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Abstract. In an extremely broad range of industrial applications, especially in electric vehicles, permanent magnet synchronous motors (PMSMs)
play a vital role. Any failure in PMSMs may cause possible safety hazards, a drop in productivity, and expensive downtime. Therefore, their
reliable operation is essential. Accurate failure identification and classification allow for addressing problems before they escalate, which helps
ensure the seamless operation of PMSMs and reduces the likelihood of equipment failure. Therefore, in this paper, novel failure identification
methods based on gated recurrent unit (GRU) and long short-term memory (LSTM) from recurrent neural network (RNN) methods are proposed
for early identification of stator inter-turn short circuit failure (ISCF) and demagnetization failure (DF) occurring in PMSMs under multiple
operating conditions. The proposed methods use three-phase current signals recorded from the experimental study under multiple operating
conditions of the motor as input data. In the proposed methods, both feature extraction and classification are executed within a unified framework.
The experimental outcomes obtained demonstrate that the proposed methods can identify a total of six unique motor conditions, including three
ISCF variations and two DF variations, with high accuracy. The LSTM and GRU approaches predicted the identification of failures with 98.23%
and 98.72% accuracy, respectively. Compared to existing methods, the success of the proposed approaches is satisfactory. In addition, LSTM
and GRU-based failure identification methods are also compared in detail for accuracy, precision, sensitivity, specificity, and training time in this
study.
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1. INTRODUCTION
Electric vehicles (EVs) are of immense importance for a sus-
tainable future and environmental protection. Carbon emissions
and air pollution caused by traditional fossil-fuelled vehicles
cause serious environmental problems worldwide. EVs mini-
mize these problems thanks to their zero-emission operation.
In addition, EVs, which attract attention with their energy ef-
ficiency and low operating costs, increase energy security by
reducing dependence on fossil fuels. In this context, perma-
nent magnet synchronous motor (PMSM) technology used in
electric vehicles maximizes vehicle performance and energy
savings by offering high efficiency and power density. PMSMs
also stand out as the ideal power transmission system for electric
vehicles with their low noise levels and long-lasting structures.
As EVs become more widely adopted, the role of PMSMs in
these vehicles becomes increasingly important. Advanced fail-
ure identification systems in PMSMs ensure early identification
and resolution of potential issues, contributing to the reliabil-
ity and efficiency of EVs. This capability not only enhances
driver confidence but also supports the broader acceptance of
EVs as a dependable mode of transportation [1]. PMSMs are

widely used as basic electrical machines in renewable energy
production, railway systems, and many other industries, apart
from electric vehicles, due to their precise torque control, high-
speed operation, and high power density [2]. Several failures
in electric motors may arise despite continuous monitoring of
the motor. Failures in PMSMs can result in reduced motor ef-
ficiency and associated system performance, reduced industrial
production and potential safety hazards. Therefore, it is essen-
tial to diagnose or monitor the condition of PMSMs. The main
components of the PMSM, the stator and rotor, specify the reli-
ability and performance of the whole motor associated system.
Inter-turn short-circuits failure (ISCF), and permanent magnet
(PM) demagnetization failure (DF) are prevalent serious failures
in the stator windings and rotor of PMSMs, respectively. These
failures are mainly because of manufacturing deficiencies as
well as thermal, mechanical, electrical and other environmental
influences [3].

The rotor irreversible demagnetization is a severe problem
that distorts the motor properties and reduces the output torque
of PMSMs. The main reason for this failure is the condition
related to its operation. The electric current generates a reverse
magnetic field that resists the residual induction of the perma-
nent magnets in the normal operation of the PMSMs. Because
of this repeated operating condition, permanent magnets can
undergo either partial demagnetization, affecting only part of
the pole, or uniform demagnetization, affecting the entire pole.

1

BULLETIN  OF  THE  POLISH  ACADEMY  OF  SCIENCES 
TECHNICAL  SCIENCES,  Vol.  73(1),  2025,  Article  number:  e151958
DOI:  10.24425/bpasts.2024.151958

©  2025  The  Author(s).  This  is  an  open  access  article  under  the  CC  BY  license  (http://creativecommons.org/licenses/by/4.0/)

Bull.  Pol.  Acad.  Sci.  Tech.  Sci.,  vol.  73,  no.  1,  p.  e151958,  2025

∗e-mail:  timur.lale@batman.edu.tr

Manuscript  submitted  2024-07-23,  revised  2024-09-07,  initially 
accepted  for  publication  2024-09-13,  published  in  January 2025.

https://orcid.org/0000-0002-6958-5057
https://orcid.org/0000-0002-6832-8622
mailto:timur.lale@batman.edu.tr


T. Lale and G. Yüksek

The permanent magnet can also be demagnetized by high tem-
peratures [4]. Turn short-circuits commonly happen because of
damage to the stator winding insulation, which is caused by
electrical, thermal, and severe mechanical stresses that motors
endure during operation, typically in challenging environmental
conditions. Other factors that may speed up the deterioration of
the stator winding insulation and lead to a short circuit include
chemicals that could quicken the ageing of the insulation, field
weakening, operation at loads over the rated values and high
voltage oscillations of the inverters driving the motors [5]. The
ISCF results in a high-amplitude current flowing through short
circuit turns, causing local overheating of the stator winding,
which can potentially cause significant damage to the motor and
require it to be removed from service [6]. In order to prevent
unforeseen downtimes in processes involving these motors due
to operational interruptions, it is vital to consistently monitor
the condition of the stator winding and identify and classify any
damage at the earliest opportunity [5]. Early identification of
failures allows for the appropriate scheduling of motor mainte-
nance, resulting in lower repair expenses, reduced delays, and
minimized production losses. Furthermore, it is crucial for sus-
tainability and environmental issues because it decreases the
creation of extra waste.

Given the previously noted risks from insufficient implemen-
tation of diagnostic methods and the increasing prevalence of
PMSMs, it appears essential to diagnose their faults. In recent
years, both university researchers and industry professionals
have shown significant interest in it. To fulfil these demands, the
improvement of such methods forces us to search for innovative
solutions and the possibility of using the latest technologies.
Choosing and using suitable artificial intelligence (AI) methods
and signal processing techniques can enable the creation of fully
automated systems for real-time motor condition monitoring.

There are two primary approaches for identifying and clas-
sifying motor failures: the traditional method and the AI-based
technique. Traditional methods use signal processing algo-
rithms. Wavelet transform (WT), discrete wavelet transform
(DWT) [7], fast Fourier transform (FFT) [8], higher-order trans-
forms, and Hilbert-Huang transform (HHF) [9] are some of
these methods. Traditional methods use signals such as axial
flux, torque, vibration, current, and voltage obtained from the
motor as input variables to extract failure symptoms that can
be used in failure identification. The most commonly used of
these signals are the stator three-phase currents [10]. Harmonics
of the phase current spectrum, only third harmonic [11], fifth
and seventh harmonics [12] and only ninth harmonic [9] were
used as ISCF identification indicators. In [13], it was proposed
that the frequency band detail coefficients obtained by applying
DWT to stator phase currents can be employed in turn short-
circuit failure identification. Manala et al. [14] suggested the
failure indicator derived from the reactive power excess for turn
failure identification. In [8], the second and fourth harmonic
components of the torque were proposed as ISCF symptoms for
ISCF identification. HHT [15], DWT, and CWT [16] methods
were proposed for the identification of demagnetization failure
in PMSM. Delgado et al. [17] proposed the Vold-Kalman fil-
ter for the identification of partial demagnetization failure in

PMSM. Mustafa et al. [18] investigated the effect of demagne-
tization failure on PMSM by finite element technique. Eker and
Özsoy [19] investigated the effects of demagnetization failure
on PMSM performance and efficiency. Ko et al. [20] proposed
the eighth harmonic of the stator current as the fault indicator
for the detection of demagnetization failure in PMSM. How-
ever, these traditional fault identification methods have several
constraints. The computational complexity of both Fourier and
wavelet transforms is notably high, significantly constraining
their practical use in real-time signal processing. In addition,
the Fourier transform, and matched filters are more appropriate
for failure identification when systems operate under steady-
state conditions. However, in real-life applications of industrial
machines, including PMSMs, they often operate under transient
or dynamic state conditions. Failures can also occur during non-
steady states, requiring diagnostic methods that are applicable
and versatile enough to identify failures over a variety of op-
erating conditions. These obstacles highlight the significance
of investigating AI-driven failure identification techniques that
can overcome the shortcomings of traditional methods while
also performing well under dynamic, real-time, and various op-
erating conditions [21, 22].

The AI-driven approaches extract and analyze information
from past fault data [23–25]. AI-based failure identification
methods use signal processing algorithms and machine learning
approaches in a hybrid manner [26]. Signal processing algo-
rithms are applied to motor signals to obtain failure features.
These features are then used as input data in machine learn-
ing methods to identify and classify the failure. Pietrzak and
Wolkiewics [27] proposed a hybrid approach combining con-
tinuous wavelet transform (CWT) and convolutional neural net-
works (CNNs) for the identification of turn short-circuit failure.
In the proposed approach, scalogram images obtained by ap-
plying CWT to current signals were employed as the input data
of CNN. In [28], the second and fourth harmonic components
of the torque obtained from the FFT analysis of the torque sig-
nal were used as input data in support vector machines (SVM),
artificial neural networks (ANNs), k-nearest neighbour (KNN)
methods to identify and classify the turn short circuit failure.
Skowron [29] proposed the transfer learning method for inter-
turn fault identification in PMSM. Haddad et al. [30] proposed
the AdaBoost method based on vibration and vibration-current
data combination for stator fault diagnosis in PMSM. In the pro-
posed method, the use of features based on vibration and current
data combination achieved more successful fault prediction re-
sults than the use of features based only on vibration. Shih et
al. [31] suggested SVM and data-driven CNN approaches for
the identification of ISCF in PMSM. But the proposed methods
were implemented for one speed and two load cases and the low
severity of ISCF identified in the study was 5%. In [32], a gra-
dient boosting classifier was proposed for the identification of
turn short circuit failure in PMSM. Statistical features obtained
from current and vibration signals were employed as input fea-
tures of the suggested classifier and the study was performed for
a single speed condition. The turn short-circuit failure identifi-
cation success of the proposed method was 95%. In [33], the
one-dimensional local binary patterns (1D-LBP) approach was

2 Bull.  Pol.  Acad.  Sci.  Tech.  Sci.,  vol.  73,  no.  1,  p.  e151958,  2025



Identification and classification of turn short-circuit and demagnetization failures in PMSM using LSTM and GRU methods

suggested for feature extraction from current and voltage signals
for identification of turn short-circuit failure in PMSM. The fea-
tures obtained from 1D-LBP were used in the KNN algorithm
and the turn failure identification success was 90%. While this
approach can identify turn short-circuits across various oper-
ating conditions, the generated histogram cannot differentiate
between distinct fault types. Lee et al. [34] proposed a recur-
rent neural networks (RNNs) approach for the identification
of turn short-circuit failure in PMSM. Motor speed and three-
phase current were employed as input data for the suggested
method. However, the study was fulfilled for two different op-
erating speeds. Kao et al. [35] suggested a hybrid approach
combining wavelet packet transform (WPT) and 1D-CNN for
the identification of bearing and demagnetization failures in
PMSM. In the proposed approach, WPT was used for feature
extraction from three-phase current and CNN was used as a
classifier. In [36], the CNN method was proposed for the identi-
fication of demagnetization failure in PMSM. The input data of
the CNN classifier was the images obtained by applying CWT to
three-phase current signals. The lowest level of demagnetization
failure identified in the proposed approach was 12.5%. Youn et
al. [37] proposed a hybrid approach combining FFT and SVM
for the identification of turn short-circuit and demagnetization
failures in PMSM. The FFT was applied to the three-phase back
electromotive force voltages and the fault harmonics obtained
were used as the input data of the SVM classifier for failure
identification. However, the proposed approach was applied for
two different speed cases.

Although existing studies on fault diagnosis with deep learn-
ing and classical machine learning methods achieved significant
success, works on early failure identification under multiple op-
erating conditions of the motor remain limited. Another short-
coming of the existing methods is that they are used for the
detection of uniform faults. An important scientific challenge
in the field of diagnostics research is to develop methods that
could identify failures at an early stage. In light of these con-
straints, this paper suggests innovative fault diagnosis models
specifically crafted to tackle and alleviate these bottlenecks,

marking a significant advancement towards more efficient and
resilient PMSM failure identification methods. The LSTM and
GRU models were used to diagnose faults in induction [38–42]
and brushless DC motors [43]. However, LSTM and GRU meth-
ods were not utilized to identify demagnetization and inter-turn
short-circuit failures in PMSMs, distinguishing the type of fail-
ure, and determining the severity of the failure. Therefore, novel
identification of fault methods based on the developed LSTM
and GRU are proposed for early detection of ISCFs and DFs
in PMSM under different operating conditions. The following
outlines the contribution of this paper:
• This paper seeks to enhance the dependability and sustain-

ability of industrial processes by emphasizing the potential
of innovative GRU and LSTM models for effective identifi-
cation and classification of failures in PMSM.

• The proposed failure identification methods were performed
for six different fault states, including three different ISCF
states (2%, 12.5%, 25%) and two different DF (5%, 10%)
states and under different operating conditions of the motor
(eight various speed states and six various loading states).

• With the proposed novel fault detection methods based on
LSTM and GRU, it is possible to effectively detect ISCFs
(2%) and DFs (5%) in PMSM at the initial stage, classify
the fault type and determine the fault severity with high
accuracy.

• By reducing repair expenses and extending equipment lifes-
pan, the proposed efficiency and accuracy of the model can
offer cost savings for industries.

The flowchart of the failure identification approaches offered in
this paper is given in Fig. 1.

2. EXPERIMENTAL SETUP AND DATA ACQUISITION

For diagnosing purposes, the ISCF and DF occurring in the
PMSM, a total of five identical motors, three motors with 2%,
12.5%, 25% ISCF, and two motors with 5% and 10% DF, were
manufactured at the FEMSAN electric motor factory. The turn
fault was created in the motor single phase. There are 280 turns
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in each phase of the motors. Six turns for 2% ISCF, 35 turns
for 12.5% ISCF and 70 turns for 25% ISCF are short-circuited.
Through terminal connection, the motors were used for both
healthy and faulty conditions. In the factory environment, mo-
tors with 5% and 10% demagnetization faults were produced. To
create this fault in a controlled manner, the permanent magnets
in the rotor were baked at high temperatures for a certain period,
resulting in a deliberate weakening of the magnetic properties
of the magnets. Thus, the magnetic field strength of the magnets
was reduced at the desired rate. While ISCF motors were manu-
factured to operate in both healthy and faulty states, DF motors
were manufactured to operate only in faulty states. Table 1 lists
the properties of the PMSMs employed in the experimental in-
vestigation.

Table 1
Parameters of the motors utilized in the experimental kit

Rated torque 3 Nm

Number of turns/per phase 280

Rated power 1 kW

Phase winding resistance 7.6 Ω

Coil inductance 7.16 mH

Number of poles 8

Maximum speed 3000 rpm

Inertia torque 0.0001854 kgm

The experimental setup consists of a voltage source inverter
drive, a DC eddy current brake, a data acquisition board, a torque
meter, and voltage and current sensors (see Fig. 2). The DC eddy
current brake was utilized to load the motor at the required ratios.
The eddy brake and the tested motor were effectively integrated
to minimize the impact of vibration on the motor signals. To
operate the motor at the desired rotational speed, the FEMSAN
servo driver unit was utilized. With the NI 6341-USB DAQ data
acquisition card, information from current, voltage, and moment
sensors is collected and transferred to the computer. The DAQ
card has eight analogue inputs and two analogue outputs. In the
experimental set, seven analogue inputs of the DAQ card were
used, three inputs for three-phase current, three inputs for three-
phase voltage, and one input for moment data. The data collected

Fig. 2. Experimental setup

by the DAQ card was recorded with its analogue output in the
interface program written in LabVIEW on the computer. With
the experimental setup, the current, voltage, and torque signals
of the motor were recorded at the desired speed and loading.
The motor data were measured at a 10 kHz sampling frequency
through sensors connected to the DAQ board and recorded to
the computer using the LABVIEW software.

For each PMSM, three-phase current data was acquired at 0%,
25%, 50%, 75%, 100%, and 110% load and 800, 1000, 1200,
1400, 1600, 1800, 2000, and 2200 rpm. Three-phase current
data was collected under 48 different scenarios, comprising six
varying load states and eight distinct speed states. For motors
with ISCF, the current data was recorded for 48 different cases
for both healthy and faulty conditions, whereas for motors with
DF, current data was recorded for 48 different cases only for the
faulty condition. Three-phase current data were recorded for 1 s
at a sampling frequency of 10 kHz for each case. The number
of data points of the current recorded for each case is 10 000.
Table 2 shows the number of samples of motor signals recorded
in the healthy, ISCF and DF states of the PMSM.

Since deep learning methods work with large data sets, the
current data recorded for each state was segmented and 0.1 s
segments were created (see Fig. 3). This means that the number
of data points in each segment will be 1000. The total number
of samples for a case of three-phase current data obtained from
the motor increases from 48 to 480. Since the signals of three
different short-circuit faulty PMSMs are recorded in both faulty
and healthy states, the total number of samples of the PMSM in
a healthy state is 3×480 = 1440. The total number of samples for
each of the 2% ISCF, 12.5% ISCF, 25% ISCF, 5% DF, and 10%
DF cases is 480. The total number of samples of three-phase
current data of PMSM for each case is given in Table 3. After
randomly mixing the data set in the MATLAB environment,
30% of the data set was utilized as test data, 10% as validation
data, and 60% as training data.

4
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Table 2
Number of samples recorded from each motor

2% ISCF PMSM 12.5% ISCF PMSM 25% ISCF PMSM 5% DF PMSM 10% DF PMSM Total number
of samples

Healthy Faulty Healthy Faulty Healthy Faulty Faulty Faulty –

48 48 48 48 48 48 48 48 384

Table 3
Number of samples for each class of the three-phase current dataset

Classes Healthy %2
ISCF

%12.5
ISCF

%25
ISCF

%5
DF

%10
DF

Total
samples

Number
of

samples
1440 480 480 480 480 480 3840

3. DEEP LEARNING METHODS FOR FAULT DETECTION

Deep learning, which uses multi-layer neural networks, is a
branch of machine learning (hence the term “deep”). These net-
works excel at extracting intricate patterns from vast datasets,
rendering them suitable for tasks such as speech recognition
and image, as well as natural language processing, and, more
recently, fault detection in motors [44]. The use of deep learn-
ing in motor fault detection represents a significant advancement
over traditional methods. Using the capabilities of neural net-
works to analyze complex data, industries can achieve more
reliable and efficient maintenance processes, ultimately leading
to increased productivity and reduced operational costs [39].
However, successful implementation requires careful consider-
ation of data acquisition, model selection, and computational
resources. In this paper, novel GRU and LSTM approaches are
used for the identification of failures and diagnosis of failure
type and severity in PMSM.

3.1. Long short-term memory (LSTM)

LSTM, a variant of recurrent neural networks (RNN), finds
extensive application in handling sequential data, such as time
series or natural language. LSTMs were introduced to manage
the issue of vanishing/exploding gradients that traditional RNNs
suffer from when dealing with long-term dependencies. The key
to LSTMs is their unique cell state and gating mechanism [39].
An LSTM cell comprises a cell state and three types of gates:
a forget gate ( 𝑓𝑡 ) an input gate (𝑖𝑡 ), and an output gate (𝑜𝑡 ),
as shown in Fig. 4. The movement of information entering and
exiting the cell state are controlled by these gates. The forget gate
decides which information from the earlier cell state should
be retained or eliminated. From the present input and prior
concealed condition, fresh data to be preserved in the existing
cell’ status is regulated by the entry portal. How much of the
current cell state is used for the final output is determined by the
output gate. This gating mechanism enables LSTMs to choose
what information to retain or discard across lengthy sequences,
helping to address the vanishing gradient problem. The cell state

acts like a conveyor belt, transferring relevant information across
the entire sequence chain. LSTMs are able to effectively capture
long-range dependencies, which traditional RNNs struggle with
it [43, 45, 46].

Fig. 4. The LSTM basic structure

LSTMs proved to be highly effective for various sequential
data modelling tasks, such as time series forecasting, speech
recognition, machine translation, and natural language process-
ing. They have become a staple component in many state-of-
the-art deep learning architectures for handling sequential data.
In recent years, the LSTM model was widely utilized in fail-
ure identification of induction [38–42] and brushless DC mo-
tors [43, 47], and achieved successful results.

3.2. Gated recurrent unit (GRU)

GRUs are an alternative kind of gated RNN, introduced as a sim-
pler alternative to LSTMs. Like LSTMs, GRUs are developed to
solve the disappearing gradient issue of traditional RNNs when
dealing with long sequences. The key components of a GRU
are the candidate hidden state, the update gate, and the reset
gate, as shown in Fig. 5. The reset gate dictates the extent to
which the previous memory is erased and refreshed based on
the new input. The update gate regulates the extent to which in-

Fig. 5. The GRU basic structure
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formation from both the preceding hidden state and the current
input contributes to the calculation of the new hidden state [45].
Specifically, the GRU merges the forget and input gates found
in LSTM into a unified update gate. It combines the cell state
and hidden state vectors into a unified fully gated hidden state
vector. This makes the GRU model simpler and more efficient
than the LSTM. The reset gate allows the GRU to drop infor-
mation from the previous hidden state, while the update gate
determines how much of the new hidden state comes from the
previous one. This gating mechanism helps GRUs better track
long-range dependencies in subsequent data [48].

3.3. Design of LSTM and GRU for fault detection

In this paper, two different deep networks were developed and
assessed as illustrated in Fig. 6. There are three recurring layers
in the architecture of each of these models. The models offered
are composed of Model 1 (a three-layer LSTM) and Model 2
(a three-layer GRU). Adding too many layers overcomplicates
networks and can lead to overfitting. Thus, the study presented
only a three-layer network. A fully connected layer with a soft-
max activation function is connected to the hidden layer in these
designed models. The parameters used to train the designed
GRU and LSTM models are given in Table 4. The same training
parameters and the same architectural structures were employed
to compare the classification success of the GRU and LSTM
approaches. The classification layer computes the cross-entropy
loss, which is then used in the optimization process to adjust
the network weights. Adam is selected as the optimizer. The
learning rate is set to 0.001.

Table 4
LSTM and GRU training options

Optimizer Adam

Minibatch size 32

Validation frequency 497 iterations

Number of epochs 300

Learning rate 0.001

4. RESULTS AND DISCUSSION

The designed GRU and LSTM approaches were utilized to di-
agnose the type and severity of the failures. 30% of the dataset
was employed for testing, 10% for validating, and 60% for train-
ing. The models were created in a MATLAB environment. The
entire study was executed on a computer with an Intel® Core™
i7-6500U CPU @ 2.50 GHz and 16 GB of RAM. Accuracy and
loss value graphs of the training progress of the proposed mod-
els are given in Fig. 7. Graphs of training accuracy and loss give
insights into the model progression throughout the training pe-
riod. A steady rise in the accuracy graph and a consistent drop
in the loss graph during training suggest that the approach is
undergoing stable training. During training, it is crucial for the
gap between the validation and training accuracy curves to nar-
row, leading to their convergence. This indicates that the model
is not overfitting and is generalizing effectively. Evidently, the
models do not exhibit overfitting when analyzing the training
progress graphs of LSTM and GRU in Fig. 7. In this way, it is
possible to say that the models conduct the learning process over
the training data set. The outcomes from the training progress
of the GRU and LSTM approaches are introduced in Table 5.
Table 5 shows that the GRU approach outperformed the LSTM
approach in terms of training accuracy, loss value and training
time.

Table 5
Results of training progression of LSTM and GRU models

LSTM GRU

Training accuracy 98.88% 100%

Training loss value 0.0523 0.0399

Validation accuracy 93.49% 94.79%

Validation loss value 0.2034 0.1401

Elapsed time 137 min 20 sec 85 min 12 sec

The trained GRU and LSTM approaches were evaluated for
the diagnostic success of fault type and severity in PMSM us-
ing test data. The confusion matrix illustrating the classification

6

Fig.  6.  LSTM  and  GRU  models
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Fig. 7. (a) LSTM training progress, (b) GRU training progress

outcomes of the GRU and LSTM approaches for the motor test
data is given in Fig. 8. In the confusion matrix, labels 0, 1, 2, 3, 4,
and 5 correspond to healthy, 2% ISCF, 12.5% ISCF, 25% ISCF,
5% DF and 10% DF classes of the motor, respectively. Standard
metrics are commonly used to assess a model performance in
detail through confusion matrices. Based on the confusion ma-

trix, these metrics rely on rates such as false positives (FP), true
negatives (TN), true positives (TP), and false negatives (FN).
Below are the corresponding formulas for each metric:

Precision measures the proportion of true positives among
all positive estimates. It indicates how accurately the approach
diagnoses positive instances [49]. The computation is illustrated
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Fig. 8. (a) LSTM and (b) GRU confusion matrix

in equation (1)

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃 ×100. (1)

Sensitivity represents the percentage of accurately identified
observations within a specific class relative to the total number of
observations in that class. It shows the ability of the classifier to
accurately recognize data that genuinely pertains to the positive
category [49]. The formula can be found in equation (2)

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑃 ×100. (2)

Specificity measures the proportion of correctly predicted neg-
ative class data by the classifier [49]. The evaluation can be
conducted using equation (3)

Specificity =
𝑇𝑁

𝑇𝑁 +𝐹𝑃 ×100. (3)

F1-score stands as another frequently employed metric in eval-
uating model effectiveness. Equation (4) calculates this metric
by combining precision and recall values through a weighted
average [49]

𝐹1-score =
(recall) × (precision) ×2
(recall) + (precision) . (4)

Accuracy measures the proportion of accurately classified data
within the model test set, calculated from the training data. This
calculation is defined by equation (5) [49]

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁 +𝐹𝑃+𝐹𝑁 ×100. (5)

Table 6 summarizes the performance metrics obtained from the
distributions derived from the confusion matrices. As seen in
Table 6, the LSTM and GRU models predicted the diagnosis
of ISCF and DF in PMSM with an average accuracy of over

Table 6
Overall performance metrics of LSTM and GRU models

Class
label

LSTM GRU

Precision Sensitivity Specificity F1-score Accuracy Precision Sensitivity Specificity F1-score Accuracy
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0 95.00 92.79 97.08 93.88 95.48 96.49 95.81 97.92 96.15 97.13

1 89.66 94.20 98.52 91.87 98.00 89.86 89.86 98.62 89.86 97.57

2 100 98.71 100 99.35 99.83 99.35 98.71 99.90 99.03 99.74

3 98.57 100 99.80 99.28 99.83 100 100 100 100 100

4 94.89 90.91 99.30 92.86 98.26 96.40 93.71 99.50 95.04 98.78

5 89.68 95.21 98.41 92.36 98.00 94.16 99.32 99.10 96.67 99.13

Average
accuracy 94.63 95.30 98.85 94.93 98.23 96.04 96.23 99.17 96.12 98.72
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98%. In terms of specificity, sensitivity, precision, F1-score,
and accuracy metrics, the GRU model performed better than the
LSTM model.

4.1. Comparison of the findings from this paper with those
reported in the existing literature

The comparison of the outcomes of the methods suggested in
this paper with the works in the literature is given in Table 7.
In Youn et al. [37], to detect DF and ISCF in PMSM and clas-
sify faults, fault-dependent varying harmonics were detected
by applying FFT to back electromotive force (BEMF) voltages.
Principal component analysis (PCA) was employed to convert
the dimensions of the harmonics into two dimensions. Using
the features obtained as a result of this process in the SVM
algorithm, the classification of faults was predicted with an ac-
curacy of 92.5% for 300 rpm and 97.5% for 500 rpm. However,
the study was not evaluated for more than one speed state at
the same time [37]. In [2], the classification of DF and ISCF
was predicted with 97.5% accuracy using CNN hybrid with
local feature extraction method with self-attention mechanism.
However, the study did not consider the different severity of DF
and ISCF. Yan and Hu [50], used a hybrid multi-scale resid-
ual dilated (MD)-CNN and bidirectional (Bi)-LSTM method
for fault diagnosis in PMSM. The features obtained from the
signals with the MD-CNN method were used in the BiLSTM
algorithm for failure identification. Using three-phase current,
vibration, and the fused of vibration and three-phase current
signals, the fault diagnosis was predicted with 92.81%, 72.81%,
and 98.63% accuracy, respectively. The lowest severities of ISCF
and DF detected in the proposed study are 4.6% and 20%, re-
spectively [50]. The fault classification accuracy rates of the
LSTM and GRU methods proposed in this paper are 98.23%
and 98.72%, respectively. Compared with similar studies in Ta-
ble 7, the suggested GRU- and LSTM-based fault diagnosis per-
formance is satisfactory. The algorithms of the suggested GRU-
and LSTM-based fault diagnosis approaches are not complex
compared to similar works in Table 7. In the suggested LSTM
and GRU approaches, the process of extracting features and clas-
sifying them was conducted within a unified learning framework
and only the raw three-phase current signal was used as the input
signal.

5. CONCLUSIONS

In this study, novel LSTM- and GRU-based failure identification
approaches are suggested for the identification and classification
of turn and demagnetization failures in PMSMs under multiple
operating conditions. The failure detection and failure type clas-
sification using LSTM and GRU methods were predicted with
over 98% accuracy. The classification success of the proposed
methods is satisfactory when compared with similar studies in
the literature. It is possible to detect the turn failure and the de-
magnetization failure in the PMSM at the initial stage with the
proposed methods. The lowest ISCF and DF severities detected
in this study were 2% and 5%, respectively. When the LSTM and
GRU methods were compared in terms of classification success,
F1 score, precision, sensitivity, specificity, and training time, the
GRU method performed better.

With the proposed methods of fault diagnosis, it will be pos-
sible to diagnose the faults that can occur in the PMSMs that
are used in the industry at an early stage. In this way, stoppage
of production in the industry, loss of time, and human injuries
are prevented and continuity in production is ensured. The pro-
posed new diagnostic methods can also prevent electric vehicles
from staying on the road. The proposed diagnostic methods can
be used in future studies to detect other faults, eccentricity, and
bearing faults occurring in PMSM.

The application of the proposed methods to real systems in
industrial and electric vehicle applications is possible by con-
tinuous monitoring of stator phase currents with current sensors
integrated into the motors. These collected data are analyzed
using the proposed deep learning algorithms and faults are de-
tected automatically. Thus, potential failures in electric vehicles
or industrial motor systems can be detected early, optimizing
safety, efficiency, and maintenance costs.
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