Qk−1, and SR/k is

a SR of the Rk .
2. Time update:

Assess the cubature points
χ
(i)

k−1/k−1 = Sk−1/k−1ξi + x̂k−1/k−1. (13)

Update the propagated cubature points
χ
∗(i)

k/k−1 = f (χ(i)
k−1/k−1uk−1). (14)

Calculate x̂k/k−1 and Sk/k−1

x̂k/k−1 =

c∑
i=1

ωi χ
∗(i)

k−1/k−1, (15)

Sk |k−1 = Tria
( [
χ∗k/k−1, SQ/k−1

] )
. (16)
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Tria() is the QR decomposition of the matrix.

χ∗k/k−1 =
1
√

2n

[
χ
∗(1)
k−1/k−1 − x̂k/k−1, χ

∗(2)
k−1/k−1 − x̂k/k−1, · · · χ

∗(2n)
k−1/k−1 − x̂k/k−1

]
. (17)

3. Measurement update:
Assess the cubature points

χ
(i)

k/k−1 = Sk/k−1ξi + x̂k/k−1. (18)

Calculate the propagated cubature points

Z (i)
k/k−1 = h(χ(i)

k/k−1uk). (19)

Calculate the predicted vector ẑk/k−1

ẑk/k−1 =

c∑
i=1

ωiZ
(i)

k−1/k−1. (20)

Calculate the SR of the innovation covariance matrix Szz,k |k−1

Szz,k |k−1 = Tria
( [

ẑk/k−1, SR/k
] )
, (21)

Zk/k−1 =
1
√

2n

[
Z (1)
k/k−1 − ẑk/k−1, Z (2)

k/k−1 − ẑk/k−1, · · · Z
(n)

k/k−1 − ẑk/k−1

]
. (22)

Update the cross-covariance matrix Sxz,k |k−1

γk/k−1 =
1
√

2n

[
χ
(1)
k/k−1 − x̂k/k−1, χ

(2)
k/k−1 − x̂k/k−1, · · · χ

(2
k/k−1n) − x̂k/k−1

]
, (23)

Sxz,k |k−1 = γk/k−1ZT
k/k−1. (24)

Update the gain matrix Kk , the system state x̂k/k , and the covariance Sk |k

Kk =
( (

Sxz,k |k−1/Szz,k |k−1
)
/Szz,k |k−1

)
, (25)

x̂k/k = x̂k/k−1 + Kk(zk − Zk/k−1), (26)
Sk |k = Tria

( [
γk/k−1 − KkZk/k−1,KkSR/k

] )
. (27)

3.2. Updating noise using the expectation maximization method

Due to factors such as sensor aging, themeasurement data includes uncertainmeasurement noise.
Additionally, the diversity of vehicle types and sensors leads to varied statistical characteristics
of measurement noise. We posit that the unidentified noise parameters are represented by θ = R.
Employing the Maximum Likelihood criterion, we can subsequently initiate the estimation
procedure.

θML = arg maxLθ |Z1:k, (28)
where θML is the Maximum Likelihood estimation of θ.

Next, wewill leverage theMaximumExpectation algorithm framework to obtain ameasurement
noise adaptive update algorithm. We will then integrate this algorithm into the SQCKF, forming an
EMSQCKF. The EM method comprises two iterative stages: the Expectation step (E-step) and the
Maximization step (M-step). During the E-step, the algorithm calculates the anticipated value of
the likelihood function. In the M-step, the algorithm determines the values of the noise parameters
that maximize the likelihood function and utilizes them to update the measurement noise variance.
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1. E-step
Drawing upon the Markov properties as well as the definitions of the likelihood function
and conditional probability, we can decompose the likelihood function with respect to θ in
the following manner:

L (θ |Z1:k, x1:k) = p (Z1:k, x1:k |θ) =

p (X0 |θ)

k∏
j=1

p
(
xj |xj−1, θ

) k∏
j=1

p
(
Z j |xj, θ

)
, (29)

where Z1:k =
(
Z j

)k
j=1, x1:k =

(
xj

)k
j=1 and p(·) is the probability density function.

The formulation for the conditional probability of the initial state vector x0 ∼ N(x0, P0) is
as follows:

p (x0 |θ) = (2π)−
n
2 |P0 |

− 1
2 exp

{
−

1
2
(x0 − x̂0)

T P−1
0 (x0 − x̂0)

}
, (30)

where N(µ, Σ) denotes the Gaussian distribution with mean µ and variance Σ, n signifies the
dimension of state observation, and | · | denotes the determinant of the covariance matrix.
Based on (20), we can derive the following expression:

p
(
Z j |xj, θ

)
= (2π)−

d
2 |R|−

1
2 exp

{
−

1
2

(
Z j − ẑj/j−1

)T R−1 (
Z j − ẑj/j−1

)}
, (31)

where d is the dimension of data.
Based on (29)–(31), the corresponding log-likelihood function for (31) is as follows:

ln [L (θ |Z1:k, x1:k)] = C −
t
2

ln |R| −
1
2

k∑
j=1

(
Z j − ẑj/j−1

)T R−1 ©­­«Z j − ẑ j
j
−1

ª®®¬
C = −

kd + n
2

ln (2π) −
1
2

ln |P0 | −
1
2
(x0 − x̂0)

T P−1
0 (x0 − x̂0)

, (32)

where x0 and P0 are solely dependent on the initial state, it follows that C remains constant.
By computing the mathematical expectation of (32), we obtain:

J = E {ln [L (θ |Z1:k, x1:k)]} =

C −
τ

2
ln |R| −

1
2

k∑
j=1

E
{(

Z j − ẑj/j−1
)T R−1 (

Z j − ẑj/j−1
)}

(33)

2. M-step
The process of estimating parameters that maximize the function (33) is accomplished
through the utilization of the gradient descent algorithm.

∂J
∂R
= 0. (34)

Moreover, taking into account that the noise matrix is diagonal, we have

R̂k =
1
k

k∑
j=1

diag
{(

Z j − ẑj/j−1
) (

Z j − ẑj/j−1
)T }

. (35)
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To further facilitate real-time computation, we write it down in the recursive form

R̂k =
1
k

k−1∑
j=1

diag
[ (

Z j − ẑj/j−1
) (

Z j − ẑj/j−1
)T ]

+
1
k

diag
[ (

Z j − ẑj/j−1
) (

Z j − ẑj/j−1
)T ]

=
1
k

{
(k − 1) R̂k−1 + diag

[ (
Z j − ẑj/j−1

) (
Z j − ẑj/j−1

)T ]}
. (36)

Let (36) be embedded in the SQCKF forms EMSQCKF, which is iterated as follows in Table 1.

Table 1. EMSQCKF method.

Estimation Framework

Step 1: Set x̂0 = E(x0), Π0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

Assess cubature points ξi and weights ωi

ωi =
1
c , ξi =

√
c
2



©­­­­­­­­«

1

0
.
.
.

0

ª®®®®®®®®¬
· · ·

©­­­­­­­­«

0

0
.
.
.

1

ª®®®®®®®®¬

©­­­­­­­­«

−1

0
.
.
.

0

ª®®®®®®®®¬
· · ·

©­­­­­­­­«

0

0
.
.
.

−1

ª®®®®®®®®¬


, i = 1, 2, · · · c, c = 2n

Step 2: Time update

Assess the cubature points: χ(i)
k−1/k−1 = Sk−1/k−1ξi + x̂k−1/k−1

Update the propagated cubature points: χ∗(i)
k/k−1 = f (χ

(i)
k−1/k−1uk−1)

Update the predicted state x̂k/k−1 and Sk/k−1 :

x̂k/k−1 =
c∑
i=1

ωiχ
∗(i)
k−1/k−1, Sk |k−1 = Tria

( [
χ∗k/k−1, SQ/k−1

] )
χ∗
k/k−1 =

1√
2n

[
χ
∗(1)
k−1/k−1 − x̂k/k−1, χ

∗(2)
k−1/k−1 − x̂k/k−1, · · · χ

∗(2n)
k−1/k−1 − x̂k/k−1

]
Step 3: Measurement update

Assess the cubature points: χ(i)
k/k−1 = Sk/k−1ξi + x̂k/k−1

Calculate the propagated cubature points: Z(i)
k/k−1 = h(χ

(i)
k/k−1uk )

Calculate the predicted measurement vector: ẑk/k−1 =
c∑
i=1

ωiZ
(i)
k−1/k−1

Calculate the square-root of the innovation covariance matrix Szz,k |k−1

R̂k =
1
k

{
(k − 1) R̂k−1 + diag

[ (
Z j − ẑ j/ j−1

) (
Z j − ẑ j/ j−1

)T ]}
,

R̂k = SR/kS
T
R/k

, Szz,k |k−1 = Tria
( [
ẑk/k−1, SR/k

] )
Calculate the cross-covariance matrix Sxz,k |k−1 using (21)

The filter gain Kk and x̂k/k are calculated with (25) and (22).

Update the covariance Sk |k = Tria
( [
γk/k−1 − KkZk/k−1, KkSR/k

] )
Step 4: At the next iteration loop, Steps 2 to 3 will be repeated.
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4. Results and discussion

4.1. Simulation test

Simulation experiments are performed to validate the EMSQCKF. During the testing phase,
the output values from the Carsim software are compared with the estimated values derived from
SQCKF and UKF. In the simulation environment, the vehicle driving on a wet asphalt road (see
Fig. 3), performed a lane change at a velocity of 54 km/h. Figs. 4 and 5 illustrate the front wheel
angle and the lateral acceleration.

 

Fig. 3. Double lane change test on a wet asphalt road.

Fig. 4. Front wheel angle on a wet asphalt road.

Fig. 5. Lateral acceleration on a wet asphalt road.
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In Figure 6, the yaw rate estimation outcomes obtained through various approaches are
displayed. The red solid line represents the vehicle state output from the Carsim software, serving
as a reference value. Due to the dynamic nature of driving conditions and the ever-changing
operational environment of the sensors, the measurement noise parameters undergo continuous
variations. To compare the impact of dynamic noise updates, the noise parameters of the three
estimation algorithms are artificially set to deviate from their true values. Observably, SQCKF
exhibits superior performance over UKF, attributed to CKF’s numerical stability advantages and its
utilization of cubature points. Furthermore, EMSQCKF surpasses both SQCKF and UKF in terms
of estimation accuracy. Within EMSQCKF, the noise parameters undergo dynamic adjustments
via the EM method, allowing EMSQCKF to adapt to diverse operational conditions.

Fig. 6. Yaw rate on a wet asphalt road.

Table 2. RMSE of different methods on a wet asphalt road.

Symbol β vx r

UKF 0.0197 0.1255 0.1811
SQCKF 0.0169 0.0128 0.1194

EMSQCKF 0.0142 0.0092 0.0519

In Figs. 7 and 8, the estimation outcomes for vehicle velocity and sideslip angle are depicted,
respectively. Notably, among the three methods, EMSQCKF consistently yields the most accurate
estimation results. To provide a clearer representation of estimation errors, we employ the root
mean square error (RMSE) as a metric for assessing the estimation accuracy of different algorithms.
As presented in Table 2, EMSQCKF exhibits the smallest RMSE, signifying its superior estimation
accuracy. Furthermore, to verify the effectiveness of our algorithm on different road surfaces, we
also conducted tests on ice and snow roads, and the estimation results of different methods are
shown in Table 3. It can be seen that EMSQCKF also has the best estimation performance.

Table 3. RMSE of different methods on a snow-covered road.

Symbol β vx r

UKF 0.0372 0.1758 0.2655

SQCKF 0.0358 0.0214 0.1967

EMSQCKF 0.0331 0.0193 0.1274
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Fig. 7. Vehicle velocity on a wet asphalt road.

Fig. 8. Sideslip angle on a wet asphalt road.

4.2. Real vehicle test

To test the EMSQCKF approach, we initially gathered offline data from actual vehicle tests
carried out on dry asphalt roads. The test scenario is illustrated in Fig. 9. For safety considerations,
a steering robot is employed to execute steering manoeuvres during the real vehicle tests. The
use of a steering robot offers the advantage of executing continuous steering manoeuvres with
minimal fluctuation. Reference values, acquired from differential GPS measurements, are utilized
for comparison with estimates generated by various algorithms.

 

Fig. 9. Test vehicle on a dry asphalt road.
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The initial velocity is 73.7 km/h. Figs. 10 and 11 illustrate the front wheel angle and the lateral
acceleration. Fig. 11 depicts the yaw rate estimation outcomes from various methods. The yaw
rate estimation curve of the UKF deviates significantly from the reference value. The SQCKF
surpasses the UKF in terms of estimation accuracy, which is attributed to its enhanced numerical
stability and superior sampling. In the conducted test, an initial random value is assigned as the
measurement noise, followed by dynamic adjustments of the noise parameters using the EM
method. The results demonstrate that the EMSQCKF outperforms the standard SQCKF.

 

Fig. 10. Front wheel angle in the real vehicle test.

 

Fig. 11. Lateral acceleration in the real vehicle test.

 

Fig. 12. Yaw rate in the real vehicle test.
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Figures 13 and 14 present the outcomes of different methods for predicting vehicle speed and
sideslip angle. In line with the yaw rate estimation findings, the EMSQCKF consistently provides
the most accurate estimates compared to the other two methods. The results in Table 4 underscore
the highest performance of the EMSQCKF, showcasing significantly lower RMSE values. This
underscores the efficacy of EMSQCKF in precisely estimating the vehicle states. Moreover, the
proposed algorithm exhibits optimal estimation performance in both simulation and real vehicle
experiments, underscoring its strong adaptability to variations in driving conditions.

Fig. 13. Vehicle velocity in the real vehicle test.

Fig. 14. Sideslip angle in the real vehicle test.

Table 4. RMSE of different methods in the real vehicle test

Symbol β vx r

UKF 0.0801 0.1861 0.6460

SQCKF 0.0551 0.0693 0.4288

EMSQCKF 0.0530 0.0364 0.2100

5. Conclusions

In this article, an EMSQCKF is proposed to estimate sideslip angle, yaw rate, and vehicle speed
in the presence of unknown measurement noise. Utilizing the EM method, the noise parameters
are dynamically updated, enabling the EMSQCKF to more accurately estimate the vehicle state
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amidst unknown noise. Test results demonstrate that the EMSQCKF exhibits superior estimation
accuracy compared to SQCKF and UKF in different driving conditions. This proposed method
effectively provides more precise control parameters to the assisted driving system in real driving
scenarios, contributing to enhanced vehicle driving safety.

Moreover, it is assumed in this study that vehicle model parameters are known in advance. In
practical situations, varying usage scenarios may lead to changes in inertial parameters, such as
vehicle mass, and online estimation of these parameters can further enhance the estimation accuracy.
As the model-based estimation is somewhat simplified, model accuracy may be compromised
under complex operating conditions. Therefore, exploring data-driven approaches for constructing
vehicle models represents a valuable avenue for future research.
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