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TADEUSZ TELEJKO *

INVESTIGATION OF SENSITIVITY OF THE INVERSE METHOD APPLIED TO
DETERMINATION OF THE THERMAL CONDUCTIVITY OF STEELS

BADANIE CZULOSCI METODY WYZNACZANIA PRZEWODNOSCI CIEPLNEJ STALI,
OPARTEJ NA ROZWIAZANIU ODWROTNYM ROWNANIA PRZEWODZENIA CIEPEA

In this paper the analysis of the inverse method of thermal conductivity estimation of
solid body is presented. A finite element method (FEM) has been applied to study the
problem. When inverse problems are involved in determination of coefficient of thermal
conduction, it is necessary to measure temperature in some points of the solution domain.
The proposed method has been verified by comparison of the numerical results to those
obtained from the analytical solution of heat transfer equation for one-dimensional,
transient heat conduction in semi-finite cylinder insulated on the circumferential surface
when both boundary and initial conditions and thermal properties of the cylinder were
known. Therefore, experimental data have been replaced by the temperature distribution
coming from analytical formulation of the problem. Additionally it was assumed that the
function of thermal conductivity dependence on the temperature belongs to class of
quadractic or linear polynomials. It was found out that the method gives good and stable
results in a wide range of input parameters. The set of a few temperature measurement
points has been used in numerical solution. Estimation results are close to the analytical
solution for varying measurement simulation times. In a domain of parameters variability
neither the number nor the location of measuring points influence significantly the accuracy
of thermal conductivity estimation. It has been found out that the presented method is not
sensitive to the initial value of thermal conductivity used as a starting point in the model.

W artykule przedstawiono analiz¢ metody wyznaczenia wspolczynnika przewodzenia
ciepla ciat statych oparta na rozwiazaniu odwrotnym réwnania przewodzenia ciepta. Do
rozwiazania problemu zastosowano metode¢ elementow skonczonych (FEM). Rozwiazanie
problemu odwrotnego zastosowanego do wyznaczenia parametrow termofizycznych ciata
wymaga pomiaru zmian temperatury w wybranych punktach. Zaproponowana metode
zweryfikowano na podstawie znanego analitycznego rozwiazania rOwnania przewodzenia
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ciepta dla izolowanego na pobocznicy poélnieskonczonego preta. Wyznaczono pole tem-
peratury w wybranych punktach preta dla znanych warunkow poczatkowych, brzegowych
oraz parametréw termofizycznych ciala (w tym wspolczynnika przewodzenia ciepta).
Dane te wprowadzono do modelu w miejsce danych eksperymentalnych. Zalozono, ze
poszukiwana przewodnos¢ cieplna jest zwiazana z temperaturowa zalezno$cia w postaci
wiclomianu co najwyze] drugiego stopnia. Na podstawie obliczen numerycznych
okreslono optymalne wartosci wspotczynnika przewodzenia ciepta, ktore nastgpnie
porownywano z dokladnym rozwigzaniem analitycznym. W wyniku przeprowadzonych
testow numerycznych otrzymano wyniki wskazujace na dobra stabilnos¢ i zbieznosé
zaproponowanej metody w szerokim zakresie zmiennosSci parametréw wejsciowych.
Metoda pozwala na identyfikacj¢ przewodnosci cieplnej na podstawie pomiaru tempera-
tury w kilku punktach polozonych wewnatrz ciala. Daje dobre wyniki przy réznych
czasach obliczen, a co za tym idzie roznej iloSci danych pomiarowych stanowiacych
podstawe identyfikacji. W badanych obszarach zmiennosci liczba i potozenie punktow
pomiarowych nic wplywa znaczaco na rezultaty obliczen numerycznych. Zalozenie
poczatkowej wartosci przewodnosci cieplnej znacznie roznigce si¢ od wartosci rzeczywistej
nic powoduje takze bledow w rozwiazaniu.

1. Introduction

The solution of the heat conduction problems requires the knowledge of thermal
properties of the body, i.e. specific heat, thermal conductivity and density. As the
density determination does not, in fact, involve significant difficulties, the problem of
specific heat and conduction coefficient determination is rather difficult to perform.
These parameters are usually spatially and/or temperature dependent. The accuracy
of thermal properties estimation highly influences the results when analyzing heat
conduction process. One may find the values reported in the literature, but they
usually differ from each other. A diversified chemical composition, manufacturing
technology, porosity or microstructure of samples taken to investigations may be
a reason of discrepancies. As an example the above data in the room temperature for
nickel varies from 65 W/mK to 94 W/mK dependently on the source of information
[1, 2]

The problem of the thermal conductivity determination is widely discussed
in literature. Various methods have been worked out for this purpose, starting
from the simple stationary ones, up to the unsteady state methods, which
require very complicated and sensitive measurement equipment. The commer-
cially used apparatuses have also been constructed to enable the thermal
properties identification for industry purposes. They are commonly based on the
flash method proposed by Parker [3]. The thermal diffusivity a of the flat,
uniform, thermally-insulated sample is measured by putting the pulse of radiant
energy at its front surface and recording the transient temperature history of the
back surface. There is no necessity to know the value of the thermal energy
supplied to the surface, which is the great advantage of the Parker’s
method. The relationship between the specific heat c,, density ¢ and thermal
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conductivity A allows the determination the last parameter assuming that the
quantities ¢ and ¢, are known.
A
a=—-.
e-c,

Since thermal conductivity of metals and alloys usually depends strongly on
temperature, a number of experimental tests must be carried out to estimate the heat
conduction coefficient as a function of temperature. The method presented in the
paper enables the evaluation based on one experiment only, which may be repeated
to enlarge the accuracy of the determination.

2. The inverse problem

The direct solution of the differential heat conduction equation gives the
temperature distribution in the solution domain. The solution is unique, when the
boundary and initial conditions and thermal properties of the body are also known.
The analytical results may be obtained only for a few geometry shapes and many
other simplifications have to be made that often do not satisfy the real heating
process. The numerical procedures are then involved to overcome those limitations.

Inverse problems contain the class of problems where analysis of heat-
conducting material requires a determination of the unknown boundary condition
or the initial temperature. These topics may serve as examples of the inverse heat
conduction problems (IHCP) or backward heat conduction problems (BHCP). The
special area of IHCP problems are those which deal with the thermomecanical
properties identification. They are known in the literature as identification heat
conduction problems (IDHCP) [5]. The interior temperature distribution has to be
known additionally to solve the problem. The required data are involved to the
problem formulation from the experiment. The inverse problems are more difficult
that direct ones, because the are ill posed. Therefore this way of the heat conduction
analysis strongly needs the application of numerical methods.

There are three basic numerical methods used in analysis of inverse identification
heat conduction problems. The first one is the finite difference method (FDM), which
was the most popular up to recent years [4]. The finite element method (FEM) [6] and
the boundary element method (BEM) [5] are the newer ones commonly applied.

The FEM, which has been used in the presented work, is the most complicated
method but also the most accurate one. It makes possible to describe thermal
properties of the sample with high accuracy. The FEM, however, does not give
a possibility to establish a functional dependence of the heat conduction coefficient
as a function of temperature. Class of the function describing the thermal
conductivity with respect to temperature has to be assumed. Coefficients of the above
function are then computed by minimizing the error norm between measured and
computed temperature values over a set of internal points.

6*
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3. Formulation of the problem

The preliminary investigations led by the author confirmed the possibility of
inverse technique application for thermal conductivity determination of the
well-conducting materials [6, 7]. The aim of the present paper is to verify the
accuracy of the method and to analyze its stability over the assumed domain of some
entry parameters. The experimental data has been replaced by the analytical solution
of one-dimensional, transient heat conduction problem in semi-finite cylinder
insulated on the circumferential surface. The equations governing this problem are as
follows

t(z,7) 0%t (z,7)

=da

ot 0z2

>0, O<z<w (1)

with the initial and boundary conditions

t(z,0)=0
0t0,7) «
o) A @-t0.9) =0 @
Heo.7) =0,
where:
t — temperature,
a = — — thermal diffusivity,
Qoc,
o — heat transfer coefficient,
A — thermal conductivity,
0 — density,
&, — specific heat.

The analytical solution of the equation (1) and (2) is given in [&]

tlz.1) =

E

NEY z2 a\?
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Assuming ambient temperature f(r) as a function of time defined

fll) =t (4)
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the equation (3) comes to the form

t(z7) z2 zf /l\/;
T_\ﬁexP<_4ar> \/Eerfcz\/, ava

2 o’ o z o
x[erfc —exp(a,—zr—{»:z)-erfc( >+7\/ar]. (5)
2,/at Az 2/ ar) A
[0 4 5
When — — oo, the front surface temperature equals the ambient temperature

£(0,7) = 1,4 /%

and the relationship (5) can be expressed as

”2
A

btz T) = ba/uexp ( — 47?) —ahy \/\/;% erfc (2 f> (6)

The above equation served to the temperature determination over a set of points
inside the body assuming t, = 40°C. The calculations have been made for the values
of thermal properties of the cylinder, which are relevant to the carbon steel: ¢, = 500
J/kgK, o = 7850 kg/m3, 1 = 40 W/mK. The results have been used in the model
instead of the temperature measurements.

4. Direct solution

Heat conduction equation for a solid cylinder under non-stationary conditions
in a cylindrical co-ordinated has the form:

0 ot 0 ot ot
il Pt 3 Wl I PRl —roc,—=0eV. 7
6r<lr6r)+(3z<uaz>+Q roc, - 0OeV (7)

The temperature field can be determined from solution of Eq. (7). The boundary and
primary conditions are as follows:
— on the non heated bottom end of the cylinder B,:

ot 0
;"r<—\lr + Ttl~> = roy(t,—1) 8)

ar oz ~

— on the circumferential surface of the cylinder B, :

ot ot
Al =1L +—1 |= —
r( PRl lz> ra,, (t,—1) 9)
— on the heated top end of the cylinder B,:
t(r,z=0,7) = t,(1). (10)
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The initial condition is assumed in the form:
.zt =0) = t4(r, 2). (11)

Galerkin’s integration scheme and standard finite element discretisation of
Eq. (7) lead to the system of linear equations:

3 ) 3 A
<2 K+ EC”)t (r+Ar) = <— K+ A_tC”)t (1)—3 Fo (12)
Where matrices K, C,.j, and vector F, are given by:
ON.ON. ON.0N.
K.=1|4 - —d LS N.N.dB N.N.dB
o JS/r< ar ar + 82 aZ ) * JBwaw ! g w+de ad = 4

C;; = [soc,rN;N;dS
F,=—[p N;a,t,dB,—[p N;o t,dB,.

Solution of the system of equations (12) gives the temperature field in the sample
after the time interval Az for the initial temperature of the sample ¢, and for known
heat transfer coefficients on the non-heated end o, and non-heated side surface «,, of
the cylinder. Both these coefficients and factor Q in Eq. (7) are equal zero to agree
with analytical formulation of the problem. The length of the cylinder has been taken
long enough to satisfy the semi-finite body assumption.

5. Numerical results and discussion

The iterative procedures enable obtaining of the unknown relation between
thermal conductivity and temperature when the class of function is preliminarily
defined. In the present study it has been assumed, that 4(¢) is a set of polynomials

At)= Y wit hn=1 (13)

i=1

and the error norm is defined as

1 m
o) =2 X [y — a7, (14)
i=1j=1
where:

t{". — temperature obtained from analytical solution,
(™" — numerical result,
[ — number of time steps Art,
m — number of internal grid points.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable
metric method [9] has been used to solve the inverse problem. It belongs to the
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gradient methods i. e. it requires that the gradients of the error function be evaluated.
For the first attempt it was assumed that the quadratic function is good enough to fit
the A(t) relationship.

At) = wy+wyt+wyt?. (15)

This assumption has been made for thermal properties of metals and metallic
alloys as they are usually well expressed by that kind of function. As an example one
can take the results obtained by Hustand Lank ford from National Bureau of
Standards [10]. The following relation approximates the thermal conductivity of
electrolytic iron in the temperature interval from 293K to 1000K

Ape(T) = 106.55—0.1111-T +4-10°- T2 (16)

with the R coefficient equal R = 0.9998.
Afterwards the linear A(f) function was assumed

At) = wy+w,t (17

and, finally, the value of the thermal conductivity unchanged over the temperature
interval

() = w, (18)

was investigated.

Calculations have been performed for a number of tests. For the first tests the
following set of five internal points have been admitted (starting from the front
surface of the cylinder): 8 mm, 16 mm, 24 mm, 32 mm, 40 mm. Numerical results
have been obtained for several measurement simulation times t,. Temperature versus
time curves for the selected period of time 7, = 500 s are presented in figure 1. Good
agreement of the obtained temperatures with the analytical solution has been
achieved. In figure 2 the differences between the analytical and numerical results are
shown. The accuracy of the numerical computations was defined as the difference
between the analytical and numerical solutions by the expression

T Z;t‘;"—t;'""'] for = 1,. (19)
i=1

m

The obtained values of At vary between 0.202 K (for 7, =5 s) and 0.556 K (for
7, = 500 s). It can be seen that the total measurement simulation time only slightly
affects the accuracy of temperature field approximation.

The thermal conductivity as functions of temperature obtained for the sec-
ond-degree polynomials is presented in figure 3 and figure 4. The values of the
coefficients in the equation (15) are presented in table 1. Figure 5 shows the results of
numerical calculations for different time increments At. The results obtained for the
linear relation expressed by equation (17) are shown in table 2 and in figure 6.
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Fig. 1. Distribution of temperature at selected locations in a sample. Lines represent analytical solution,
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Fig. 2. Temperature differences between the computed values and those obtained from analytical solution
at selected locations in the cylinder for the temperature field presented in Fig. 1
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Fig. 5. The influence of time increment At on thermal conductivity estimation. The legend presents
measurement simulation time 7, and time interval At
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TABLE 1
. L Error of Seandard
Mf:asurefnent Polynomial coefficients in Eq. (9) Temperature numerigal d;i?al?én
sxmglatlon range computations s
time W, w, - 1000 Wy - 10002 from 0 to t Eq.Aélg) Eq. (20)
s — — — © °C W/mK
5 46.83 —131.75 —6.22 89 0.202 0.3723
10 43.84 —97.02 654.65 126 0.225 0.1339
20 38.46 —1.5 6.63 179 0374 0.1199
30 38.98 —1.13 —0.21 219 0.408 0.0777
40 39.19 0.76 —8.07 253 0.434 0.0561
50 39.26 2.66 —13.28 282 0453 0.0433
60 39.28 4.05 —15.70 310 0.466 0.0347
80 39.25 5.53 —16.02 358 0479 0.0249
100 39.23 5.97 —14.61 400 0.479 0.0198
120 39.21 5.98 —12.27 438 0.474 0.0156
150 39.22 5.6 —10.20 490 0.462 0.0136
200 39.24 491 —7.19 566 0.456 0.0109
300 39.31 3.75 —3.58 693 0.499 0.0109
500 39.33 3.06 —1.65 894 0.556 0.0165
750 39.21 352 —1.95 1095 0.504 0.0179
1000 39.16 3.65 —2.05 1265 0.441 0.0166
TABLE 2
Polynomial coefficients Error of
Measurement in Eq. (11) Temperature| numerical Stapdgrd
simulation range icomputations dev;atlon
time ¥, W, - 1000 from O to t Ea (19 Eq, ’(‘20)
s — - °C °C W/mK
100 39.73 0.24 400 0.490 0.0112
200 39.81 0.72 566 0.477 0.0050
500 39.71 1.44 894 0.569 0.0172
750 39.93 1.08 1095 0.563 0.0188
1000 40.21 0.64 1265 0.581 0.0185
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It is worth to remind here, that the accurate solution of the inverse problem is
A =40 W/mK. If we apply the thermal conductivity approximation error according
to the following equation

S [2(8)— ()]

s
S, =— , (20
m
where:

A(t)) = 40 W/mK — accurate solution for the temperature t,

A(t9) — numerical solution for the temperature t; obtained
from the relation (15), (17) or (18),

m = int (t,,,,) — the summation index, which is equal the integer part
of the maximum temperature achieved by the first
point, where temperature has been recorded in the
numerical test.

0.150 —
h + Quadratic approximation; time step - 1s
0.140 (0,1s for measurement simulation time - 10s)
n*d o Quadratic approximation; time step - 0,1s
0.130 — {0,01s for measurement simuiation time - 10s)
| (@) linear approximation
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0.110 —
> 0.100 —
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Fig. 7. Standard deviation of thermal conductivity approximation. The error for measurement simulation
time equal 5s has been omitted at the graph

Then calculated errors are shown in figure 7, table 1 and table 2. The highest value
arises for the shortest measurement simulation time 7, = 5s (S, = 0.3723 W/mK)
and for 7, = 10s one gets S, = 0.1339. The above-mentioned tests have been carried
out with the time step At = 0.1s. For all remaining tests (t, = 10s,..,1000s) 4t = 1s
has been applied. The S, error values fall down as 7, goes up and do not exceed
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0.2 W/mK for 7, > 100 s, which is 0.5% of the accurate solution, and are comparable
to each other within the 7, interval 100s — 1000s.

Figure 7 also illustrates the influence of the time interval on S_ errors. It can be
seen that as At increment decreases ten times error values also decrease but it refers
just to short total times 7, When 7, increases the shorter time interval does not
significantly improves the accuracy of thermal conductivity approximation. Values
of S, error are still high (S, = 0.0314 for 7, = 40 s) when referred to those of total
times 7, > 100 s (for instance S, = 0.0165 for 7, = 500 s). Comparing estimations
errors for 7, = 80 s when the time steps A7 = 1 s and At = 0.1 s were adopted to the
calculations it can be seen that there is only a little difference between them
(S, =0.0210 and S, = 0.0249 respectively). It can be therefore expected that the time
step shortening will not essentially enlarge the convergence of numerical results to
the exact ones when total calculation period 7, increases. Further, shorter time
increments always elongate computation time.

For the temperature independent coefficient of heat conduction (Eq. 12) the
numerical solution is shown in table 3.

TABLE 3
Measurement simulation time t,, s 100 200 500 750 1000
Thermal conductivity 4, W/mK 39.78 40.05 40.56 40.74 40.79
Temperature range from 0 to t, °C 400 566 894 1095 1265
Error of numerical computations 4t, K — Eq. (19) | 0.490 0.492 0.791 0.799 0.717
Standard deviation S,, W/mK Eq. — (20) 0.0112 | 0.0021 0.0187 | 0.0224 | 0.0222

The highest value of the standard deviation S, = 0.0224 is observed for 1, = 750 s
(see table 3). It can be seen that the degree of the polynomial adopted to numerical
calculations does not essentially affect accuracy of the thermal conductivity
approximation for the total measurement simulation time bigger than 100 s.

The aim of the next tests was to assess, how the number of temperature
measurement points and their locations inside the body affect numerical estimation
results. The set of five points to record temperature has been firstly admitted.
They have been marked with the numbers; 1 — is the point within 8 mm
from the heated cylinder surface, 2—16 mm from the surface, 3—24 mm
from the surface, etc. Afterwards one or two points have been randomly eliminated
from the set. Therefore calculations have been worked out for the sets containing
three or four different locations of temperature recording points. The results
are presented in figure 8. The S, errors have been also attached in the legend.
The stable and good estimates of thermal conductivity have been achieved.
The standard deviation is about the same for all of performed numerical test.
The method gives therefore still good results even when the number of temperature
sensors is reduced to four or three.
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In the following numerical tests, for the set of five points, the location
of the first temperature measurement point from the surface has been moved
from 2 mm to 10 mm. The distance between the points has also been changed
from 2 mm up to 10 mm. The selected approximations are presented in Figs
9—13, the standard deviations of the obtained results are shown in figure
14. The analysis of the results leads to the conclusion that the estimation
accuracy depends on the distance between the sensor location points and is
the worst for the 2 mm distance (see Fig. 14). For the remaining tests the
results do not differ much from each other. The above conclusion is confirmed
by the graphs presented in Figs 15 and 16. If the location of the first point
1s established at a distance 2 mm from the heated surface and the distance
between the rest of the points increases from 2 mm up to 10 mm, then
approximation error decays. When the 6 mm distance is achieved the stabilizing
of S, error is observed. The standard deviation does not exceed 0.0160 W/mK.
The better estimation results are also observed for the larger distance of the
first measuring point from the heated cylinder end. In the test where it is
placed at 4 mm position standard deviation reaches S, = 0.0311 W/mK, whereas
for the remaining tests does not exceed S, = 0.02 W/mK.

In the next tests initial values of thermal conductivity included to the model have
been changed within the interval between 10 and 100 W/mK. The tests have been
carried out for the set of five measuring points. The final results of numerical
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calculations are pictured in figure 17. The legend to the figure contains the standard
deviations of approximation. There is no perceptible difference both for the thermal
conductivity determination and standard deviations for all the performed tests.
Therefore, the method produces very good and stable results apart from the initial
coefficient of heat conduction involved to the numerical procedure.
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Fig. 17. Thermal conductivity dependence on the temperature and standard deviation of approximation
for different initial values used as a starting point in numerical computations

Since there are no analytical solutions of the heat conduction equation
for the temperature dependent thermal conductivity and heat capacity, the numerical
results have been used to verify the method. The temperature distribution in
the semi-finite cylinder has been calculated form the direct model assuming
that both thermal conduction and specific heat are quadratic functions of tem-
perature. First the numerical direct solution has been checked by comparing
the results of a number of temperature calculations to those obtained in analytical
way for constant conductivity and heat capacity. The presented examples of numerical
computations have been performed for the following parameters: ¢, = 500 J/kgK,
0 =7850 kg/m3, A=60 W/mK for a couple of measurement simulation times
7,. The input temperature field to the model has been obtained from Eq. (6)
assuming t, = 40°C. The errors of numerical results are collected in table 4;
the differences between analytical and numerical temperature distribution are shown
in figure 18.

T*
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Fig. 18. Temperature differences between the results of direct problem and those obtained from analytical
solution at selected locations in the sample

TABLE 4
Measurement simulation time 7, S 100 200 500 750 1000
Temperature range from 0 to ¢, °C 331 496 823 1024 1193
Error of numerical computations 4¢t, K Eq. (19) | 0.607 0.629 1.445 1.581 1.555

The numertcal results for the temperature inside the solution domain show good
estimates of the corresponding analytical solution. The biggest difference in results
does not exceed 3.5 K and the mean error At computed from Eq. (19) is not higher
than 1.6 K.

The temperature field has been obtained from the direct solution for the
following A(f) and ¢,(r) functions

A(f) = 42.43—41.76- 10731 4+16.52- 10701
c,(t) = A(t) = 472.4+93.57- 103t +576.62- 107 £

W/mK
J/kgK.

The results served as a temperature measurement simulation for the inverse
calculations. Two sets of coefficients as an initial guess in Eq. (9) have been used in
the model to investigate the convergence of the method. Table 5 contains the
computed polynomial parameters for 7, = 500 s and five temperature measurement
points placed every 8 mm from each other. It can be seen that initial guess does not
influence the results of calculations in the presented examples. The method gives the
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results, which are of the excellent agreement with the exact solution. The errors are
by far smaller than the accuracy of temperature measurements.

TABLE 5
Starting Starting Starting
point: point: point:
Parameters of equation 9 scﬁz?icc:n w; =40 w, =20 w, = 60
w,=40-10"3w,=4-10"3 w, =0
wy;=40-10"% wy; =4-10"¢ wy; =0
w, 4243 42.43 4243 4243
w, —41.76-1073 | —41.77-1073* | —41.77-1073 | —41.77-1073
W 16.52-10°° 16.53-10°° 16.53-10° 16.53-10°¢
Temperature range from 0 to ¢, °C 748 748 748 748
Error of numerical computations — 0.026 0.026 0.026
At, K — Eq. (19)

6. Conclusions

The present study has investigated the inverse problem of thermal conductivity
determination using the FEM from the additional time temperature measurements,
which have been taken at arbitrary defined locations in the heated body. The
set of five measurement points is included to the model, which guarantee the
high accuracy of the results. The properties of the body involved to the model
are typical for the carbon steels. The constant, linear or second-degree polynomial
may be applied to estimate thermal conductivity versus temperature. The method
gives good, stable and convergent results for the wide range of investigated
parameters. The total measurement simulation time 7, and the location of measure-
ment points affect the accuracy of the results. The best agreement between
analytical and numerical tests has been achieved for 7, > 100 s and for the
distance between the measurement points at least 6 mm. The thermal conductivity
approximation is also better for the first measurement point located at least
6 mm from the heated surface. The time step used in numerical calculation
impacts the estimation accuracy in the limited way. This has been observed
exlusively for the total measurement simulation time shorter than 80 s. For
the longer time the shortening of At increment does not significantly improve
the thermal conductivity determination. It has been found out that the presented
method is not sensitive to the initial value of thermal conductivity used as
a starting point in the model. The algorithm has been also tested for the
temperature dependent thermal conductivity and heat capacity of the sample.
The excellent agreement between the results obtained from a direct solution
and the inverse method has been found out.
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The observations made in this study may be helpful in determination of the terms
of experiment, which ensure the best results of thermal conductivity estimation.
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