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Starting from the kinematics integral equation, which can be considered as a formal
exact solution of the elasto-plastic homogenisation problem, a new version of the self
consistent modelling is proposed. Three methods of active slip system selection are
introduced and implemented in the self consistent code.

The predicted results as well as the calculation times are compared for different
methods. The time of calculation strongly depends on the criterion used to select active
systems. The ratio of five is found between the two extreme results. The developed model
allows one to determine the overall elasto-plastic properties of the polycrystalline material
but also the internal structure evolution described in the model by the grain shape,
crystallographic lattice orientation, second order internal stresses and critical resolved shear
stress for all slip systems.
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oraz naprężeniami krytycznymi systemów poślizgu.
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NOTATION 

The following conventions are used in this paper. Capital letters are applied to describe the overall 
(global) quantities, the lower cases correspond to the local variables and the "I" superscript is used for the 
averages for the I-th inclusion. Vectors and tensors are indicated by bold face symbols. The superimposed 
dot corresponds to time derivatives. The simple contraction of tensors is indicated with a single dot, the 
double dot corresponds to double contraction. 

In this work the following notation is used: 
A and A1 are the concentration tensors of velocity gradient, 
g1 = g1" + g1" is the local velocity gradient for the I-th inclusion, 
s" is its elastic part, 
l• is its plastic part, 
G = Ge+ G• describes the overall velocity gradient, 
H'9 is the single crystal hardening matrix, 
I and /I correspond to the local tangent properties, 
L is the overall tangent modulus tensor, 
L * is the Hill's constraint tensor, 
m9 and n• are the vectors describing slip systems, 
ń is the rate of the local nominal stress tensor, 
Ń indicates the rate of the overall nominal stress tensor, 
s• is the Schmid's factor for g-th slip system, 
Tu is the interaction tensor between the inclusions l and J, 
r is the modified G r e e n tensor, 
-r~, defines the critical resolved shear stress for the g-th slip system. 

1. Introduction 

Since the pioneer work of Tay 1 o r [1], the modelling of plastic behaviour of 
polycrystalline materials has undergone an important evolution. One can cite for 
instance the approach proposed be S a c h s [2] or the family of models based on the 
Ta y I o r' s idea with various modifications concerning the relaxation of some 
components of the stress or strain tensors, see for example [3, 4]. Excepting the 
crystallographic texture of the material, all these models neglect the granular 
structure of the polycrystal. A new way was opened by Kr 6 ner [5]. He was the 
first who introduced in mechanics (elasticity) a self consistent modelling of the 
inhomogeneous material properties. H i 11 [6] proposed an extension of this concept 
to the elasto-plasticity. The development of the self consistent approach is closely 
related to the fundamental work of Esh e 1 by [7] concerning the description of 
interactions between an ellipsoidal inclusion and surrounding matrix. This solution 
allows one to take into account in modelling the evolution of the polycrystal grain 
shape and orientation. 

The first applications of the self consistent scheme have been done by 
B ud i a n sky and W u [8], H u t ch i n so n [9, 10] and Ber v ei 11 er and 
Z a o u i [11] in the framework of small elastoplastic strain theory. I w a kum a and 
Nem at - N ass er [12] have proposed an extension of the H i 11 's self consistent 
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scheme to the case of finite elasto-plastic transformations and they applied the
obtained model to the 2 D situations. The more systematic and general approach,
based on the kinematic integral equation, has been developed by L i p i ń s k i and
Berveiller [13] and Lipiński [14] and successfully applied for the 3D
representative volume element under any large transformation loading path [15, 16].
Parallely, Wier z ba n o wski [17] has proposed an original version of the
Hill's model using Berveiller and Zaoui [11, 18] approximation of the
plastic accommodation phenomenon.

The extensive use of the self consistent modelling, for instance as a particular
constitute law included to Finite Element calculations, is restricted by an important
time consumption when dealing with this method. The time is spent particularly on
the choice of active slip systems and calculation of interaction tensors. The
significant improvement of the last point has been accomplished by Z a t tar i n,
Lipiński and Carma sol [19]. The choice of active slip systems during
a given load increment has remained an open and difficult question, especially in case
of Tay 1 or type modelling, for which the ambiguous combinations of slip systems
frequently arrive.

Tn this paper we discuss and compare three various methods of the active slip
system choice. The first one has been proposed and implemented by L i p i ń s k i
[14] in his original self consistent code. The second one has been developed by
Bac z mański [20, 21] and results from the common experience of the French
and Polish teams. The last one initially has been proposed by Leff e rs [22, 23] and
next improved and intensively used by Wier z ba n o wski et al. [17, 24, 25].

The present paper is divided into four parts. The next paragraph gives a brief
description of the slip system theory. Paragraph 3 recalls the basic equations of the
self consistent modelling, necessary to introduce the mentioned above three methods
of slip system choice. This problem is presented in paragraph 4. In the last part we
compare some results such as stress-strain curves, residual stresses, crystallographic
textures, obtained using the three methods of slip system selection. The calculation
times are also compared in this section.

2. Physical basis of the plasticity of metals at low temperature 

Today, it is commonly admitted that the plastic flow of metals at low
temperature is due to the dislocation motion. In 1958, Kr o ner [26] pro­
posed the continuum theory of dislocations based on the dislocation density
tensor introduced earlier by Nye [27]. Unfortunately, the continuum theory
of dislocations is not developed enough to describe the behaviour of a single
crystal. Some tentative of this kind of modelling have been done for instance
by K u b i n and C a n o v a [28] showing the importance of this approach
but their direct application to the polycrystal description still seems to be
unrealisable.

4 ~ Arch. Hutnictwa 
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Up till now the way which is habitually used corresponds to some kind of 
phenomenological homogenisation of the single crystal plastic flow. The theory is 
based on experimental observations of an important mobility of dislocations on 
surfaces commonly called slip systems. Outside of slip systems this mobility is 
practically unobservable. These slip systems are geometrically well defined for 
instance by M i 11 e r indices [ uvw] (hkl) and they can be described by two unit 
vectors n5 and ms. The vector n" is normal to the slip plane and vector ms indicates 
the slip direction. The external product of these two vectors is called the Schmid's 
factor S', It plays an important role in the description of the single crystal plasticity 

ss = ms@ n", (1) 

The dislocations' motion produces, on the meso or single crystal scale, a relative, 
irreversible gliding of the material volumes separated by a slip "s". The rate of gliding 
is characterised by a scalar y'. It can be shown that the kinematics of the plastic 
deformation is described by the linear combination of individual glides on the active 
slip systems 

NAS 

gP = L S'y'' 
s=l 

(2) 

where gP is the plastic part of the velocity gradient tensor and NAS states for 
Number of Active Systems. On the other hand, if one accepts the idea of Schmid, the 
plastic gliding can take place only when the resolved shear stress on the system "s" . 

.-s = ( O" . ns) . ms = (J : ss (3) 

reaches some critical value .-:, depending on the strain hardening state or disloca­ 
tions arrangement in the single crystal, i.e., 

(4) 

where o- in expression (3) is the Cauchy measure of the stress tensor. Let us assume 
that in the case of homogeneous multislip theory, i.e. when the spatial dislocations 
arrangement is not very pronounced, the hardening of the single crystal can be 
described by a hardening matrix H reflecting the interactions among dislocations on 
slip systems, such that 

NAS 
..:s = "\' Hsg •g 
~er ~ Y · 

g= 1 
(5) 

In practice, the interaction between two slip systems, say g and s (where at least 
one is supposed to be active) depends on the dislocation density and the relative 
orientations of slip systems. Consequently they can be divided with some approxi­ 
mation into two groups [29, 17]. 

a) the week hardening interactions, represented by the H w term in the hardening 
matrix, correspond to: 
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• self hardening of the active system itself, 
• the interaction of coplanar systems, 
• the cross-slip system interactions, 
• the interaction between systems with perpendicular slip directions, 
b) the strong hardening interactions, represented by Hs term, correspond to the 

remaining slip system configurations. 
Taking into account the above remarks, we can conclude that the hardening 

matrix can be constructed using two independent parameters, i.e. H w and the 
hardening anisotropy factor A = HsiHw.

In this work the linear hardening i.e., constant H-matrix was assumed. Using the 
self consistent model (described below) one can predict the evolution of dislocation 
density Q (where: Q ~ r~,) during elasto-plastic deformation. For a small equivalent 
strain i.e., Eeą < 0.8 the theoretical results show a very good agreement with the 
experimental ones obtained by analysis of the diffraction peak broadening. However 
for a large deformation the hardening matrix has to be modified in order to predict 
non-linear behaviour of the material [30]. In spite of the relatively rough approxi­ 
mations used to describe the single crystal behaviour, the above relations, when 
applied in the frame-work of scale transition theories, allow to predict complex 
material behaviours observed under experimental conditions corresponding to the 
presented restrictions, i.e. low temperature testing and homogeneous multislip 
deformation mechanism. 

3. The self consistent (SC) modelling 

The idea of the scale transition theory is used to study the material on at least 
two levels of observation. In case of polycrystalline materials these levels correspond 
to the single crystal (meso) scale and the global (macro) or representative volume 
element (RYE) scale. Let us suppose that the introduced below stress and strain 
measures are conjugated in the sense defined by Hill [6]. Later a particular choice of 
these measures will be proposed. 

At the macroscopic level, we introduce the overall stress tensor E and strain 
tensor E (or their rates t and E) characterising the external loading and material 
response. At the same time a polycrytalline grain "feels" the local stress u (r) or stress 
rate <i (r) and undergoes the local compatible strain i: (r) or strain rate Il (r). The 
theory is based on the hypotheses of existence of a concentration tensor A (r) such 
that, for example 

e(r) = A(r):E (6) 

If the external loading is large enough to start the plastic deformation, the 
mechanical behaviour of the RYE can be described by the elastic Pand plastic P 
parts which, in general, depend on the internal structure of the material. In the case 
of a plastically deformed crystallite, the corresponding elastic and plastic parts are 

4• 
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denoted by ee(r) and i;P(r) or their rates. Supposing that we are able to describe the
local behaviour of the material by the tangent elasto-plastic tensor / (r) such that

a(r) = l(r) :i:(r) (7) 

the global effective properties Uff of the homogeneous equivalent material are
given by

Uff = ~ fl ( r) : A ( r) d V, 

V 

(8) 

where V is the volume of the R VE. The main improvement of the self consistent
approach, when compared with Tay 1 o r type modelling, is taking into account the
interactions between a constituent and the surrounding material. This could be
accomplished especially using the Es he 1 by [7] solution of the ellipsoidal inclusion
problem. It implies that the shape of constituents in the self consistent approach is
approximated by an ellipsoidal volume with the appropriate aspect ratio and spatial
orientation with respect, for instance, to the crystal lattice and to the sample
co-ordinates system.

During plastic deformation of constituents, the following physical phenomena
influence the mechanical behaviour of the grain (see [16] and [17]).

• multiplication and annihilation of dislocations and evolution of their spatial
distribution inside grains which lead to the hardening of the slip systems described
by the evolution of critical resolved shear stresses,

• generation of the internal stresses by plastic incompatibilities,
• rotation of the crystal lattice of grains leading to a texture formation,
• modification of the grain shape and orientation.

To predict the accurate overall response of the material it is necessary to
follow the evolution of grain parameters occurring during the slip and/or twinning
phenomena. In the presented models only the first one, i.e. slip, is taken into
account. As it has been demonstrated by Lipiński and Berveiller [13] the
evolution of most of the above parameters is related to the local velocity
gradient g (r). It can be shown that the nominal stress rate (see for instance
[6]) is conjugated with the velocity gradient. The study of large elasto-plastic
transformations of heterogeneous materials can be performed using updated
Lagrangian formulation. All details of the modelling can be found in the work
of Lipiński [14]. Here we only recall the fundamental results.

Let us suppose that the local elasto-plastic behaviour of single crystals can be
expressed by the relation

,i (r) = l (r): g (r), (9) 

where ,i is the rate of the nominal stress tensor and l (r), as above, corresponds to the
tangent properties of the material. Starting from the equilibrium equation and
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supposing kinematic boundary conditions for R VE one can find the integral 
equation being the formal solution of our problem 

g(r) = G0-J I'(r,r'):ól(r'):g(r')dV, 
V 

(1 O) 

where: 
G0 is the velocity gradient of a fictitious homogeneous 

material with properties L 0, 
bl (r) = l (r)- LO is the deviation of local properties from L 0, 
r (r, r') is so called modified G re e n tensor. 

To obtain the self consistent approximation of equation (10) we have to introduce 
two supplementary simplifications: 

• we suppose the material is granular and the real grain shape can be approached 
by an ellipsoid, 

• the tangent properties a well as the velocity gradient variations are very smooth 
inside grains, so their mean values t1 and g1 remain good approximations of the real 
behaviour. 
Under these assumptions we can write 

N 

l (r) = L t101 (r) 
[= 1 

N 

g(r) = L g1 01 (r) and 
l=l 

N 

bl(r)= L L1t101(r), 
I=! 

where N is the number of constituents and 

where V1 is the constituent volume. Finally, the integral equation ( IO) takes the form 

N 

g1 = Go - L T11: Ll t1: s', 
J=l 

( 11) 

This solution corresponds to so called "multi-site" approximation of the integral 
equation. This name is due to the presence of the tensor Tu which describes the 
interactions between the I and J constituents. The interaction tensor is defined by 
the following expression 

TIJ =:II I r(r,r')dV' dV 
v,v, 

(12) 

It is easy to understand (but much more difficult to prove, see for example [26]), that 
if the homogeneous reference material is replaced by the effective unknown 
properties, i.e., if 

(13) 
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then the long distance interactions given by Tu (with I # J) can by neglected in 
comparison with short distance interactions described by the tensor Tli. In this 
case one obtains the "one-site" self consistent approximation of integral equation 
(10) 

gł= G-Tll:Llll:gl (14) 

in which G0 has been replaced by G, the true velocity gradient applied on the R VE 
boundary. This result may be transformed into the concentration relation 

gł= (I+ Tli: L1t1t I: G =Al: G (15) 

and next the self consistent approximation of the effective properties of the 
polycrystal can be calculated 

N 

tr: = If 11 :Al 
I= I 

( 16) 

with j" representing the volume fraction of I-th constituent and N being the number 
of grains. The simplicity of (14) comparing with expression (11) is only apparent 
because the relation ( 14) is implicit in character. Indeed, to calculate g1 one needs to 
know Leff~ l/" which can be calculated knowing all g1 or A1.

Of course the equation (14) may be rewritten as [6, 12] (see Appendix): 

N - ń1 = - L * : ( G - g1, (17) 

where 

(18) 

is the so called H i 11 ' s constraint tensor. 
Finally, let us transform relation (17) to the form similar to that used by 

Leff e r s [22, 23] and W i e r z b a n o w s k i et al. [24, 25]. The details of the 
transformation can be found in Appendix. We admit the additive decomposition of 
the velocity gradient into elastic and plastic parts following the relation 

gł= s'r+:"
than the H i 11 relation can be expressed as follows (see equations A 7) 

(19) 

(20) 

where 

;_I= {s1+(L*t1}-1, 

Ul= ;_I:{(L)-l+{L*tl} 

(21) 

(22) 
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and s' expresses the grain elastic compliance tensor, see for instance [31]. One can
easily observe that the )/ and ur tensors remain the same for all grains when the
elastic properties of RYE are homogeneous. Expression (20) constitutes a new self
consistent formulation of the polycrystalline plasticity, particularly well adapted for
application of the Leff e rs - Wier z ba n o ws k i [22, 24] method of active slip
systems selection. Expression (14) constitutes a starting point for Lip i ń s k i's
[14] and Bac z mański' s [20, 21] algorithms of the active slip system choice.

4. Different methods of slip system selection 

An incremental formulation of the above results has been developed for their
numerical implementation. Suppose that at the end of step (i-1) all local and global
variables describing the polycrystal are known. Particularly we suppose that new
form and orientation of grains and their crystal lattices are updated and the self
consistent approximation of tangent moduli is determined. At the step i the new
increment of external loading is applied, i.e. the increment JN or JG is specified.
Knowing l:" and the shape and orientation of all grains one can calculate the
interaction tensor r=. The following procedures depend on the method of active slip
system selection.

4.1. M i n i m a 1 w o r k c r i t e r i o n

According to the work of Lipiński [14] the active slip systems for the I-th
grain are selected as follows:

1. knowing the local and global polycrystal properties at the end of step (i-1 ), the
local stress tensor ,,r is updated,

2. the Schmid's criterion (3) is verified for all slip systems. Systems exceeding
this criterion are called "potentially active". If NPAS means the number of such
systems, one can construct 2NPAS combinations of these systems (purely elastic
response, corresponding to a local unloading, is included). For each combination
we calculate:

a) the local tangent moduli f, concentration tensor Ar and velocity gradient
gr (see for instance Lipiński [14] and equation (15)),

b) the total strain energy of grain. The appropriate expression has been done
by Fa s s i - Fe h r i [32] for the case of small strain approximations,

c) the combination with minimal strain energy is kept,
3. the combination having minimal strain energy is used to calculate the local

tangent properties for the i-th step. Consequently, the local stress and strain, the
grain lattice orientation and the critical resolved shear stress for each slip system are
updated.
It is easy to understand that this approach requires many calculations. Indeed, for
the advanced plastic flow gIP > 0.015) the number of potentially active systems is



172

frequently greater than 5. It means that frequently more than 32 complete 
constructions of local behaviour of each grain are necessary. 

4.2. M a x i m a I I o a d i n g c r i t e r i o n 

This criterion results from our experience concerrung use of the scale tran­ 
sition methods. It appears that, except the elastic unloading case, the com­ 
bination of active systems almost always corresponds to the most loaded sys­ 
tems, i.e. to the systems which exceed the most the S c h m i d ' s criterion. 
If one remembers that the plastic strain rate tensor has five independent com­ 
ponents, one can, like for Taylor type models, restrict the number of active 
slip systems to the linearly independent ones. This method has been proposed 
and used by B a c z m a ń s k i [20, 2 I]. The flow chart of the first method 
is only slightly modified. The point 1 remains unchanged and point 2 be­ 
comes: 

2. the Schmid's criterion (3) is checked for all slip systems. Systems exceed­ 
ing this criterion are classified in increasing order with respect to the value of 
difference ,s - ,:, (see also equations 3 and 4) and all linearly dependent sys­ 
tems are eliminated. It is possible to find out at maximum five mostly loaded 
and independent slip systems and these are supposed to be active ones if the 
strain energy corresponding to this solution is less than that of the purely 
elastic response, 

3. as before, the chosen combination is used to calculate the local tangent 
properties and to update the local stress and strain states, the grain lattice 
orientation and the critical resolved shear stress for each slip system. 

4.3. L e ff e r s - W i e r z b a n o w s k i c r i t e r i o n 

This approach has been used by Leffers [22] and later by Wier z - 
banowski [17, 24, 25] in Berveiller and Zaoui [18] type of modelling 
based on a priori estimated isotropic constraint tensor L *. Their idea can be shortly 
summarised as follows. Only one, the most loaded, slip system is active for a very 
short time. During this time (subincrement) a small amount of shear glide ciy' occurs. 
This glide produces an increment of plastic velocity gradient, which causes 
a modification of the stress state, critical resolved stresses and lattice orientation of 
a given grain. If these modifications are important enough and if more than one slip 
system should be active for a given loading increment, another system becomes the 
most loaded and the procedure is repeated until there is no system exceeding the 
Sc hm id 's criterion. The only difficulty which arises when dealing with this 
method is the estimation of the tangent properties of the single crystal. To resolve 
this problem, one has to count the instantaneously active systems and at the end of 
loading increment the linearly independent combination has to be determined. The 
application of this method is based on formula (20) where the local stress evolution is 
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directly linked with the plastic part of velocity gradient grP_ The following procedure 
explains the practical use of this method. 

1. Knowing the L" tensor for the i-1 step the interaction tensor TH and 
constraint tensor L * are determined by (12) and (18). 

2. The local stress state ar is updated using (20) and supposing a purely elastic 
response of the single crystal. 

3. The S c h m i d 's criterion (3) is checked for all slip systems. 
4. The most loaded system (i.e., with maximum difference ,s - ,:r) is chosen 

among all potentially active systems: 
a) the elementary glide of amplitude hy' is realised on this system producing 

some ćg!",
b) the local stress state a1 is modified together with the internal structure of 

the grain, 
c) the number of active slip system is stored, 
d) the Sch m id's criterion (3) is verified for all slip systems. 

5. If there are systems exceeding Sch mi d's criterion return to point 4. 
6. The combination of active systems is build and the single crystal tangent 

properties are calculated. 
Whatever the method of the system selection, the loading increment is completed 

by calculations of the effective properties of the R VE. This is accomplished using 
equation (8). The global stress and strain state are determined by the averaging 
operations. We recall that the strain averaging can be performed only for the total 
strain E. The elastic part of strain tensor P can be calculated using the inverse 
Ho o k e's law and the decomposition rule of the total strain on elastic and plastic 
part permits to calculate EP_

5. Comparison of different methods of active slip systems selection 

The above developed approaches have been applied to predict the elasto-plastic 
behaviour of different materials, namely BCC, FCC and hexagonal structure 
polycrystals. We have simulated a cold rolling process using a RYE samples 
represented by 2500 grains having initial random crystallographic orientations 
defined with respect to the macroscopic frame by three E u I e r angles cjJ 1, <f>, 
and ¢2. All slip systems of all grains have the same critical resolved shear 
stress.The initial grain shape is supposed to be spherical. Finally, the volume 
fraction is chosen identical for all grains and equal to F = 0.0004. For FCC and 
BCC structures we have considered an isotropic elastic response of the material, 
however, for the hexagonal symmetry anisotropic elastic constants were assumed 
for each grain. The hardening matrix is isotropic and the linear hardening law 
is considered (i.e. linear relationship between critical resolved shear rate and rate 
of gliding). All micro-parameters necessary to perform the simulations are given 
in the table 1. 
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TABLE I 

Input parameters describing initial microstructure of materials

Structure Slip systems 'a - critical Hardening Elastic constants
resolved stress matrix for the grain

(grain shape) (total number) [Mpa] [Mpa] [GPa]

< 111 > { ll0}
BCC <lll >{112} 82 Hw = 60 µ = 80

(spherical) <111>{123} A=I ,l_ = 120
(48 glides)

FCC <110>{111} 100 Hw = 100 JL= 45.5
(spherical) (12 glides) A= I }. = 96.8

<2110>{0001} cli= 160
Hexagonal <2110>{0110} Hw = 100 C33 = 181
(spherical) <2110>{0111} 100 A= I C44 = 46

(12 glides) C12 = 90
C13 = 66

As one can see the introduced properties correspond to:
• typical ferritic steel (BCC material),
• copper (FCC material),
• titanium alloy (hexagonal material).

Nine simulations have been performed using three criteria for the slip system
elimination:

I. the minimum energy or work criterion (MW), 
2. the maximum load criterion (ML), 
3. Ieffers-Wiertbanowski criterion (LW).
Figure 1 presents equivalent stress-strain curves obtained for three materials

using three criteria of slip system selection. The equivalent stress and strain are
defined in the sense of von Mises. For all the curves, one can observe the
experimentally well established behaviour which can be decomposed on:

• first stage, until 0.03 to O.OS of equivalent strain, with parabolic evolution
due to the progressive activity of slip systems, see for comparison figure 2 and
3. This stage corresponds to the activation of the second order internal
stresses which guarantee the compatibility of deformation of the individual
grams.

• second stage (Eeą > O.OS) with a quasi constant slope, function of the hardening
parameter and number of active slip. To obtain the non-linear material behaviour
one has to introduce a non-linear hardening relation for the single crystal, see for
instance [29].

One can observe that some differences exist for stress-strain curves obtained
using the three criteria. Especially for LW criterion the equivalent stress is slightly
lower.
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BCC - cold roiling 
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Fig. 1. Equivalent applied stress l:eą vs. equivalent strain Eeą obtained by different criteria of slip systems 
selection for BCC, FCC and hexagonal structures 

Fig. 2 shows the evolution of the tangent modulus in rolling direction as 
a function of the equivalent total strain. This modulus is defined as the inverse of the 
1111 component of the inverted L-matrix of the overall material properties (i.e., 
ET = 1/(L - i) 1111). One can observe that this modulus becomes quasi constant for 
the equivalent strain greater than 0.05. Its ,,asymptotic" value is: 

ET;:;::: 600 MPa for BCC material, 
ET;:;::: 1000 MPa for FCC polycrystal, 
ET ;:;::: 2200 MPa for hexagonal structure. 

The three methods of slip system selection predict practically the same evolution of 
this modulus. 
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Fig. 2. Evolution of the tangent modulus ET= 1/(L -1)1111 vs. equivalent Eeą for different criteria and 
structures 

The slip system activation statistics are shown in Fig. 3. The mean number of 
instantaneously active systems for an arbitrary grain is presented as a function of the 
equivalent total strain. We see that for BCC, FCC and hexagonal polycrystal about 
three systems are permanently active for Eeą ?: 0.05. Once again, one can conclude 
that the three methods predict almost the same responses. 

The crystallographic textures induced by the rolling operation are presented by 
cross sections through the basic part of the E u 1 e r space (Fig. 4). The Orientation 
Distribution Function (ODF) obtained numerically for Eeą = 0.6 of equivalent 
plastic strain are compared with the experimental ones. The textures were measured 
using neutron method on the 6Tl diffractometer at Orphee reactor (LLB, CEA-CE, 
Saclay, France). One can see a very good agreement between theoretical and 
experimental results. The three criteria proposed in this work give practically the 
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Fig. 3. The mean number of active slip system for one grain of polycrystal. Comparison for different 
criteria of slip system selection 

same ODFs for the FCC, BCC and hexagonal (not shown in Fig. 4) structures. (It is 
important to note, that two characteristic types of texture exist in FCC materials: the 
copper and brass types. The presented self consistent model predicts only the first 
one, i.e., the copper type texture, because of its very precisely determined - and 
rather hard - interaction between a grain and its neighbourhood. The brass type 
texture can be obtained if the interaction intensity is lowered; it is the case of models 
developed by Leffers [22] and by Wierzbanowski et al. [17, 24, 25]). 

The last comparison is made for BCC structure only. Fig. 5 shows the effect of the 
plastic strain history on residual second order stresses. After plastic deformation the 
shape of a crystallite does not fit, in general, to the surrounding matrix (plastic strain 
differs from one grain to another). Hence, the grains are subjected to elastic strain 
caused by incompatibilities in their boundary regions. This creates the so called 
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second order residual stresses which are ,,frozen" in the material. Additionally, in the 
real sample some residual macrostresses arises because of deformation heterogeneity. 
For example the compressive macrostress can be found on the surface of the cold 
rolled sheet. All these residual stresses cause distortion of the crystallographic lattice 
which can be measured by diffraction methods. 

Usually, the stress state is studied using the i: vs. sin2 (l/1) graphs, where i: is the 
measured lattice strain and 1/1 is the angle between scattering vector and direction 
normal to the sample. It can be shown that i: (strain) is linear with sin2 (l/1) for 
isotropic samples and residual macrostresses. The second order stresses can be 
observed as the nonlinearities in the i: vs. sin2(1fr) plot. 

In Fig. Sb the prediction of the self consistent model with maximal load (ML) 
crierion is compared with experimental measurements. The theoretical data were 
fitted to measured lattice strains [20, 21] and the values of residual macros tress 
a 11 = - 70.5 MPa and microstress a eq = 83.9 MPa were found. One can see that the 
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Fig. 4. Crystallographic texture for cold rolling deformation. Predicted Orientation Distribution
Functions (for Eeą = 60%) are compared with experimental ones (Eeą = 105% for BCC and Eeą = 100%

for FCC structures)

variation of the second order strains (stresses) in function of the crystal orientation is
well predicted. Probably, because of stress relaxation in the grain boundaries the
calculated strains were about twice higher than the experimental ones. Hence, the
theoretical strains shown in Fig. Sb were multiplied by the constant factor q = 0.45.
The numerical results obtained using the three presented models are practically
identical (see Fig. Sa).

As the last point, we compare the calculation times using different criteria for slip
system selection. The results are shown in table 2. It can be seen that the time of
calculations improves about 5 times if the new criteria for the slip system selection
are used. In the case of LW criterion the time is shorter for elastically isotropic
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Fig. 5. Average lattice strain for (211) reflection vs. sin2 (i/I) (result for BCC is shown); where i/J is the angle 
between scattering vector and direction normal to the sample (scattering vector, rolling and normal 
directions are laying in the same plane): a) comparison for different criteria of slip systems selection, 
b) theoretical result based on the maximum load model (solid line) is fitted to experimental points 

sample (BCC and FCC structures) than for the anisotropic one (hexagonal structure). 
It is due to the fact that the )f and U1 tensors in equations (20)-(22) remain the same 
for all elastically isotropic grains. 

TABLE 2 

Relative time of calculations for 2500 grains deformed to equiva­ 
lent strain of 0.6. Isotropic elastic properties were assumed for FCC 
and BCC structures and anisotropic elastic constants were used for 

the hexagonal sample 

Structure MW criterion ML criterion L W criterion 

BCC l 0.28 0.20 
FCC 0.81 0.16 0.17 

Hexagonal 0.75 0.17 0.24 

Conclusions 

A new method for the prediction of elasto-plastic deformation of the polycrystal­ 
line materials has been proposed. This scheme is particularly well adapted to the 
Leffers and Wierzbanowski algorithm of the active systems selection. 



I 81

Three different methods for selection of active slips were tested and compared. In
two of proposed methods the most loaded systems were taken as the active ones. In
one case the independent most loaded systems are supposed to be simultaneously
active. In the second case the elementary single slips are performed on most loaded
system. The results of calculations are very similar to these obtained from the
traditional model in which the minimum work criterion is used. It can be concluded,
that the way of selection of active slips does not change much the model predictions.
However, it is crucial for the calculation time. Using the presented methods our
computer program has been accelerated approximately five times and potentially it
can be used in the Finite Elements (FEM) calculations.

The model has been applied to predict the behaviour of FCC, BCC, and
hexagonal materials. The predicted overall material response exhibits correct
hardening curves. The comparison of the calculated and experimental crystallo­
graphic textures shows a very good agreement between the calculations and
measurements. The same conclusion concerns the comparison between the predicted
and measured residual stresses.
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APPENDIX

Derivation of the formulas used in the model based on LW criterion 

As it has been stated in the paragraph 3, the concentration relation (15) can be
transformed into Hill - Iwakuma and Nemat-Nasser expression (17). Let us recall
the relation (15) in slightly modified form

(Al)

After some simple transformations this relation can be rewritten as follows

or usmg local and global constitutive relations

(A2) 

(A3) 

This is the Iwakuma and Nemat-Nasser [I 2] expression (17) containing the Hill's
constraint tensor

(A4) 

5 -· Arch. llutnic:wa
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One can see that when dealing with homogeneous materials, i.e. when II = L or 
Ll f = O, all these expressions give the expected trivial response 

or 
This occurs for cases of purely elastic response (initial loading or local or global 
unloading) of elastically homogeneous materials. 

Now, let us return to equation (A3) and split the velocity gradient gł into the 
elastic (gle) and plastic (glP) parts 

,il= N+L*:(G-glp_gle). (AS)

The elastic part of the velocity gradient can be calculated as a function of the local 
nominal stress rate 

where s1 describes the elastic behaviour of grains, see [31]. Introducing the above 
relation into (A5) and using the overall constitutive equation we obtain 

(I+L*:s1):n1 = (I+L*:L -1):N-L*:g1P 

which can be transformed into 
,il= Ul:N-ll:glp 

or 

(A6) 

(A7a) 

(A7b) 

where 

;.1 = {SI+ (L *t 1} -1 
u1 = lf:{(L)-1+(L*t1} 

and 

Expressions (A 7) are used respectively for boundary conditions ( overall loading) of 
kinematic or static type. 
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