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Abstract: The natural mode of operation for the brushless doubly-fed induction machine is
a particular instance of synchronism at a so-called natural rotor velocity when one stator
winding is powered by an AC and the other by a DC voltage source. Consequently, in addition
to the rotating magnetic field, there exists a magnetic field that is fixed to the stator frame of
reference. Analysis in this specific mode is essential as the natural velocity arises from the
choice of pole numbers, thereby determining machine efficiency. However, this presents
a significant challenge when it comes to mathematical modeling using complex-valued
steady-state models through either equivalent-circuit or finite element analysis. This paper
presents a study on the extension of the recently-proposed steady-state complex-valued finite
element model for the brushless doubly-fed induction machine to enable its application in
the natural operating mode. A high correlation with the data obtained from a time-stepping
model is obtained for the extended model when subjected to both low and high levels of
saturation of the magnetic circuit. This extension makes the whole approach applicable in all
operating conditions and modes of the brushless doubly-fed induction machine. Considering
the nearly two orders of magnitude lower computational costs associated with analysis via
the proposed model compared to time-stepping analysis, it is particularly useful in scenarios
that involve extensive computations and require multiple cases to be considered such as
design sensitivity analysis, topology optimization or a connection with machine learning
techniques.

Key words: doubly-fed machines, finite elements, induction machines, mathematical
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1. Introduction

The brushless doubly-fed induction machine (BDFIM) is a synchronous induction machine that
presents numerous advantages for future wind-power generation systems. These benefits include
low maintenance requirements due to a brushless structure, the absence of permanent magnets,
voltage-fault ride-through capability, and the ability to control velocity, torque, and reactive
power using fractional power [1–4]. Despite these merits, its commercialization has yet to occur
primarily due to control issues [5–8]. The latter will materialize as a consequence of the ongoing
refinement and enhancement of mathematical models. Various methodologies have been used for
the BDFIM of a whole hierarchy of models utilized in AC machines, encompassing single-phase
equivalent-circuit models [9–13], coupled-circuit models [14], magnetic equivalent circuit-based
models [15], and finite element (FE) models [16–18]. This study primarily concentrates on the
latter ones. The finite element analysis for the BDFIM is normally performed in the time domain,
requiring costly manipulation of waveform quantities rather than just magnitudes. However, the
latter can be achieved by utilizing the FE model described in [18], which incorporates the complex
magnetic vector potential. The proposed approach decreases computational time by a factor of
1/60 when compared to the transient time-domain model. Also, it maintains good accuracy across
a wide range of BDFIM operating conditions and modes, with the exception being the natural
mode where it is not applicable in its current form. The importance of the natural mode stems from
the correlation between machine efficiency and its natural velocity, given that BDFIM operating
velocity is within a range of ±30% deviation from its natural velocity [1, 13]. It thus becomes
important to be able to investigate the BDFIM operation at this particular point. To this moment
this has been done using steady-state equivalent-circuit model [12]. However, this type of model
proves efficient solely upon experimental identification of their parameters. The proposed field
model in [18] has the ability to rapidly determine BDFIM characteristics and does not require
experimental identification. Therefore, the objective of this study is to extend the proposed model
by presenting a consistent theory, implementing it in a computer program and validating the
accuracy of the extended time-harmonic finite element model for a BDFIM in natural mode.

2. Features of BDFM in natural model

Each BDFIM is designed to continuously operate powered through two stator windings (each
connected to AC voltage sources) with carefully selected pole-pair numbers −pp and pc . The rotor
winding cross-couples electromagnetically the stator windings through a particular nested-loop
structure with pp + pc poles [1–6]. The angular frequency of the current in the rotor winding
induced by the fundamental harmonic components of the air-gap magnetic field of ordinal numbers
pp and pc (with respectively, positive and negative phase sequences), fulfils the relationship [1,3,9]

wp − ppΩr︸       ︷︷       ︸
frequency of rotor winding current
induced by stator winding space

harmonic pp of positive phase sequence

= −(wc − pcΩr )︸           ︷︷           ︸
frequency of rotor winding current
induced by stator winding space

harmonic pc of negative phase sequence

. (1)
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By introducing rotor slips, sp with respect to the stator winding with the pp pole number, and
sc , with respect to the stator winding with the pc pole number, the above formula can also be
written in the equivalent form:

ωpsp = −ωcsc . (2)

From (1) it can be deduced that the synchronous velocity of the rotor is

Ωr =
ωp + ωc

pp + pc
. (3)

Assume that the stator winding with the pole number pp is the power winding, whilst the one
with the pole number pc is the control winding. Typically, the BDFIM is utilized in a manner where
the winding pp is connected to the grid, thereby establishing a fixed frequency. Subsequently, the
winding pc receives power from a converter with adjustable voltage and frequency. A particular
scenario arises whilst a demand for velocity compels the control voltage frequency to assume
a value of 0 hertz. This operating state is commonly referred to as the natural mode [12], as it
occurs at a particular value of synchronous velocity called the natural velocity.

Ωn =
ωp

pp + pc
. (4)

In this scenario, the operation of the BDFIM is akin to that of a conventional synchronous
machine due to AC and DC voltage supplies used, albeit with more intricate performance
characteristics and control mechanisms. Furthermore, the DC supply is actually a three-phase
voltage with zero frequency and a negative phase sequence. In the natural mode, all functionalities
of the BDFIM operating in a double-feed mode remain intact except for the unidirectional power
flow via the control winding as depicted in Figs. 1(a) and 1(b). The diagrams depicted in Figs. 1(c)
and 1(d) illustrate that the electromagnetic coupling of the control winding in natural mode
solely occurs unidirectionally, specifically through the current of the power which results in
magnetomotive force (mmf) induced in the rotor winding. Conversely, it is important to note that
while this process occurs, no back electromotive force (emf) is generated in the control winding
from the rotor flux. The presented depictions of electromagnetic interactions lead to the necessary
evolution of the standard steady-state equivalent-circuit model for the BDFIM [9] (see Fig. 1(e),
shown in Fig. 1(f)). The time-harmonic finite element model presented in [18] is also subject
to evolution within this context. The bridge between the equivalent circuit and the actual finite
element model is that the lumped parameters of the former can be conveniently extracted from the
latter, although we aim to address this topic in our future work. The control of machine torque and
VArs flow in natural mode can be achieved by adjusting the absolute value and phase angle ϕ of
a control voltage. The vector Vc that represents the voltage in three phases at the terminals of the
control winding in Fig. 1(d) is described by the formula

Vc = Re
{
Vc

}
= Re

VDC


1

e−j4π/3

e−j2π/3


 , (5)

where: VDC is the DC voltage supplying the converter as shown in Fig. 1(a), j represents the
imaginary unit, and Re denotes the real component.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. BDFIM in natural mode: (a) driving principle; (b) active and reactive power flows for motoring
and generating operations; (c), (d) logical flowchart diagrams illustrating, respectively the electromagnetic
cross-coupling in BDFIM in all except natural modes and in natural mode; (e), (f) single-phase equivalent

circuit models, respectively in all except natural modes and in natural mode, in natural mode

As noticed, this particular situation can be considered an operating point of the BDFIM in the
double-feed mode. If the BDFIM is required to operate continuously in natural mode, one benefit
is that a simpler converter structure can be used, compared to supplying from two AC sources.
Table 1 outlines the crucial functional characteristics of a BDFIM operating in natural mode.

Rp and Lp are the power winding resistance and leakage inductance, R′′c and L ′′c are the
control winding resistance and leakage inductance referred to the power winding side, Lm1 is the
magnetizing inductance of the power winding, L ′′

m2 is the magnetizing inductance of the control
winding, R′r and L ′r are the rotor winding resistance and inductance referred to the power winding
side, R′′c is the control winding resistance referred to the power winding side, Vp is the power
winding voltage, V ′′c is the control winding voltage referred to the power winding side, ϕ is the
phase angle of the control winding voltage.
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Table 1. Basic characteristics of BDFIM operating in natural mode

Rotor slip sn =
pc

pp + pc

Rotor velocity relative
to velocity of rotating

magnetic field

Ωn

ωp
=

pp
pp + pc

Efficiency low due to high sn

Speed control
possible by varying the frequency of power winding voltage, but impractical
as it requires utilization of two converters for both power and control winding
sides

Torque control by varying |VDC | and ϕ using uni-directional fractionally rated converter

Control of VArs by varying |VDC | and ϕ using uni-directional fractionally rated converter

Possible practical
application

constant-velocity grid-tied power generation
standalone power generation
constant-velocity-variable-power geared drive

In an open-access work [18] we developed a new frequency-domain finite element model for
the steady-state analysis of the BDFIM operating in simple induction, and single- and double-feed
synchronous modes considering non-linearity of the magnetic materials. In the concluding section
of the former study, we arrived at a sound verdict that the detailed model fails to depict the BDFIM
in natural mode. This conclusion was based on two following factors.

i) The mathematical formulation of the model hinges upon integrating two slips, namely sp
and sc . In natural mode, the latter tends towards infinity.

ii) Themagnetic flux density distributionwithin the stator of a BDFIMoperating in naturalmode
is comprised of both time-varying rotating and stator-frame-fixed components. To effectively ad-
dress the modeling of magnetic non-linearity using the effective permeability concept for sinusoidal
fields, further justification and testing must be applied to the current method developed thus far.

Later on, it will become apparent that the equations derived in [18] require a minor modification
to accommodate for the natural mode.

3. Mathematical foundation for steady-state operation of BDFIM
in natural mode

3.1. Generic equations of magnetic field

In the analysis of induction machines, it is common to substitute the real-valued magnetic
vector potential with its complex counterpart [18–20]. The 2-nd distribution of the fundamental
time component of a rotating magnetic field in such a case can be represented by the complex
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magnetic vector potential A. A generic form of this substitution can be written as

A (r, θ, t) = Re
{

A (r, θ) ej(ωt−pθ)
}
, (6)

where: (r, θ, t) are the spatial coordinates and time, p is the number of pole-pairs and ω is the
angular frequency. The Ampere law for the time-harmonic magnetic field in the BDFIM can be
expressed in the form

− div
1
µ
grad (A) = J − σ

(
dA
dt
−

U
l

)
, (7)

where: µ and σ are, respectively, the magnetic permeability and conductivity, J is the current
density due to the current source, U is the voltage across the rotor bar, and l is the machine’s active
length. Using the rotor frame of reference, in natural mode the distributions of magnetic fields due
to the power winding driven from the AC source and due to the control winding driven from the
DC source can, respectively, be written in the forms:

Ap (r, θ, t) = Re
{

Ap (r, θ) e
jωp sn t

}
, (8)

Ac (r, θ, t) = Re
{

Ac (r, θ) e
jpcΩn t

}
. (9)

From (1) it can be deduced that pcΩn = ωpsn. After simple manipulations it can be shown that
the magnetic field can be expressed as a combination of magnetic vector potentials Ap and Ac as
their angular frequencies are the same. This new quantity will be referred to as A′ = Ap + Ac [18].
It is evident that Eq. (7) undergoes modification accordingly.

− div
1
µ′
grad

(
A′

)
= −σ

(
jsnωpA′ −

U ′

l

)
, (10)

where U’ is the sum of complex voltages across rotor bars due to fields Ap and Ac , and
µ′ ≡ µ

(��curlA′
��) . In the BDFIM, stator Eqs. (8) and (9) take different forms, namely

Ap (r, θ, t) = Re
{

Ap (r, θ) e
jωp t

}
, (11)

Ac (r, θ, t) = Re
{

Ac (r, θ) e
jωc t

}
= Re

{
Ac (r, θ)

}
. (12)

The complex magnetic vector potential A′ = Ap + Ac can, however, be used globally given
that:

i) no direct electromagnetic coupling exists between the harmonic components of magnetic
flux density between the stator windings due to the sensible selection of pole-pair numbers pp and
pc [1, 9];

ii) the quantity Ac is a complex number coupling with real and imaginary parts of A′ (despite
formally the DC drive of the control winding) because the voltage drive Vc is the complex number
and so are currents and magnetomotive force of the control winding.

Summing up, Eq. (7) for the region of the stator results in two separate complex equations,
each describing the magnetic system attributed to the corresponding winding.

−div
1
µ
grad

(
Ap

)
= Jp, (13)
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−div
1
µ
grad

(
Ac

)
= Jc . (14)

As stated in i)-ii), it becomes evident that this problem can be solved using a single global
magnetic vector potential A′ = Ap + Ac and a single equation in the form:

− div
1
µ′
grad

(
A′

)
= J ′, (15)

where J ′ = Jp + Jc is the sum of complex current densities due to, respectively, the power control
winding, and µ′ is expressed in exactly the same way as for the region of the rotor.

Equations (10) and (15) are to be built considering the ones describing electric circuits formed
by the stator and rotor windings. The system of field-circuit equations describing the BDFIM in all
except the natural modes was described in detail in [18]. As noticed, in natural mode the magnetic
couplings of the BDFIM are different in terms of decoupling the control winding (see Fig. 2). In
the field-circuit model, this is reflected by the modification of only a circuit equation describing
the current of the control winding, which takes a much simpler form than in [18].

Vc = RcIc, (16)

where Rc is the matrix containing the resistances of the control winding and Ic is the vector of
phase currents. The remaining equations require no alteration. For the natural mode, the whole
system of equations receives the following final form:

S (µ′) + jsnωpR −Wp −Wc Dr`
−1 0

jωpWT
p Rp + jXp 0 0 0

0 0 Rc 0 0
− jsnωpDT

r 0 0 Gr K
0 0 0 KT Rr




φ

Ip
Ic
U
Ir


=


0

Vp

Vc

0
0

e jϕ


, (17)

where: S (µ′) and R are the distributed reluctance and conductance matrices, respectively, Wp and
Wc are the stator winding distribution matrices of the power and control winding, respectively,
Dr is the rotor winding distribution matrix, Rp and Xp are the power winding resistance and
end-winding reactance matrix of the power winding, respectively, Gr is the lumped rotor bar
conductance matrix, K is the auxiliary coupling matrix and Rr is the rotor end-connections
resistance matrix. The φ vector comprises values representing magnitudes of the magnetic vector
potential A′, the Ip vector comprises the magnitudes of power winding currents, the U vector
comprises the magnitudes of voltages across the rotor bars, and the Ir vector comprises the
magnitudes of currents of the rotor winding.

System (17) enables the determination of all machine characteristics in relation to rotor
velocity (slip sp). By manipulating the angle ϕ, one can alter the variations of the characteristics in
relation to the synchronous angle at a given velocity. In this context, the computations utilizing the
described time-harmonic model are nearly as simple as employing the equivalent circuit model.
The electromagnetic torque of the BDFIM is calculated using the Maxwell stress tensor formula

Te =
`r2

a

2πµ0
Re


∮
C

B′r B′θ
∗dθ

 , (18)
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(a)

(b)

Fig. 2. Time variations of real value, imaginary value and modulus of magnetic flux density B′ for
a hypothetical case of double-feed for

���Bp

��� = 1 T,
��Bc

�� = 0.5 T: (a) ωp = 100π rad/s, ωc = 10 Hz; (b) natural
mode ωp100π rad/s, ωc = 0 Hz
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where ra is the average air-gap radius, µ0 is the vacuum permeability, B′r and B′θ are the radial and
circumferential components of magnetic flux density determined by applying the curl operator to
the magnetic vector potential A′, and C is the integration path in the BDFIM air-gap.

3.2. Modeling non-linearity of magnetic materials for zero hertz at the control winding
terminals
All modeling techniques for traditional induction machines, in which the non-linearity of steel

cannot be disregarded, rely on the notion of effective permeability that is contingent solely upon
the magnitude of the magnetic field quantity [19, 20]. In a BDFIM, the time-varying magnetic
field displays modulated wave characteristics that cannot be captured by a single magnitude.
In [18] we introduced a workaround founded on the expansion of established induction machine
methodologies. Our hypothesis was that a sinusoidal waveform, which accurately reflects the
modulated waveform in terms of effective saturation level, exists. We analysed the modulated
waveform of the magnetic flux density (radial or circumferential component) as a combination of
two complex single-harmonic waveforms with different frequencies. It can be demonstrated that
the modulus of this complex sum varies over time and its variation is non-linear and non-harmonic
concerning magnitudes of the component waveforms. Nevertheless, it has been demonstrated that
the time-averaged modulus serves as an effective determinant of the saturation level of magnetic
materials. In natural mode, wherein one waveform possesses zero frequency, the summation of
component fields in the stator must be regarded in the following way:

B′ (t) = Bpe jωp t + Bce j(ωc=0)t = Bpe jωp t + Bc, (19)

where Bp and Bc are the local values of magnetic flux density due to the power and control
winding, respectively, that are determined by performing a spatial decomposition of the magnetic
field distribution A′ into harmonic components with pole numbers pp and pc as shown in [18].
The waveform in the rotor consists of the two time-varying components

B′ (t) = Bpe jωp sn t + Bce jpcΩn t . (20)

In both regions of analysis, the effective permeability is determined from the following
Formula [20]

µ (Beff) =
©­­«

4
π

π/2∫
0

sin2 α

µ(Beff sinα)
dα

ª®®¬
−1

, (21)

where Beff = average
(��B′ (t)��) and α is the auxiliary independent variable.

It may come as a surprise that the effective permeability model remains practically unchanged
for both non-zero and zero frequency in driving the control winding. However, a more insightful
analysis of the variations resulting from Formula (19) clearly exposes such a possibility. This is
done in Fig. 2 that compares the variations of B′ (t) and

��B′ (t)�� for the two different scenarios. It can
be deduced that Beff has the same value in Figs. 2(a) and 2(b). This results from the mathematical
features of the waveform

��B′ (t)�� , namely when only one of the component waveforms has non-zero
frequency, like Formula (19), the frequency (either zero or non-zero) of the other component
waveform has an impact only on the shape of

��B′ (t)��; however, it does not exert an influence on its
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mean value. This observation validates the consistency of the developed methodology, which in
practice can be applied to any feasible operating conditions of the BDFIM.

4. Implementation and validation of non-linear time-harmonic model

The authors employed a MATLAB language program to execute the elaborated model, as
there was an absence of commercially accessible FE software environments with the ability to
amalgamate the derived equations. The graphical representation of the data flow utilized by the
computer program employed to calculate BDFIM characteristics is depicted in Fig. 3 In order to
validate the approach through numerical means, an identical model was implemented utilizing
a time-domain moving-rotor-mesh finite element technique. To ensure geometrical consistency
between both models, they are created from the same finite element mesh. The specifications of the
BDFIM are given in Table 2, while its geometry and core material magnetisation characteristics
are comprehensively delineated in [18, 21].

Fig. 3. Data flow in the developed computer program

Figure 4 displays the results of a comparison of torque variations, rms currents, and power
in-take through the power winding at three distinct voltage levels supplied as control winding
input. The quantities are determined and graphed as a function of the angle ϕ. For each value
of control voltage and ϕ, a time-stepping analysis is conducted over five periods of the power
winding voltage to obtain the steady state. The three distinct levels of the control winding voltage
correspond to varying degrees of core saturation: small, medium, and heavy. Although the results
obtained at the highest level of control voltage are beyond the feasible practical values, they do
demonstrate that the proposed time-harmonic model performs well even under a heavily saturated
magnetic circuit. The complex torque variation shown in Fig. 4(a) around ϕ = 150◦ – which
initially decreases before increasing with increasing control voltageŁis due to an interplay between
synchronous and asynchronous components rather than magnetic circuit saturation itself. As
shown in [9], at a constant velocity, the torque of the BDFIM can be described by the parabola
T = c2V2

r2 + c1Vr2 + c3, where c1 − c3 are factors dependent on the machine parameters and
operating conditions and Vr2 is a voltage across the reactance ωpLm2’ (see Figs. 1(e)– (f)). As
evidenced by the results, the model performs accurately under a range of operating conditions,
including those that are extreme. Its demonstrated precision is such that it would be deemed
acceptable by virtually any design methodology.



Vol. 73 (2024) Time-harmonic finite element model for brushless doubly-fed induction machine 625

Table 2. Basic specifications of tested BDFIM

Active length 124 mm

Power winding

pole-pair number pp = 2,
two-layer, phase resistance = 2.3Ω,
end-wining leakage inductance = 0.65 mH,
10 turns per coil

Control winding

pole-pair number pc = 4,
two-layer, phase resistance = 5.4Ω,
end-wining leakage inductance = 1.0 mH,
20 turns per coil

Rotor winding

material – copper

(a) (b)
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(c) (d)

Fig. 4. Results of computations for Vp = 230
√

2 V, ωp = 100π rad/s: (a) electromagnetic torque; (b) intake
of active power by power winding; (c) power winding rms current; (d) control winding rms current. Positive
torque is for motoring operation, negative torque is for generating operation. Positive power values mean

watts delivered to machine, negative power watts injected to the source

5. Conclusions

The aim of this paper is to employ a recently developed method for steady-state modeling of
the BDFIM using a 2-nd time-harmonic finite element model encompassing its entire practical
operating velocity range, even during conditions where one stator voltage frequency is set to zero
hertz. Specifically, it has been demonstrated that extrapolation of the proposed effective magnetic
permeability model can be executed in such a case. As a consequence, the methodology has attained
a comprehensive applicability across all operational scenarios. The computational efficiency of
the proposed model is approximately (1/60)-th that of a time-stepping model. Depending on the
saturation level, a single problem is solved within 30–60 seconds. This renders it not only suitable
for determining individual characteristics but also for performance maps, as depicted in Fig. 5.

(a) (b)
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(c) (d)

Fig. 5. Performance maps of BDFIM in natural mode considering feasible range of control winding voltage.
Thick contour lines in each sub-figure delineate a few selected paths of constant power at generating operation.
The demarcated loci can be utilized to deduce the V-curves analogous to ones of conventional synchronous
machine: (a) mechanical power; (b) rms phase current of control winding; (c) cosine of power angle of power
winding; (d) sine of power angle of power winding. Positive power values mean power delivered to machine,

negative power mean power injected to the grid

The low computational costs associated with the proposed model hold potential for performing
design sensitivity analysis or topology optimisation and/ or the connection with machine learning
techniques among other possible applications.

Moreover, the overall concept can be extended to a three-dimensional space, which has yet to
be used for BDFIMs. In particular, when utilizing the BDFIM in future applications involving
high power output, it may be essential to employ these models to analyse the distribution of stray
losses occurring in both the stator and rotor core end regions. Performing such an analysis through
three-dimensional time-stepping models currently lacks practical benefits due to the significant
amount of time involved.
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