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PROBLEMS OF MODELLING OF YIELD STRESS IN THE ON-LINE CONTROL OF HOT
ROLLING PROCESSES

PROBLEMY MODELOWANIA NAPRĘŻENIA UPLASTYCZNIAJĄCEGO
PRZY STEROWANIU W CZASIE RZECZYWISTYM PROCESEM

W ALCOW ANIA NA GORĄCO

Model of the yield stress, applicable to the on-line control of hot steel plate rolling, is
described in the paper. Developed model has a physical meaning. Three methods, based on
an analysis of large number of experimental data, are applied for evaluation of coefficients in
the model. These methods are approximation, optimisation and artificial neural network.
Yield stress was not measured directly. It was determined from the roll force measurements,
using inverse calculations of Sims equation. The results for three groups of steels (two
carbon-manganese steels and one niobium steel), are presented in the publication. The
adaptation technique is described in the paper, as well. Application of the adaptation
technique allows for immediate reaction of the system on the changes of yield stress.
Experimental validation of the model confirmed its good accuracy and usefulness for the
on-line control of the hot plate rolling process.

W artykule opisano model naprężenia uplastyczniającego przystosowany do sterowania
w czasie rzeczywistym walcowaniem blach grubych na gorąco. Opracowany model ma
podstawy fizyczne. Trzy metody oparte o analizę dużej liczby danych doświadczalnych
zastosowano do wyznaczania współczynników modelu. Tymi metodami są aproksymacja,
optymalizacja oraz sztuczna sieć neuronową. Naprężenie uplastyczniające nie było wyzna
czone bezpośrednio, lecz przez pomiary siły walcowania i obliczenia odwrotne z zastosowaniem
metody Simsa. W pracy przedstawiono wyniki dla trzech grup stali (dwóch węglowoman
ganowych oraz jednej z dodatkiem niobu). Przedstawiono również metodę adaptacyjną.
Zastosowanie adaptacji pozwala na szybkie reagowanie systemu na zmiany warunków
walcowania a więc i na zmiany naprężenia uplastyczniającego. Weryfikacja modelu na danych
doświadczalnych wskazuje na dobrą dokładność oraz możliwość implementacji go do
systemów sterowania w czasie rzeczywistym procesem walcowania blach na gorąco.
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1. Introduction 

On line control of the hot plate rolling process required fast and reliable 
models. Among several models, which are included in the control systems, the 
most important are those describing rolling force, temperature changes and profile 
of the plate. The rolling force model is usually based in the Sims formula [1] 
combined with the analytical description of the yield stress as a function of 
temperature, strain rate and strain. Problem of the selection of the stress-strain 
functions is widely discussed in the scientific literature (see for example [2]). 
Numerous papers dealing with the force models suitable for control systems for 
plate mills can be found, as well (see for example [3, 4]). Analysis of practical 
applications of roll force models shows that Sims' formula is frequently used. [5, 
6, 7]. Possibility of an adaptation of the coefficients in the model is an interesting 
feature of the on-line systems. This feature is used in the current work for 
a development of a new yield stress model, which does not require experimental 
testing of the rolled material. 

The objectives of the present work are twofold. The first is a critical analysis of 
various methods of development of the yield stress models suitable for the on-line 
control. The second is an attempt of employing the adaptation technique to the deve 
lopment of the yield stress models avoiding, or at least limiting, the experimental tests. 

2. Rolling force model 

2.1. G e n e r a 1 d e s c r i p t i o n 

This model is a basis of the on-line control system. As it is mentioned in the 
introduction, among a number of possible methods the Sims' formula [1], 
described also in [ 4], is commonly used: 

(1) 

where: ii P - an average value of the yield stress, Id - length of the arc of contact, 
b - width of the plate, Q - geometrical factor accounting for an influence of the 
plate thickness, reduction, roll radius and friction coefficient. 

It is shown in [7] that simple equation (1) fully satisfies the requirements of the 
control systems. The average yield stress in (1) is calculated as: 

e 

ii p = l f (J p de, 
o 

where: <JP - current value of the yield stress, which is usually determined from the 
plastometric tests and presented as a function of temperature, strain rate and strain. 

(2) 
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Comparison of average and current values of the yield stress shows that both these 
parameters exhibit similar character of the correlation to the independent pro 
cess parameters. It can be assumed with a good accuracy that the current 
value of the yield stress c, P multiplied by a relevant coefficient can be in 
troduced in the equation (1) [8]. This coefficient is constant for a given ma 
terial. 

2.2. Y i e l d s t r e s s 

An accuracy of the rolling force model depends mainly on the correctness of 
the description of the yield stress. Problem of the plastometric tests leading to 
the evaluation of the yield stress is investigated reasonably well [2, 9, 10]. 
Numerous examples of functions describing yield stress can be found in the 
scientific literature [9, 10], nevertheless, if often happens that these functions do 
not fit the experimental data properly in the whole range of the process parameters. 
In the temperatures above the recrystallisation stop temperatures the yield stress 
is affected by the competitive phenomena of hardening, recovery and recrystal 
lisation, which are govern by the microstructural changes in the austenite [ 4, 10, 
11, 12]. Due to these changes two types of the flow curves are possible. The 
first is characteristic for the materials in which hardening is compensated by 
recovery before the critical strain is achieved. The second type is typical for the 
materials, which exhibit dynamic recrystallisation. Hot rolled steels belong to the 
second group. 

Analysis of the types of the stress- strain curves was performed in [2]. The following 
factors can be accounted for when modelling yield stress [9, 10]: i) micro 
structural phenomena, ii) changes of strain as a function of time, iii) orientation of main 
strain directions in the subsequent phases of the process. In consequence, five types of 
the stress strain functions are suggested in [2]: 
Type I c, P = f(1:) accounts only for an influence of strain 1:, 

Type II c,P = f(1:,1:, T), accounts for an influence of temperature T, strain rates and 
strain 1:, 

Type III c,P =J(1:,s, T,uw), accounts additionally an influence of the internal state of 
the material c, w, 
Type IV c, P = f(1:, s, T, t) in which time t is an additional independent variable, 
Type V composes functions accounting for changes of directions of the main strains 
during deformation. 

Functions belonging to the type II are considered in the current work. In hot 
forming processes the yield stress is usually presented as a function of the chemical 
composition of steel, temperature, strain rate and strain. However, in the models 
developed for a particular rolling mill and advantage is taken from the fact that some 
of the parameters change in a narrow range what allows simplification of the 
function by omitting these parameters. 
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Continuity of the hot forming process is the main factor, which classifies this 
process with respect to the choice of the stress strain function. Plate rolling processes 
are sequential, what means that subsequent passes are separated by interpass 
times tP. Length of these times decides how far an effect of one deformation is 
carried to the next pass. This effect is accounted for by calculation of so called 
retained strain. 

Difficulties with the mathematical description of the yield stress function are 
connected with the wide range of changes of independent parameters. Significant 
simplification of the yield stress model is achieved when the strains below the peak 
strain are considered. This assumption is acceptable for plate rolling process in 
which dynamic recrystallisation rarely occurs. Thus, the following equation was 
considered in the present work [8, 14]: 

(3) 

In equation (3) a, b, n and m are the material constants, which are usually 
determined using approximation or optimisation technique [14]. 

2.3. E v a I u a t i o n o f m a t e r i a I c o n s t a n t s 

Approximation is one of the methods, which allow evaluation of coefficients 
in equation (3). Function (3) is non-linear with respect to the independent 
variables. However, it can be linearised by calculating logarithm from both 
sides of equation (3): 

In a- = In a+ ; + m In ( 0~2) + n In ( /0). (4) 

In consequence, the relationship between ln(a-) and the parameters Ina, b, 
m I n becomes linear and the following objective function can be formulated: 

(5) 

In equation (5) O"; represents the yield stress calculated from the i-th experimental 
point. Typical approach to this problem uses experimental data obtained from 
plastometric tests. In the current approach the yield stress is determined from the 
rolling force measurements using inverse calculation of equation (1). This allows 
on-line adaptations of the yield stress model. 

Application of the least squares method requires calculations of the derivatives of 
the objective function (5) with respect to the coefficients a, b, m and n: 
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ć)c5 = 2 ~ {~[~+lna+mln(~)+nln(!J_)-1n <J;]} = O ob ~ T, T, 0.2 10 
i= 1 

es Lk [ b ( 8 ) ( { ) ] - = 2 -+lna+mln -' +nln ~ -ln<J; = O 
Ina Ti 0.2 10 

i= 1 (6) 

i= 1 

Rearranging of equation (6) and introduction of the matrix notation yields: 

Ax =p, (7) 

where: 

L✓1 L:j L 1 I ( 8;) L 1 ( S-)-In~ 
Ti n 0.2 T; 10 

L:j k Lin(o\) L In(:~) 
A= L 1 ( 

8
i ) L 1 ( 8i ) L 2 ( 8i ) L ln(;~)1n(:~) -In - n - In - 

Ti 0.2 0.2 0.2 

p= 
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Coefficients a, b, m and n is equation (3) are calculated by solution of the set of 
linear equations (7). Approximation yields coefficients, which give minimum of the 
sum of squares of differences between logarithms of error in each measurement point. 
Better accuracy can be obtained using optimisation technique, which searches for 
a minimum of the error function: 

(8) 

i= 1 

with respect to the coefficients a, b, m and n. Gradient method was used to solve the 
problem. In this method changes of the unknowns in subsequent iterations are 
calculated as: 

(9) 

where: x = { a, b, m, n V, 'li - vector of the step length for the j-th iteration, 
I - unity matrix. Influence of the unknowns on the error norm is determined by the 
partial derivatives in equation (9) given by: 

k ~!=~I (Tji((Tji-(T;) 

i= 1 
k 

oE = 2'"' _!:__CT (CT -(T) ob ~ Ti Jl Jl I 

i= I 

oE = 2 ~ {10 (!_j_) CT .. (CT .. - CT-)} om ~ 0.2 Jl Jl I 

i= I 

oE = 2 ~ {10 (-_i;) CJ .. (CJ .. -CJ.)} On ~ 10 Jl Jl 1 

(10) 

n 
The tendency of stopping the procedure in local minima can 

be limited and the solution can be accelerated by an introduction of additional term 
in the equation describing increments of variables Ax: 

i= 1 

( 11) 

where:µ - coefficient accounting for an influence of the vector of increments Ax in 
the previous iteration. Additional improvement of the quality of optimisation is 
achieved by using variable vector of the length of steps '1· This length is increased 
when the error norm decreases noticeably comparing to the previous iteration. 
Change of the step length is calculated from the following equation: 
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l'/1,j+ 1 =

1.2 f/lj 

0.517/j

for (aE) (aE) OX1 j OX1 j- I ~ o 
I= 1, 2, 3, 4 ( 12)

(oE) (oE) for - - < O
OX1 j OX1 j-1 

where: I - number of the unknown in the vector x. 
Both approximation and optimisation procedures have been applied to the

evaluation of the coefficients a, b, m and n in the equation (3) for tested steels.

3. Application of artificial neural networks 

When an application of approximation and optimisation techniques presents
difficulties, the artificial neural network (ANN) becomes a useful tool in the
description of the stress-strain curves. Training of the neural network follows the
same principles as approximation. However, non-linearity of the neurone's trans
mission function results in higher flexibility of the ANN approach. The main fact,
which distinguishes ANN from approximation, is a lack of equation, which relates
output and input parameters. Neural network is a structure without precisely
determined function describing physical phenomenon.

Analysis of data structure and network training performed in [15] has shown that
the network configuration with three entry parameters (temperature, strain rate and
strain) and with three neurones in the hidden layer allows obtaining good results.
Increasing of the number of neurones does not improve the results noticeably, what is
probably due to a significant scattering of the training data. Decrease of this scattering
would probably require an introduction of additional neurones.

4. Results and Analysis 

Table contains values of coefficients in equation (3) obtained from rolling force
measurements by inverse calculations combined with approximation and optimisa
tion techniques. Results of training of the artificial neural network are presented, as
well. Three groups of steel grades were investigated. The first composed steels
containing niobium (between 0.02 and 0.035% Nb). The next two groups compose
carbon-manganese steels, distinguished by the carbon equivalent Ceą = C + Mn/6,
where C and Mn represent contents of carbon and manganese, respectively. The
investigation was performed within the temperature range 850- 1150°C, strain rate
range l .9- 30 s - 1 and strain range 0.06- 0.4. Analysis of the results shows
reasonably good accuracy and an average square-root error was about 12-15 MPa.
The difference between the two groups of carbon-manganese steels is negligible.
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These observations gave a basis to connecting two groups of the carbon-manganese 
steels and the result is in the last row of table. All steels show small sensitivity to 
strains (m below 0.1) and only slightly higher sensitivity to strain rate (n about 
0.18- 0.26). 

TABLE 

Coefficients in equation (3) calculated using approximation and optimisation techniques as well as 
artificial neural network 

Number Average 
Steel of data Method a b m n square-root 

points error, MPa 

approximation 3.659 3845.8 0.0362 0.1814 14.6 
Niobium 327 

optimisation 3.998 3757.9 0.0109 0.1827 14.5 

C-Mn I approximation 10.913 2605.6 0.0843 0.2308 13.7 
1415 

c., = 0.2-0.21% optimisation 12.447 2477.8 0.0770 0.2405 13.6 

C-Mn II approximation 9.640 2748.2 0.0838 0.2579 12.7 
728 

ccq = 0.27-0.45% optimisation 11.025 2618.2 0.0717 0.2584 12.7 

approximation 10.377 2650.7 0.0838 0.2383 13.5 
C-Mn 

1922 optimisation 11.762 2527.4 0.0752 0.2467 13.4 
c., = o.2-0.45% 

ANN - - - - 12.96 

Relationship between basic stress <J T = a exp (b/T) and temperature for three 
tested groups of steels is presented in Fig. 1. Thin lines with symbols represent results 
obtained from optimisation for three groups of steel. Relation predicted by the 
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artificial neural network is presented, as well (thick line without symbols). Con
clusion regarding a lack of difference between two groups of the carbon-manganese
steels is confirmed. Distinct results were obtained for niobium steels, in particular at
lower temperatures, where yield stress of niobium steels increases faster than that of
carbon-manganese steels. Artificial neural network predicts smaller increase of the
yield stress than equation (3).
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Fig. 2. Yield stress as a function of strain for the three groups of steels
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Fig. 3. Relation between the yield stress and the strain rate for the three groups of steels

Relations between yield stress and strain rate and strain are shown in Figs. 2 and
3. Character of plots for ANN questions ability of equation (3) to describe properly
the yield stress within wide range of process parameters. However, the differences are
not so large and model (3) can be considered acceptable.

8 - Arch. Hutnictwa 
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Comparison of measured and predicted yield stress for niobium steels is shown in 
Fig. 4. Dotted line in this figure represents ideal correlation, when calculated force Fe 
is equal to the measured one Fm· Reasonably large scattering of results is observed in 
Fig. 4, what confirms values of errors in Table. This scattering allows suggestion that 
the consistency of the experimental data was low. Since a large number of the 
experimental results was examined, the statistical yields regression function which is 
close to the ideal one, what again confirms good predictive ability of equation (3) 
with coefficients given in Table. 
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Fig. 4. Comparison between yield stress for niobium steels calculated from rolling force measured and 
calculated using equations with constants obtained from approximation and optimisation 

Method of validation of the yield stress model is described in [8]. Physical basis 
is the main advantage of this model. Basic stress respesents yield stress determined as 
a function of temperature for the strain of 0.2 and the strain rate of 1 O s - 1. 
Coeffieints m i n represent sensitivity of the yield stress to strain rate and strain, 
respectively. Influence of the chemical composition can be considered in two ways. 
The first assumes an introduction of separate curves for various carbon equivalents, 
as it is shown in Fig. 1. The second method introduces carbon equivalent as 
a variable into the model, as it is shown in [14]. This method causes an increase of 
the unknown variables to five. 

6. Adaptivity of the model 

Neural network yielded the best results. Since the trained neural network is very 
fast, its application in the on-line system does not present difficulties. However, 
training of the network requires large number of data and usually takes a long time. 
These long training times do not allow using for this process the same computer, 
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which works in the contro l system . Thus, introduction of new data cannot have 
immediate impact on the network's predictions. Beyond this, a large database has to 
be maintained fo r each group of steels. A ll these fact allow to conclude that artificial 
neura l network will not be effi cient when often changes of steel grades take place and 
fast reaction of the system on these changes is required. 

Since the flow stress is a featur e of the material independent of time, the on-line 
changing of the model does not seem inevitable. It is due to two facts. Firstly, an 
introduction of new material requires new data. Secondly, measurement gauges 
always introduce a systematic error, which is not accounted for by the model. 

The simplest on-line model uses the flow stress described by equation (3) with 
coefficients obtained from optimisation or approximation. All steels, which are rolled 
in the considered mill, can be grouped in several groups. Indeed, an application of 
the optimisation technique is not as time consuming as training of the ANN, 
nevertheless, it still has to be performed on a separate computer, which is not used in 
control. The fact that approximation does not require iterative procedure favours 
this method for the adaptive procedures. 

Two approaches based on approximation are possible. The first uses contantly 
changing database followed by calculations of coefficients in equation (3) using the 
method described earlier. In this approach the computer memory and speed limit the 
size of the database. The second approach, which is pursued in the present work, 
allows obtaining similar effect with much smaller computer. The idea of this approach 
is based on using equation with on-line amendments of coefficients. Current average 
values of the considered parameters are calculated using the rule of digital filter: 

Xav,i = (1-q) Xav,i-1 + qxi, (13) 

where: xav - current, average value of the parameter x, i - iteration (pass) number, 
q - coefficient (O < q < 1). 

Factor of proportionality this digital filter is equal 1. However, when value 
different than 1 can be used, the simplified equation is valid: 

(14) 

Care has to be taken of the fact that the same equation is used for each 
parameter. Efficiency of the suggested method has been validated. Developed 
computer program consists of: 

• calculations of average values of all parameters in the 4 x 5 matrix; 
• initial accumulation of average values; 
• solution of the set of equations and evaluation of the coefficients in equation (3); 
• calculation, using equation (3), of the yield stress for the next pass; 
• comparison between measured and predicted yield stress (the points character 

ised by large discrepancy are discarded). 
The data, which were previously used for optimisation and approximation, are 

here used for testing the adaptation technique. Since the available data could not be 

8* 
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arranged according to the rolling sequence, two sets of data with random sequence 
have been prepared. Plots of average square root error and coefficients in equation 
(3) are presented in Figs 5 - 8, while corelation field is shown in Fig. 9. It should be 
emphasised that na average error for the considered cases is 13.08 MPa and 13.1 
MPa. This error for approximation is 13.5 MPa and for optimisation 13.4 MPa, and 
is comparable with the error of the artificial neural network (13.0 MPa). During 
adaptation, all the coefficients in equation (3) change in a narrow range around the 
values calculated previously. 
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Fig. 5. Variations of the average square root error during adaptation 

3.5 

3.0 

2.5 

2.0 
"' c 

1.5 

1.0 

0.5 --4-- data 1 

-e- data 2 
O.O 

o 400 800 1200 1600 2000 
iteration number 

Fig. 6. Variations of the coefficie~t In (a) during adaptation 



447 

3200 

2800 

.n 
c 
Q) 
·o 2400 
ii= 
Q) 
o u 

2000 

--e- data 1 0.05 

----€r-- data 2 
1600 0.00 -----------~-~--.------. 

o 400 800 1200 1600 2000 
iteration number 

Fig. 7. Variations of the coefficient b during 
adaptation 

0.30 

0.25 

C: 
E-0.20 
(/) 

c 
.'!! 0.15 u 
ii= 
Q) 

8 0.1 o 

400 800 1200 1600 2000 
iteration number 

Fig. 8. Variations of the coefficients n, m during 
adaptation 

The primary data set, with the data arranged according to the rolling schedule, is 
used in the second stage of adaptation. There are no limitations put on the values of 
measured temperatures, strains, strain rates and yield stresses. Undoubtedly, some of 
the wrong <lara are in this set. Therefore, the points for which the difference between 
measured and calculated yield stress exceeded 30 MPa, were discarded. Results of 
calculations are shown in Figs 10-14. Thin line (data 4) shows calculations without 
discarding the erroneous points. Thick line (data 3) represents the results obtained 
for the selected data, with error within 30 MPa, calculated using the same algorithm. 
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Final average square root error is 1 l.85 and 11.36 MPa, which is even smaller 
than that for the ANN. Using all the data, including erroneous ones, leads 
to an increase of the total error. Further analysis shows that discarding the 
erroneous data is essential for the accuracy of the mode. Selection of the 
data can also be made on the basis of measurement of other parameters, 
for example temperatures. When the measure and calculated temperatures differ 
significantly, such a data point is rejected. 
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7. Conclusions 

Model of the yield stress, applicable to the on-line control of hot plate rolling, is
described in the paper. Application of the approximation, optimisation and artificial
neural network methods for evaluation of constants in the model yielded errors
about 12-14 MPa. The efficiency of the model was significantly improved by an
application of the adaptation technique, which is described in the paper, as well. This
technique allows for immediate reaction of the system on the changes of yield stress.
Experimental validation, based on the data monitored during normal work of the
plate mill, confirmed good accuracy of the model and its usefulness for the on-line
control of the· hot plate rolling process.
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