
Introduction

In recent years, the air quality issues caused by surface ozone 
(O3) and PM in Beijing-Tianjin-Hebei region, especially 
in Beijing, China, have attracted significant attention from 
governments at all levels and the general public. Surface 
O3 is a secondary pollutant produced by photochemical 
reactions involving nitrogen oxides (NOx) and volatile organic 
compounds (VOCs).  PM is a complex mixture consisting of 
primary PM, which comes directly from emission sources, and 
secondary aerosol components formed through atmospheric 
chemical reactions involving pollutants like NOx, VOCs, 
NH3 and SO2 (Liu et al., 2008; Xue, 2000).Specifically, NOx 
can decompose into oxygen atoms under sunlight, which 
then react with atmospheric oxygen to create O3. VOCs can 
also be broken down into smaller organic molecules and free 
radicals under sunlight, which perpetuates O3 formation (Liu 
et al., 2021). Additionally, some chemical reactions among 
NOx, VOCs, NH3 and SO2 can generate some low volatile 
compounds, which can then condense onto primary PM or 
among themselves to form new PM (Nguyen et al., 2002).  

The formation of surface O3 and PM can adversely 
affect human health,and motor vehicle emissions are one of 
the primary sources of these pollutants (Zhang et al., 2023; 
Kumar et al., 2021). According to the latest pollutant emission 
inventory, NOx emissions from vehicles account for over 
80% of mobile sources in Beijing, while VOC emissions from 
vehicles constitute approximately 30% (Xu et al., 2020). Based 
on recent analyses of fine PM2.5 sources in Beijing, vehicle 
pollution contributes to 45% of local emissions (PGBM, 2021; 
Daellenbach et al., 2020). In addition to the directly emitted 
PM2.5, the contribution of their secondary formation also 
deserves attention.

In China, the continuous increase in car ownership and 
congestion during morning and evening peak hours contribute 
to the increasing severity of traffic pollution. In 2021, the 
number of vehicles in China reached 395 million, a  6.2% 
increase compared to the same period in 2020. There are 
seventy-nine cities in China with over one million vehicles, 
with Beijing being the only city with more than six million 
gasoline vehicles. Gasoline vehicles dominate urban road 
fleets, while diesel vehicles remain the primary carrier of 
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intercity freight transportation (MEE, 2022). According to 
statistics, the total vehicle emissions of NOx, VOCs, and PM2.5 
in China could reach 5.26 million tons, 1.91 million tons and 
53 thousand tons, respectively, in 2022 (MEE, 2023; Guha et 
al., 2023).

Therefore, further research to strengthen the control 
of vehicle pollution is necessary for improving ambient air 
quality and safeguarding public health. China has continuously 
upgraded fuel and vehicle emission standards to reduce the 
emissions of O3 and PM precursor, as well as  other pollutants 
emitted by vehicles (Lyu et al., 2020). Nevertheless, there 
remains a considerable gap between the expected effects 
of policy implementation and environmental protection 
requirements, despite the government’s efforts to improve 
air quality (Wang et al., 2020). Environmental governance in 
China has reached a critical stage, where precise treatment 
of pivotal environmental problems is necessary to control 
emissions and achieve clear goals. 

The implementation of fuel and vehicle emission 
standards in China follows a phased approach: Beijing 
precedes the Beijing-Tianjin-Heibei (BTH) region, and the 
BTH region precedes the rest of China. Therefore, analyzing 
the relationship between upgrading of vehicle emission 
standards upgrade and ambient O3 and PM levels in Beijing 
is crucial for promoting policies and achieving national 
unification of standards. Based on vehicle emission tests, 
this study used Response Surface Methodology (RSM) and 
Response Surface Modeling-Visualization & Analysis Tool 
(RSM-VAT) to analyze the degree of O3 and PM concentration 
reduction during the upgrade of vehicle emission standards 
from China Ⅲ to China Ⅴ. The study demonstrates the 
contribution of current control measures to the reduction 
of vehicle emission pollutants and related environmental 
problems. The findings of this study have the potential to aid 
the government in formulating effective strategies for future 
emission abatement.

Methodology

Research content and scheme
In this study, vehicle emission experiments were conducted 
on light-duty gasoline vehicles and heavy-duty diesel 
vehicles to obtain vehicle emission factors for several typical 
pollutants, such as NOx, VOCs, and primary PM. Additionally, 
background data, including the geographic zones of the study 
object, were collected to form a data file that met the model 
format requirements for analysis. These data files were used 
as input for the RSM for subsequent simulation evaluation 
of pollutant concentrations in corresponding regions. The 
RSM was developed by designing control scenarios, sample 
statistics, numerical simulations, and reliability testing, which 
established a functional relationship between source-specific 
emissions and air pollution conditions.  This enabled a rapid 
response of the ambient concentration of the target pollutant 
under the specified emission scenario. Changes in O3 and PM 
concentrations and regional distributions in Beijing could be 
output through RSM, and then, using RSM-VAT developed by 
Lao et al., (2012), to evaluate the environmental improvement 
resulting from the upgrade of vehicle emission standards in 
Beijing.

Emission test 
As shown in Figure S1, the test cycle was the World Light 
Vehicle Test Cycle (WLTC), which includes four parts: low 
speed, medium speed, high speed, and ultra-high speed. The  
total cycle duration was 23.266 km, with  a maximum cycle 
driving speed of 131.8km/h. 

The light vehicle emission test system mainly included 
a chassis dynamometer, particulate matter counter, and a full 
flow dilution sampling and analysis system for sampling and 
measuring exhaust pollutants. The test vehicles were immersed 
in the designated immersion area for 6h-36h to ensure that 
the engine oil temperature and coolant temperature were 
maintained  at 23±2℃ before the start of the test.

Exhaust pollutants (CO, NOx, VOCs, etc.) were measured 
using a CFV-CVS (Critical Flow Venturitube-Constant Volume 
Sampling) system.  CO was analyzed by the non-spectroscopic 
infrared method, VOCs by flame ionization detection, and 
NOx by the chemiluminescence method. Exhaust pollutants 
collected during each stage of the WLTC were sampled after 
dilution. Subsequently, the emissions of each pollutant were 
analyzed and calculated.

Based on the data gathered from various speed segments, 
the emissions of gaseous pollutants across distinct speed ranges 
were computed:
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Figure S1. The speed-time relation curve in WLTC
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In the equation,  is the volume fraction (vppm) of the 
i-th pollutant in the dilution gas measurements; is the volume 
fraction (vppm) of the i-th pollutant in the dilution air 
measurements; and DF denotes as the dilution factor.

For gasoline, the following formula is used to calculate the 
dilution factor:
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test; and  is the current atmospheric pressure (kPa) in the test 
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relative humidity averaged over the continuous measurements 
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algorithm programs. The RSM model helps establish a rapid 
response and mapping relationship from pollution source 
emissions to pollutant concentrations. It can be used for rapid 
assessment of the outcomes  of specific emission scenarios, 
such as emission reduction measures and related policy 
implementation effects.

Model design
The establishment of the RSM model relies on determining 
the relationship between controllable source emissions and 
pollution levels through a response function. The process of 
building an RSM model involves five steps: selecting and 
determining control factors, designing control scenarios, 
selecting reasonable experimental parameters, fitting response 
(function) relationships, and verifying model reliability.

(1) Selection of Control Factors
Control factors refer to emission parameters. Selecting 
appropriate control factors based on research needs is a 
prerequisite for control matrix design in RSM construction. 
Generally, starting from the research objective, various relevant 
pollutants from different regions and sources that are related to 
the target range are determined as emission control factors.

In this study on O3 and PM pollution in the Beijing region, 
the selected control factors include NOx emissions from light 
gasoline vehicles, NOx emissions from heavy diesel vehicles, 
other NOx emissions, VOC emissions from light gasoline 
vehicles, VOC emissions from heavy diesel vehicles, and other 
VOC emissions. 

(2) Design of Control Scenario
Control scenarios correspond to changes in control factor 
coefficients. To generate a sampling space for studying control 
factors, samples are collected to characterize the changes in 
the corresponding control factor(s). Achieving the highest 
sampling efficiency and saving time and computational costs in 
model construction is the key element of the sampling process. 
Effective and fast sampling methods are required to achieve 
this goal. The Latin Hypercube Sampling (LHS) method can 
make the obtained samples distributed relatively uniformly in 
the global sampling space and reflect actual situations more 
realistically. However, it has some problems, as the results of 
each random sample can differ  significantly  (Box and Draper, 
2007; Hammersley, 1960). 

To improve the stability of experiments and simulations, 
some researchers have used a more reliable sampling method, 
the Hammersley Quasi-Random Sequence Sample (HSS) 
(Hammersley, 1960), implemented through specific program 
algorithms. HSS ensures both the uniform distribution of 
sampling results in the space and the credibility of the results, 
thereby improving the reproducibility of sampling. Therefore, 
HSS is increasingly applied in RSM for sample generation 
and control scenario construction. This study employed a two-
dimensional uniform sampling method for the control factors 
utilizing the HHS.

(3) Selecting experimental parameters
In the RSM model, selecting an appropriate number of samples 
is a crucial step for successful model construction. Xing Jia 
designed an analysis method using simulation experiments to 
determine the minimum required sample size for experiments 
with a given number of control factors by constructing 
a “virtual response” relationship (Xing, 2011). Based on 
previous research experience, two RSM models created in this 
study selected 200 (RSM-O3) and 300 (RSM-PM) samples 
respectively to ensure the reliability and accuracy of simulation 
results.

(4) Nonlinear statistics (response relationship fitting) 
After determining the control factors and experimental 
parameters, samples are generated through computational 
simulation and nonlinear mathematical statistical analysis. 
Early response RSM models used the MPerK program for 
model construction, combined with Kriging interpolation, and 
utilized maximum likelihood estimation methods (Zhao et 
al., 2013a). Currently, polynomial fitting techniques based on 
chemical mechanisms are used instead of the original black-
box statistical methods to elucidate the essential response 
relationship between characteristic pollutant concentrations 
and source emissions. These techniques quickly extract and 
quantify the nonlinear features of different species’ responses 
to environmental concentrations (Jia et al., 2017; Zhao et al., 
2013b).
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Reliability verification
In completed research, the reliability of RSM prediction results 
is mainly verified using three methods: “External Verification”, 
“Leave-One-Out Cross-Validation (LOO-CV)”, and “Pairwise 
Isoline Verification (PIV)”. External validation is the most 
commonly used method, which tests the entire RSM model by 
adding external validation samples. This method can evaluate 
the reliability of the constructed RSM system under a specific 
control scenario. LOO-CV involves partitioning the data 
sample into numerous smaller subsets, where each iteration 
excludes one sample for evaluation while the remaining 
samples serve primarily to evaluate the stability of the entire 
statistical simulation system (Aelion et al., 2009). PIV is used 
to evaluate the reliability and stability of RSM within different 
dimensions and the entire spatial range.

The advantage of LOO-CV is that the test can be performed 
within the range of the experimental fitted sample, and it does 
not require time to prepare new simulation scenarios. However, 
the disadvantage of this method is that it cannot investigate the 
stability of an RSM model constructed outside the experimental 
sample range. For external validation, the number of scenarios 
introduced is limited due to the long time required for model 
simulation. Compared to LOO-CV, external validation can 
analyze the accuracy and reliability of RSM’s prediction results 
for the research target under specified control scenarios beyond 
the scope of the research sample, making it the most important 
method for reliability testing. Therefore, this study employed 
external validation to assess the reliability of the constructed 
RSM models based on the external validation function module 
provided by  RSM-VAT.

Software flow
RSM-VAT comprises three modules: RSM Modeling 
Experimental Design (Experimental Design), Data Validation 
(QA & Validation), and Data Visualization & Analysis 

(Visualization & Analysis). Each subsystem plays a unique 
functional role in constructing RSM and generating analysis 
results. Figure S2 visually presents the functional framework 
of RSM-VAT. The RSM building block first establishes the 
response surface model (RSM) and generates a series of policy 
files based on relevant input parameters, which provide input 
files for subsequent steps. After the RSM is constructed, the 
Data Validation module checks whether the prediction error 
of the established RSM system is within an acceptable range. 
Upon confirming that the error is acceptable, the Visualisation 
& Analysis module displays the response relationship between 
controlling pollutant emissions and predicting environmental 
concentrations, and analyzes and outputs a series of related 
characteristic laws.

Results and discussion

Emission factors of vehicle
The data on NOx, VOCs, and primary PM emissions from light-
duty gasoline vehicles and heavy-duty diesel vehicles under 
China Ⅲ to China Ⅴ emission standards were collected and 
summarized in Table 1. By normalizing the relevant pollutant 
emission factors to corresponding emission standards, the 
corresponding control coefficients were obtained and are 
presented in Table 2.

Model performance
Using RSM-VAT 2.6, this study constructed the O3-RSM 
model (RSM-O3) and the PM-RSM model (RSM-PM) for the 
Beijing region,  establishing the response relationship between 
the concentration of O3 and PM and the emissions of each 
precursor pollutant. Through control scenario analysis of the 
two target pollutants, the environmental concentrations of O3 
and PM in the Beijing region during the period of the China Ⅲ 
to China Ⅴ emission standards were studied. The response of 

Figure S2. RSM-VAT functional structure
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O3 and PM pollution to the evolution of emissions standards 
from China Ⅲ to China Ⅴ was also analyzed to assess the 
environmental improvements resulting from stricter emission 
standards for vehicles. In addition, external verification 
methods were used to test the reliability of the RSM system 
and ensure the accuracy of the established RSM models in 
predicting the environmental concentration of target pollutants.

Model Construction
(1) O3
A response surface model (RSM) was used to analyze the 
nonlinear relationship between O3 ambient concentration and 
two precursor pollutants, NOx and VOCs. The control factors 
were divided into six types based on the research purpose: 
NOx emissions from light gasoline vehicles, NOx emissions 
from heavy diesel vehicles, NOx emissions from others, VOC 
emissions from light gasoline vehicles, VOC emissions from 
heavy diesel vehicles, and VOC emissions from others.  Two-
dimensional uniform sampling of the control factors was 
carried out using HHS with 20 samples. The resulting response 
surface model is called RSM-O3_HSS6-200.

(2) PM
In a similar manner to the O3-RSM modeling process, this study 
selected three controllable precursor pollutants - NOx, VOCs and 
PM - as control factors, while NH3 and SO2 were kept unchanged. 
The three control factor species were divided into nine types based 
on research needs, which included NOx and VOC emissions from 
light-duty gasoline vehicles, heavy-duty diesel vehicles, and other 
sources, as well as PM emissions from light-duty gasoline vehicles, 
heavy-duty diesel vehicles, and other sources. The same sampling 
method was applied to 300 samples, and the resulting response 
surface model, called RSM-PM_HSS9-300, was established.

Reliability analysis
(1) O3
The external testing results of the RSM-O3_HSS6-20 are 
presented in Table 3, with the mean bias (MB) and mean error 
(ME) of RSM prediction results being 1.68×10-18 μg/m3 and 
1.83×10-18 μg/m3, respectively. The mean normalized bias 
(MNB) and mean fractional bias (MFB) were 2.22×10-19 %, 
while the mean normalized error (MNE) and mean fractional 
error (MFE) were 2.66×10-19 %, with the maximum value of 

Table 3. RSM-O3 External verification error and bias

Table 2. Control coefficient of vehicle emission factors in 
different emission scenarios

Table 1. Vehicle emission factors under China III to China V 
emission standards

Emission standards NOx  
(mg/km)

VOCs  
(mg/km)

PM  
(mg/km)

Light 
gasoline 
vehicles

China III 206.42 233.12 6.00

China IV 88.53 84.98 3.60

China V 27.88 42.88 1.91

Heavy 
diesel 

vehicles

China III 7976.71 811.95 63.77

China IV 5224.06 516.77 33.22

China V 4846.96 472.77 14.42

Emission standards NOx  
(mg/km)

VOCs  
(mg/km)

PM  
(mg/km)

Gasoline 
vehicle

China III 1 1 1

China IV 0.43 0.36 0.6

China V 0.14 0.18 0.32

Diesel 
vehicle

China III 1 1 1

China IV 0.65 0.63 0.52

China V 0.61 0.59 0.22

Index
External validation  

(Number of scenarios=20)
Mean Maximum Minimum

Mean bias/
(μg/m³) 1.68×10-18 1.88×10-17 -6.68×10-19

Mean error/
(μg/m³) 1.83×10-18 1.79×10-17 0

Mean 
normalized 
bias

2.22×10-19 % 2.55×10-18 % -2.39×10-19 %

Mean 
normalized 
error

2.66×10-19 % 2.55×10-18 % 0

Mean 
fractional 
bias

2.22×10-19 % 2.55×10-18 % -2.39×10-19 %

Mean 
fractional 
error

2.66×10-19 % 2.55×10-18 % 0

Index
External validation  

(Number of scenarios=30)
Mean Maximum Minimum

Mean bias/
(μg/m³) 2.25×10-17 1.88×10-16 -8.88×10-18

Mean bias/
(μg/m³) 2.33×10-17 1.79×10-16 0

Mean 
standard 
bias

1.22×10-18 % 1.65×10-17 % -3.36×10-18 %

Mean 
standard 
error

1.69×10-18 % 1.65×10-17 % 0

Mean 
fractional 
bias

1.22×10-18 % 1.65×10-17 % -3.36×10-18 %

Mean 
fractional 
error

1.69×10-18 % 1.65×10-17 % 0

Table 4. RSM-PM External verification error and bias
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these four items being 2.55×10-18 %. These results indicate that 
the RSM-O3_HSS6-200 model established by the institute has 
high reliability for predicting environmental O3 concentration, 
with errors and deviations within acceptable ranges.

Figure 1 compares the average O3 concentrations obtained 
from the RSM-O3_HSS6-20 model under the external validation 
scenario ACONC.3001 with those from the CMAQ simulation. 
Specifically, Figures 1(a) and (b) depict the O3 average 
concentration response diagrams simulated by RSM and 
CMAQ, respectively. Meanwhile, Figure 1(c), labeled as “Delta_
ACONC.3001_O3,” illustrates the discrepancies between the 
RSM-O3_HSS6-200 and CMAQ simulation outcomes.

The analysis reveals notable differences in O3 concentrations 
predicted by RSM-O3_HSS6-20 and the CMAQ simulations. 
However, it is worth noting that all absolute error values fall 

within 1.6 μg/m3. This finding underscores the reliability of 
the RSM-O3 model developed in this study for predicting O3 
concentrations in the control scenario specific to the Beijing 
region. Therefore, the RSM-O3_HSS6-20 model holds promise 
as a valuable tool to aid in environmental impact assessments 
related to vehicle emission standards upgrades.

Figure 2 presents the least squares linear regression lines for 
O3 concentrations modeled by RSM and CMAQ under control 
scenarios ACONC.3001, ACONC.3002, ACONC.3003, and 
ACONC.3004. It is observed that all four regression lines 
closely overlap with the line of slope 1 (x:y=1:1). Specifically, 
the correlation coefficients (r) between the results obtained 
from RSM and CMAQ methods are greater than 0.999 for all 
four control scenarios, with values of 0.9997972, 0.9996918, 
0.9997576, and 0.9998389, respectively. 

Figure 1. Two-dimensional plot comparing O3 predictions for CMAQ and RSM

Figure 2. Distribution scatter plot comparing O3 predictions for CMAQ and RSM

(a) RSM                                                                 (b) CMAQ                                                            (c) Difference
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Overall, the RSM-O3_HSS6-20 model is a reliable tool for 
predicting environmental O3 concentrations and can be used 
for environmental impact assessments of vehicle emission 
standard upgrades.

(2) PM
The external testing results of the RSM-PM_HSS9-300 are 
presented in Table 4, with MB and ME of the simulated PM 
environmental concentration being 2.25×10-17 μg/m3 and 2.33×10-

17 μg/m3, respectively. The values of MNB and MFB were 1.22×10-

18 %, while the MNB and MFE values were both 1.69×10-18 %, 
with the maximum value of all four items being 1.65×10-17 %. 
These results indicate that the RSM-PM_HSS9-300 model has 
high accuracy and reliability for predicting PM environmental 
concentrations under the designed control scenario.

Figure 3 presents a comparison of average PM 
concentrations derived from the RSM-PM_HSS6-300 model 
under the external validation scenario ACONC.3001 against 
those obtained from the CMAQ simulation. Specifically, 
Figures 3 (a) and 3(b) focus on PM average concentration 
response diagrams simulated by RSM and CMAQ, 
respectively. Additionally, Figure 3 (c), designated as “Delta_
ACONC.3001_PM,” highlights the variations between the 
RSM-PM_HSS6-300 and CMAQ simulation results for PM.

The analysis reveals differences in PM concentrations 
predicted by the RSM-PM_HSS6-300 model compared to 
the CMAQ simulations. However, all absolute error values 
are within an acceptable range of 13.8 μg/m3. Although this 
error margin is higher than that observed for O3, it still falls 
within tolerable limits. Therefore, this finding reinforces the 

Figure 3. Two-dimensional plot comparing PM predictions for CMAQ and RSM

Figure 4. Distribution scatter plot comparing PM predictions for CMAQ and RSM

(a) RSM                                                                 (b) CMAQ                                                            (c) Difference
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reliability of the RSM-PM model developed in this study for 
predicting PM concentrations in the Beijing-specific control 
scenario. Consequently, the model holds promise as a valuable 
tool for supporting environmental impact assessments related 
to vehicle emission standards upgrades.

Figure 4 displays the least squares linear regression lines 
representing PM concentrations modeled by both RSM and 
CMAQ under four distinct control scenarios: ACONC.3001, 
ACONC.3002, ACONC.3003, and ACONC.3004. Notably, 
all four regression lines align closely with the diagonal 
line, suggesting  a strong agreement between the modeling 
outcomes. Specifically, the correlation coefficients (r) between 
the RSM and CMAQ results exceed 0.999 for all control 
scenarios, with values of 0.9977189, 0.9984883, 0.9993268, 
and 0.9996935, respectively. 

In conclusion, the RSM-PM_HSS6-300 model has 
proven to be a reliable tool for forecasting environmental 
PM concentrations, making it well-suited for conducting 
environmental impact assessments related to the enhancement 
of vehicle emission standards.

Analysis of RSM simulation results
(1) O3 
To analyze the environmental improvement of upgrading 
from China Ⅲ to China Ⅴ emission standards, the O3 
pollution conditions under the China Ⅲ emission standards 
were set as the baseline scenario, while the China Ⅳ and 
Ⅴ emission standards were set as the control scenarios. The 
RSM-O3_HSS6-20 model was used to predict the O3 ambient 
concentration in the receptor region (Beijing) under different 
scenarios. Additionally, RSM-VAT was used to generate the O3 
concentration distribution plot for the receptor area (Beijing) to 
illustrate the O3 pollution status. 

Figure 5 is a 2D plot showing the distribution of O3 
concentration, with a minimum of 19.8 μg/m3 and a maximum 
of 106.6 μg/m3.

It clearly shows that the O3 ambient concentration in 
Beijing decreased significantly with the upgrade from the 
China Ⅲ to China Ⅴ emission standards and the resulting 
reduction in precursor pollutant emissions (NOx and VOCs). 
In addition, the decrease was more pronounced in areas with 
heavy O3 pollution, indicating that these regions with higher 
O3 ambient concentrations were more sensitive to changes in 
emission standards than other areas. The O3 concentrations 
under the China Ⅲ emission standard (baseline scenario) and 
the two control scenarios, China Ⅳ and China Ⅴ, were 92.70 
ppbv, 78.47 ppbv and 72.20 ppbv, respectively. This indicates  
that the progressively stringent emission standards from China 
Ⅲ to China Ⅴ have effectively controlled the emissions of 
O3 precursor pollutants from vehicle exhaust, resulting in 
a significant direct decrease in the concentration of primary 
pollutants in the air. Consequently, this has indirectly led to 
a reduction  in the ambient concentration of O3 (a secondary 
pollutant). 

However, in reality, O3 pollution has not been effectively 
alleviated. Environmental monitoring data from the Beijing 
Ecology and Environment Bulletin (BMEEB) indicate that the 
annual average concentration of O3 in Beijing was 99.78 μg/
m3 in 2014, 102.42 μg/m3 in 2017, and 108.08 μg/m3 in 2019. 
This discrepancy between actual monitoring concentrations 

Figure 5. Two-dimensional distribution of O3 concentration 
under different emission standard

(a) China III

(b) China IV

(c) China V
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and model results can be attributed to the complexity of O3 
pollution sources and formation mechanisms. The influencing 
mechanisms of O3 are significantly more complex in practice 
than theoretical models suggest, leading to  an increase in O3 
concentration due to  the combined effects of multiple factors.

Figure 6 shows the contribution of the two precursor 
pollutants (NOx and VOCs) to the reduction of O3 concentration 
with the upgrade from the China Ⅲ to the China Ⅳ and China 
Ⅴ emission standards, as determined by the source distribution 
function of RSM-VAT. The O3 concentration under the China 
Ⅲ emission standard was set as the baseline scenario, while 
the China Ⅳ and Ⅴ emission standards served  as the control 
scenario. The results of the source contribution analysis 
indicate that both VOCs and NOx have  a significant effect 
on O3 pollution, with NOx playing the major role in reducing 
O3 concentration under the upgraded  emission standards from 
China Ⅲ to China Ⅴ. This is closely related to the concentration 
of vehicle emission pollutants (NOx and VOCs), as well as 
the complex atmospheric chemical processes and control 
mechanisms of O3 formation (Latha et al., 2023). 

(2) PM
To assess the environmental enhancement resulting from the 
transition from the China Ⅲ to China Ⅴ emission standards, the 
study established a baseline scenario representing PM pollution 
conditions under the China Ⅲ standards. In contrast, the control 
scenario encompassed the China Ⅳ and Ⅴ emission standards. 
Utilizing the RSM-PM_HSS6-300 model, predictions were 
made regarding particulate matter (PM) ambient concentrations 
in the target region of Beijing for these distinct scenarios. 
Furthermore, the RSM-VAT tool was employed to generate 
a visual representation of the PM concentration distribution 
in Beijing, providing a comprehensive overview of the PM 
pollution situation.

Figure 7 represents the predicted results of PM ambient 
contributions in the receptor area under the upgrading of the 
China Ⅲ to China Ⅴ emission standards, as determined by RSM-
PM_HSS9-300. It shows that the PM ambient concentrations 
in Beijing decreased slightly under the upgrade from the 
China Ⅲ to China Ⅴ emission standards. However, the degree 
of reduction varied across different regions of Beijing. The 
drop of PM concentrations was more significant in relatively 
heavily polluted areas, indicating that PM in highly polluted 
areas is more sensitive to changes in emission standards than in 
other areas. Specifically, the PM concentration under the China 
Ⅲ (baseline scenario) was 64.12 μg/m3, while that under the 
China Ⅳ and China Ⅴ emission standards (control scenario), 
it dropped to 48.23 and 38.60 μg/m3, respectively. This result 
aligns with the environmental monitoring data provided by 
the Beijing Ecology and Environment Bulletin (BMEEB), 
which indicates that the annual average concentration of PM2.5 
in Beijing decreased from 84.11 μg/m³ in 2014 to 43.07 μg/
m³ in 2019. This trend supports  our study’s assessment of 
the environmental benefits of tightening vehicle emission 
standards on reducing particulate matter concentration, thereby 
corroborating the credibility of our findings.

Figure 8 displays the contribution of three precursor  
pollutants from vehicle emissions (NOx, VOCs, and primary 
PM) to the reduction of PM concentrations in Beijing under 
the China Ⅲ, China Ⅳ, and China Ⅴ emission standards, using 

the source distribution function of RSM-VAT. The stacked bar 
plots, with three different colors, represent the proportions 
of primary PM, NOx, and VOCs in the reduction of PM 
concentration, with the vertical axis showing the reduction of 
PM concentration (ΔPM in μg/m3). The baseline scenario uses 
the China Ⅲ emission standard, while the control scenarios use 
the China Ⅳ and China Ⅴ, respectively.

The results show that primary PM plays a dominant 
role in reducing particulate matter concentration in Beijing, 
contributing significantly to the overall reduction, aligning 
with the findings reported by Pan et al. (2020). However, NOx 
exhibits a ‘negative reduction’ control effect, meaning that 
reducing NOx emissions does not always positively impact 

Figure 6. Contribution of O3 concentration reduction across 
different emission standard upgrade ranges

(a) China III ~ China IV

(b) China III ~ China V
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PM concentration reduction. In some cases, it may actually 
lead to an increase in PM concentration. Studies have shown 
that the fundamental reason for this negative impact is the 
‘titration effects’ of the NO component in NOx (Akimoto et al., 
2022; Dai et al., 2024). NO reacts with O3 in the atmosphere, 
consuming O3 and resulting in a decrease in precursors that 
lead to PM formation (Tao et al., 2018; Brown et al., 2006). 
This negative contribution is particularly associated with low-
lying pollution sources, such as vehicle exhaust emissions. 
Vehicles are one of the primary sources of NOx emissions in 
urban areas, which are typically more prone to PM pollution 
(Lv et al., 2020).

Therefore, excessive reduction of NOx emissions 
from vehicles, especially without additional measures to 
simultaneously control O3 and other PM precursors, may inhibit 
PM control and reduction. Overall, developing  pollution 
control strategies for both O3 and PM requires considering the 
complex interactions and impacts among pollutants and their 
precursors. Simply reducing emissions of a single pollutant 
may not be sufficient to achieve the goal of reducing overall 
pollution levels.

Implications

During the transition from the China Ⅲ to China Ⅴ emission 
standards, the Chinese government achieved significant 
environmental benefits. Nevertheless, China’s emission 
standards still trail behind those of Europe and the United 
States, indicating  ample room for further emissions reduction. 
In the Beijing-Tianjin-Hebei region, measures such as vehicle 
purchase restrictions, usage limitations, and the promotion of 
new energy vehicles were implemented during this transition 
period. Additionally, outdated vehicles that failed to meet 
emission standards were mandatorily scrapped to optimize 
the vehicle fleet structure. For example, in Beijing, from 
2009 to 2019, a total of 2.95 million outdated vehicles were 
decommissioned, significantly enhancing  the vehicle fleet 
composition. Furthermore, the Chinese government upgraded 
fuel standards multiple times. In 2010, the limits for sulfur, 
olefin, and manganese content in gasoline were set at 150 μg/g, 
30%, and 16 mg/L, respectively. By 2019, these limits were 
reduced to 10 μg/g, 18%, and 2 mg/L, respectively, resulting 
in decreased pollutant emissions. In 2019, emissions of the 
four major pollutants from motor vehicles (CO, VOCs, NOx, 
PM2.5) decreased by 70%, 78%, 51%, and 73%, respectively, 
compared to 2009 (Wu et al., 2023).

Efforts for balanced and coordinated development in the 
Beijing-Tianjin-Hebei region have  impacted pollutant and 
greenhouse gas emissions. Coordinated emission reduction 
measures and environmental governance policies led to a year-
on-year decrease in pollutant concentrations (PM2.5, NO2, SO2, 
O3) at monitoring stations in the region from 2016 to 2020, 
signifying an improvement in urban environmental quality 
(Ding et al., 2023). The authors suggest that while rigorously 
tightening vehicle emission standards, future government 
policies should also prioritize promoting new energy vehicles, 
adopting cleaner fuels, and timely decommissioning outdated 
vehicles. These measures will contribute to reducing  pollutant 
concentrations in the atmospheric environment of the Beijing-
Tianjin-Hebei region.

Figure 7. Two-dimensional distribution of primary PM 
concentration under different emission standard 

(a) China III

(b) China IV

(c) China V
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Conclusions

This study evaluated the environmental improvement from the 
China Ⅲ to China Ⅴ emission standards by inputting real tested 
emission data and background data into the RSM to obtain O3 
and PM ambient concentrations in Beijing. 

Our results show that the upgrade of emission standards 
led to a decrease of NOx, VOCs, and primary PM, which 
are precursors of O3 and PM from vehicle emission. From 
our tests, the emission factors for NOx, VOCs and primary 
PM from gasoline vehicles under the China Ⅲ emission 
standards are 206.42 mg/km, 233.12 mg/km, and 6.00 mg/
km, respectively. Under the China Ⅳ and Ⅴ emission 
standards, these factors are reduced to 88.53 mg/km, 84.98 
mg/km, 3.60 mg/km and 27.88 mg/km, 42.88 mg/km, 1.91 
mg/km, respectively. For diesel vehicles, the emission factors 
for NOx, VOCs and primary PM under the China Ⅲ emission 
standards are 7976.71 mg/km, 811.95 mg/km, 63.77 mg/km, 
respectively. Under the China Ⅳ and Ⅴ emission standards, 
these factors decrease to  5224.06 mg/km, 516.77 mg/km, 
33.22 mg/km, and 4846.96 mg/km, 472.77 mg/km, 14.42 mg/
km, respectively. 

Furthermore, the corresponding RSM output results 
show that the ambient concentrations of O3 and PM  have 
significantly decreased. O3 concentrations dropped from 92.70 
ppbv to 78.47 ppbv and 72.20 ppbv, while PM concentrations  
decreased from 64.12 μg/m3 to 48.23 μg/m3 and 38.60 μg/m3 

, respectively. The environmental benefits achieved from the 
China Ⅲ to China Ⅳ standards were greater than those from 
China Ⅳ to China Ⅴ. Regarding  O3 and PM precursors (NOx, 
VOCs, Primary PM), NOx plays a pivotal role in reducing O3 
concentrations, whereas primary PM is the foremost factor in 
mitigating PM concentrations. 

The accuracy and consistency of the RSM model with 
actual monitoring data are reflected in the PM response results. 
However, the O3 response results based on vehicle exhaust 
appear  somewhat idealized compared to actual environmental 
concentrations. Future research could enhance  the RSM design 
or integrate additional methods to improve the prediction 
and evaluation of ozone concentrations. Additionally, future 
studies should include the China Ⅵ emission standards to 
assess the environmental benefits of stricter vehicle emission 
standards over a longer time span. Furthermore, exploring 
other pollutants, such as secondary organic aerosols (SOA), 
could  provide a more comprehensive understanding of 
environmental benefits.

Finally, in addition to continuing to tighten emission 
standards for motor vehicles, the government should adopt 
a multi-faceted approach.  This includes improving the 
structure of the motor vehicle fleet, promoting the use of new 
energy vehicles, and ensuring coordinated development in 
the Beijing-Tianjin-Hebei region, among other measures, to 
reduce pollutant emissions through various strategies.
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