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Abstract: In this article a control method for a rotor side converter (RSC) of a doubly fed
induction generator of a wind turbine is developed. The doubly-fed induction generator
(DFIG) system of a wind energy power plant that improves grid symmetrization was applied.
The issue of optimal control was treated as an extended linear quadratic regulator (ELQR)
having an extra set of exogenous inputs, which are source voltages of the electric grid.
No additional knowledge of equations modelling the exogenous inputs was assumed. The
proposed method is much more efficient than the currently available linear quadratic control
methods. The control objective for a weak grid was to maintain the given value of the voltage
module on load terminals and the given value of active power transferred from the stator’s
winding. First harmonic components of relevant waveforms were used for this purpose. This
task also required the DFIG system to provide reactive power to the grid. In the case of
a rigid grid, this reactive power would be too high. Therefore, in this case, it was assumed
that the system would supply only part of the required active and reactive power, based on
its capabilities. It was required that the voltage and current ratings of the system, mainly the
DFIG, were not exceeded. Therefore, the parameters of the network in these difficult failure
cases were corrected only partially. The behaviour of the grid in the conditions of failure, as
well as the return to the steady state after failure disappearance, were studied.
Key words: doubly-fed induction generator (DFIG), optimal control of systems with
exogenous inputs, wind turbine

1. Introduction

Wind energy systems are important for renewable energy systems worldwide, and in Europe in
particular. It is forecasted that wind energy is going to cover one third of the demand for electric
energy in Europe until 2036. The increase in the share of wind energy in the total amount of
energy requires prevention of power fluctuations connected with wind fluctuations. Fluctuations
may cause a drop in the quality of energy, particularly in weak grid conditions.
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In article [1] the authors presented the possibility to apply the optimal method of linear
quadratic control for the control of a wind power plant with a DFIG (Doubly Fed Induction
Generator) in islanded grid operation. The issue discussed in the current article differs from the
issue in article [1] in terms of the occurrence of the supply grid voltage. This voltage should
not be treated as an external interference; it should be treated as exogenous input. The optimal
control method applied in this article is the extended linear quadratic regulator (ELQR) [2,3]. New
control methods increasing the fault-ride-through capabilities were proposed on the basis of new
mathematical interpretations. Papers [8–12] indicated that a DFIG wind power plant has problems
maintaining an appropriate receiver voltage [Vo] in the case of a grid with a small X/R coefficient.
For that purpose, an analytical model of a wind power plant connected to a grid was developed,
and it enabled one to study the voltage at the reception [Vo] (also for the point of common coupling
– PCC), as well as the increases in this voltage [4–7].

Modern developments related to the DFIG and its use for wind energy generation are described
in [4]. It describes the method of modelling DFIG power systems. The dynamic equations of the
DFIG model and the converters used, including Grid-Side Converter and Rotor-Side Converter
along with Control-Mode Switching during nominal grid voltages and under distorted grid voltages
are presented. It also presents resonant control of the DFIG under grid voltage harmonic distortion.
In the presented article, the use of an extended linear quadratic regulator (ELQR) is proposed to
solve these problems. It uses an extra set of exogenous inputs (or external disturbances) besides the
traditional set of control inputs [2,3]. The presented method and its derivation were first presented
in 2017 in [2] and has not yet been used to control the DFIG system. It is also not described in [4].
Its description and performance testing are the subject of this article.

In the research works [13, 17–20] a new model of a wind turbine for the use in a simulation of
a DFIG in cooperation with an electrical grid was developed. The basis for that was the physical
deduction of all system components. A control system of wind turbines and their generators that
provides better results regarding voltage/reactive power in comparison to the conventional methods
was developed. In [14–16] the behaviour of a DFIG wind power plant in cooperation with an
electric grid was studied for different profiles of wind speed. Attention was paid to maintaining
the DC voltage (Udc as in Fig. 1) at a fixed level.

2. Determining the capability of the grid to transfer power

The short circuit ratio (SCR) defines the amount of active power that can be absorbed by an AC
grid without impacting the quality and stability of the power supply [9, 10]. The SCR is applied
for evaluation of connecting electronic power converters to the grid. Connecting a wind power
plant to grids that have a low SCR, and, thus, are weak AC grids, leads to negative consequences.
These consequences decrease voltage stability, and thus decrease the critical voltage, maximal
active power and limitations of passive power. In that way there occurs limitation of the capability
to generate energy by wind power plants. In particular, in the case of an AC grid of the SCR
equal to 1.1 it is not possible to deliver the rated power by a wind power plant. In that case it is
required to deliver additional passive power by means of external passive power sources. The
ratio of reactance to the resistance of the grid line X/R is a factor that also has influence on
the performance of a wind power plant with weak AC grids. For a particular short circuit ratio
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(SCR) the voltage at the connection point of a wind power plant with an AC grid may increase
or decrease, depending on the ratio of X/R. The voltage at this point is a function of the flow of
active and passive power and the impedance of the AC grid, which may be represented by the
SCR or X/R ratio. The AC grid voltage increases together with the increase in wind power plant
active or passive power. It is more sensitive to the increase in active power in a resistive grid,
where the X/R ratio is small. For an inductive grid with a large ratio of X/R the passive power
has a strong influence on the increase in voltage. This voltage may rise in a dangerous manner
if the X/R ratio is bigger than 2. Due to this voltage increase, the system may become unstable.
Then, it is necessary to deliver appropriate passive power so that the system becomes stable.

The short circuit ratio (SCR) is used to evaluate the electric grid system durability. Grid
durability has a significant impact on its cooperation with a wind power plant. It is used when
comparing relative power of an alternating current grid.

The short circuit ratio is a ratio of short circuit capacity of an AC power grid to the power
injected, for example, by a wind power plant in the analysed point of the grid (I):

SCRi =

��SAC,i
��

PDC,i
=
|Vi |

2

PDC,i
·

1
|zi |

, (1)

where: sAC,i is the system short circuit capacity in the i point, PDC,i is the rated value of the
power introduced to the i bus, |Vi | is the voltage value in the i bus, |zi | is the Thevenin equivalent
impedance of the grid, which corresponds to the i point.

The short circuit ratio is used to calibrate protective devices, for relays configuration and
threshold setting studies. It also enables one to determine the characteristics of synchronous
machines and the capabilities of connecting a direct current circuit with an alternating current
grid. The SCR concept also enables the evaluation of system durability at the point of connecting
units of renewable energy to the grid.

The SCR value indicates whether the grid is rigid, weak or very weak. In general, it is said
that when the SCR is higher than 3.6 the grid is rigid. If the SCR value drops below 1.85 then
the i point is described as very weak in connection with a renewable source. Sudden changes in
generating electric energy of these renewable sources may cause serious operational problems,
such as dynamic overvoltage, as well as problems with grid instability, harmonic resonance and
voltage flickering. On the other hand, strong points of interconnection with the SCR that are higher
than 3 are less susceptible to load variations or variations of the energy supplied by renewable
sources. They may be studied by means of the Thevenin equivalent formula. The effects of sudden
changes in the energy delivered to these i points may be compensated by synchronous generators.

On the other hand, more precise definitions of weak and strong grids are provided in [10]: “The
SCR is a complex number that is inversely proportional to the impedance system. However, given
that the impedance system is usually highly inductive, the SCR is almost inversely proportional
to the inductive impedance system. The standard of values for the SCR with HVDC are: SCR
greater than 3 (strong grid), SCR less than 3 and greater than 2 (weak AC grid) and SCR less than
2 (very weak AC grid); these standards are appropriate for high voltage (HV). In medium voltage
(MV), the AC grid is considered strong for SCR values above 20 or above 25, and the AC grid is
considered weak for the SCR equal or lower than 10.”
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3. The system under study

The researched system is presented in Fig. 1 [1]. The use of the triangle-star transformer circuit
in Fig. 1 makes it easier to ensure symmetry of the output voltages. This partially relieves the
electronic control system, especially under mains failure conditions.

The analysed system is an extended schematic from article [1]. Article [1] discusses optimal
control of the wind power plant DFIG in islanded operation. This article, on the other hand,
presents the optimal control of the DFIG in cooperation with an electric grid. The new system
differs from the previous one in terms of load. In the new system at the output terminals, there is
an energy grid represented by Thevenin’s equivalent theorem. The output system of capacitors C0
was supplemented with neutral wires, both on the side of the star type transformer (Rn, Ln), as well
as on the side of the equivalent load (Ron, Lon). The voltage [Vz] is generated by an RSC inverter
which supplies the DFIG rotor through the resistance Rz and inductance Lz . The DFIG rotor is
supplied with the voltage [Vr ]. The Cf , Rf , L f system is connected to that voltage in order to damp
possible rotor voltage oscillation. The Crez, Rrez, Lrez system is aimed at detecting the harmonic
component of rotor voltage [Vr ] oscillations. Although it is connected to the rotor voltage [Vr ],
it does not physically absorb the current [Irez] from this voltage, because it is only a fictional,
computationally implemented diagnostic system. One of the tasks of the optimal control of an
DFIG is to minimize the possible oscillations of the rotor voltage [Vr ], which is indicated by the
current [Irez]. The transformer system ∆/Λ with capacitor batteries on the primary and secondary
sides is connected to an DFIG.

Fig. 1. Schematic of the researched DFIG system of wind energy power plant connected to electric grid

This system is characterized by good properties of output voltage symmetrization and
minimization of the harmonics. The supply system of the DFIG rotor and stator is described
by means of a vector of state variables. State variables are the voltage and the current in the
system. Firstly, these values should be transformed from the physical system abc to the system of
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components αβ by means of Clark’s transform. It is expressed by the dependency:
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The computations are made in coordinates dq0, which rotate at synchronous speed (grid
angular frequency); ωs = ω0. ωr was used to designate the angular speed of the DFIG rotor. For
the purpose of transforming αβ coordinates to the dq system, the P C matrix was used:[

Ud

Uq

]
= [P C] ·

[
Uα

Uβ

]
, where [P C] =

[
cos( f i) sin( f i)
− sin( f i) cos( f i)

]
, (3)

where the angle fi denotes the angle between the spinning system dq and the stationary system αβ:
f i = (time · ωs (ωs is the grid angular frequency).

The full transform from the stationary system α β to the dq0 system is performed by means of
Park’ transform:

[Park] =


[P C]

[
0
0

]
[
0 0

]
1

 · [Cl] ⇒


Ud

Uq

U0

 = [Park] ·

Ua

Ub

Uc

 . (4)

In order to describe the schematic in Fig. 1 by means of equations, it is necessary to use the
ratio ξ of the ∆/Λ transformer. It is expressed in the number of turns of the winding connected
in Λ, i.e. zs and the number of turns of the winding connected in ∆, that is zt . By using the
transformer ratio ξ it is possible to express the dependency of the primary side [It ] and secondary
side [Is] currents [1, 13, 14]. What is more, it is necessary to consider the way of connecting
transformer windings in ∆, by means of the matrices [T].

ξ =
zs
zt
⇒ [It ]a,b,c = ξ · [T] · [Is]a,b,c , (5)

where [T] =


−1 0 1
1 −1 0
0 1 −1

 .
The DFIG of the wind power plant in Fig. 1 is described by Eqs. (6) in the dq coordinates

rotating with the synchronous system speed ωs . The use of the dq coordinate system rotating with
the synchronous system speed allows the application of optimal control by means of the extended
linear quadratic regulator (ELQR) [2, 3] with the presence of additional exogenous inputs, which
are the source voltages of the electrical grid. The reason for this is to ensure the invariability of the
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coefficients in the system of Eq. (32) [1–14].

Rs · (igd + j · igq) + Ls · (pigd + j · pigq) + Lm · (pird + j · pirq)+

+ j · ωs · [(Ls · (igd + j · igq) + Lm · (ird + j · irq)] − (Vgd + j · Vgq) = 0,
Rr · (ird + j · irq) + Lm · (pigd + j · pigq) + Lr · (pird + j · pirq)+

+ j · (ωs − ωr ) · [Lm · (igd + j · igq) + Lr · (ird + j · irq)] − (Vrd + j · Vrq) = 0, (6)

where: Rs is the stator winding resistance, Ls is the stator winding inductance, Lm is themagnetizing
inductance, Rr is the rotor winding resistance, Lr is the rotor winding inductance, ωs = ω0 is the
synchronous angular frequency, ωr is the rotor’s angular frequency, Vgd + j ·Vgq are the d and q
components of the stator voltage in the complex notation, igd + j · igq are the d and q components
of the stator current in the complex notation, Vrd + j · Vrq are the d and q components of the
rotor voltage in the complex notation, ird + j · irq are the d and q components of the rotor current
in the complex notation, pigd + j · pigq is the time derivative of the stator current in the complex
notation, pird + j · pirq is the time derivative of the rotor current in the complex notation.

In order to obtain formulas of system dynamics, the method of the symbolic solution of
algebraic equations is used. For that purpose the solve() function from the MATLAB system is
used. In that function the formulas from (6) are entered separately for the real part and separately
for the imaginary part (that is Formula (4)). Additionally, formulas for other constituent elements
of the scheme in Fig. 1 should be entered. For the voltages

(
Vgu,Vgv,Vgw

)
of the capacitor Ci the

following formulas are valid:

d
dt


Vgu

Vgv

Vgw

 =
−


Igu
Igv
Igw

 − ξ · [T] ·


Isa
Isb
Isc




3 · Ci
. (7)

In this equation the currents [Ig] are generator stator currents, while currents [Is] are the
currents of the transformer secondary side. Equation (7), similarly like other system equations,
must be transformed to the dq coordinate system which rotates with the ωs synchronous speed.
The following transform is used for that purpose:

[Park] ·
d
dt

[Park]−1 ·


Vgd

Vgq

0


 =−


Igd
Igq
Ig0

 − ξ · [Park] · [T] · [Park]−1 ·


Isd
Isq
Is0


 /3·Ci . (8)

The left side of this equation may be transformed to the following form:

[Park] ·
d
dt

{
[Park]−1} · 

Vgd

Vgq

0

 +


pVgd

pVgq

0

 , (9)

where pVgd =
d
dt

Vgd , pVgq =
d
dt

Vgq .
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The following equations describe the output capacitor starC0. The equation in phase coordinates is:

d
dt


Voa

Vob

Voc

 =
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 −
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Ioc


 /C0. (10)

The equation is transformed to the dq0 coordinates:

[Park] ·
d
dt
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Vod

Voq
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 +


pVod

pVoq
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 =
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Isq
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 −
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 /C0, (11)

where pVod =
d
dt

Vod , pVoq =
d
dt
, pVo0 =

d
dt

Vo0.
The consecutive formulas describe the triangle/star transformer in Fig. 1. In the phase

coordinates abc, this equation is:

d
dt


Isa
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 =
ξ · [T]

tr ·
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 −
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 /Lt . (12)

That equation is transformed to dq0 coordinates by the use of Park’s transformation:

[Park] ·
d
dt
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[Park]−1} · 

Isd
Isq
Is0

 +
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pIsq
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where: pIsd =
d
dt

Isd , pIsq =
d
dt

Isq , pIs0 =
d
dt

Is0.
The next equation is the description of the system connection to the electrical grid. The grid is

modelled by means of an equivalent, the three-phase Thevenin system with a neutral wire. R0n and
L0n are the parameters of the neutral wire, and the phase parameters, e.g. in phase a, are: R0a, L0a,
and ea. Full matrices of the inductance and resistance of dissipation of the grid are introduced:

[mLon] =


Loa 0 0
0 Lob 0
0 0 Loc

 +


Lon Lon Lon

Lon Lon Lon

Lon Lon Lon

 ,
[mRon] =


Roa 0 0
0 Rob 0
0 0 Roc

 +


Ron Ron Ron

Ron Ron Ron

Ron Ron Ron

 .
(14)
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Then, the load equations may be noted in stationary coordinates:

[mLon] ·
d
dt


Ioa
Iob
Ioc

 =

Voa

Vob

Voc

 − [mRon] ·


Ioa
Iob
Ioc

 −

ea
eb
ec

 . (15)

After transformation to dq0 coordinates the equations may also be written as:

[mLon] ·


d
dt

{
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Iod
Ioq
Io0

 + [Park]−1 ·


pIod
pIoq
pIo0
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Vod
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Iod
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ed
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where pIod =
d
dt

Iod , pIoq =
d
dt

Ioq , pIo0 =
d
dt

Io0, while ed, eq, eo are d, q and 0 components of
the grid voltages.

When moving on to the equation of the rotor side it is necessary to introduce Park’s transform
to the rotor. This transform may be written down similarly to Eq. (5):

[Parkr] =
 [P Cr ]

[
0
0

]
[
0 0

]
1

 · [Cl] ,
[
PCr

]
=

[
cos( f ir) sin( f ir)
− sin( f ir) cos( f ir)

]
, (17)

where the angle f ir =
∫
(ωs − ωr ) dt, while ωr is the rotor angular speed. For the voltage that

supplies the rotor [Vrd,Vrq,Vr0] the equation may be written in the dq0 coordinates:

Cf · [Parkr] ·
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where: pVrd =
d
dt

Vrd , pVrq =
d
dt

Vrq , pVr0 =
d
dt

Vr0.
The voltage obtained from the RSC inverter is provided to the rotor through the resistance Rz

and inductance Lz .Thus, the equation may be written as follows:

Lz · [Parkr] ©« d
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where pizd =
d
dt

izd , pizq =
d
dt

izq , piz0 =
d
dt

iz0.
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The equation for the voltage Vf 1 in the capacitor Cf 1 should also be written in the dq0
coordinates:

Cf 1 · [Parkr] ·
©«

d
dt
Parkr−1) ·


Vf 1d

Vf 1q

Vf 10

 + [Parkr]−1 ·


pV f 1d
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ª®®¬ =
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·
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Vrd
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Vr0

 −

Vf 1d

Vf 1q

Vf 10


ª®®¬ . (20)

The system from Fig. 1 was supplemented with, in a virtual way, a system not loaded with
current, the aim of which is to detect resonance vibrations in the rotor circuit. It consists of the
elements Rrez,Crez, Lrez connected in series. It is described by two equations:

Lrez ·


pirezd
pirezq
pirez0

 +

Vrezd

Vrezq

Vrez0

 −

Vrd

Vrq

Vr0

 + Rrez ·


irezd

irezq

irez0

 =

0
0
0

 , (21)

where [Vrez] is the voltage on the capacitor Crez for which the equation may be written in the
following way:

Crez ·


pV rezd
pV rezq
pV rez0

 =

irezd

irezq

irez0

 , (22)

where: pirezd , pirezq , pirez0 are the derivatives of
d
dt


irezd

irezq

irez0

 ,
while:

pV rezd, pV rezq, pV rez0 are the derivatives of
d
dt


Vrezd

Vrezq

Vrez0

 . (23)

State variables that are included in the vector [X] were ordered in the following way:

Table 1. Order of state variables [X]

Va
ri
ab

le
[X

]
V g

d

V g
q

i g
d

i g
q

i r
d

i r
q

V o
d

V o
q

V o
0

i s
d

i s
q i s
0

i o
d

i o
q

i o
0

V r
d

V r
q

i z
d

i z
q

V
f
1d

V
f
1q

i re
zd

i re
zq

V r
ez
d

V r
ez
q

di
r
d

di
r
q

N
um

be
r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

where dird, dirq are the increases in the dq component of the rotor current Ir that occur in the
following time steps. These increases serve to detect and damp possible oscillations of rotor
currents.
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In order to derive equations of dynamics of the system in Fig. 1, the solve() function from
the MATLAB system was used. Equations (6–19) were entered as parameters of this procedure.
After that, it was necessary to specify the variables for which the equations should be solved.
These variables are time derivatives of state variables, namely those included in Table 1. Then the
function solve() provides these derivatives as the function of the variables [X], control variables
[Vz] = [Vzd,Vzq] and dq0 components of the grid voltage [Ezas] = [ed, eq, e0] of the Thevenin’s
equivalent circuit. These equations may be written as [2, 4, 9]:

d
dt
[X] = A · [X] + B · [Vz] + E · [Ezas] . (24)

The quadratic cost function J must be provided. Optimal control, which is a cost effective
control system for a linear time invariant (LTI), enables one to decrease the function of costs
J. Apart from common control variables [Vz], the system is also equipped with an extra set of
exogenous inputs (or external disturbances) [Ezas]. There is no control over the exogenous inputs,
but they must be taken into account in the discussion. The presented problem is a standard problem
of the linear-square control structure [2]. The solution to that is an extended linear quadratic
regulator (ELQR) [2, 3]. It is only necessary to select, in the appropriate way, the costs function J
so as to ensure the required control [Vz] (38). In further calculations, it became apparent that it
was better to take the rotor current [Ir ] [1] as the control variable. It is then easier to ensure that
this current does not exceed its rated value.

The simulations are made for discrete variables with a time step dt. Continuous equation (24)
should be transformed to the discrete form by means of the Euler implicit method. Thanks to this,
numerical stability will be ensured. The equation may be written as:

d
dt
[X] ≈

[X]n −
[
Xp

]
dt

= [A] · [X]n + B · [Vz] + E · [Ezas]n , (25)

where the next step is designated as n and the current step as p.

4. Applied filters

For control purposes, the relationship between the fundamental harmonics of the voltage V0 on
the load and the current of the transformer [Is] supplying the load is assumed, in the form of:

[Isd + j Isq]1harm = (Y + jB) ·[V0d + jV0q]1harm. (26)

This dependence is written in the dq system, in which the fundamental harmonic becomes
a constant component. By properly selecting the conductanceY and the susceptance B, it is possible
to influence, for example, the load voltage module [V0], as well as, the active power P transferred
from the DFIG to the grid. The reactive power Q supplied to the grid results then automatically
in order to ensure the appropriate value of [V0] and P. If the calculations were performed in
a stationary system, then in order to extract the fundamental harmonic, two digital IIR filters (with
infinite impulse response) should be connected in series, one high-pass, the other low-pass. Both
filters should then pass the fundamental pulsatation. An additional advantage of this combination of
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two filters is the possibility of obtaining a zero-phase shift for the fundamental harmonic. However,
since the calculations are carried out in the dq system, in which the fundamental harmonic has
zero pulsatation, it is enough to use a low-pass filter.

There are 4 waveforms to be filtrated: V0d,V0q, Isd, Isq , so 4 filters should be used. Their
equations must be treated together with system (24), as extended equations of the state variables
of the system from Fig. 1. When calculating the first harmonic of the voltages and currents from
Eq. (26), a Butterworth filter was used. The first harmonics in the dq system become zero harmonics.
The Butterworth filter filters this component well, as indicated by its characteristics in Fig. 2.

A filter that was used here was a 4th order Butterworth discrete transfer function (in the domain
of the variable Z):

H (z) =
Y (z)
X(z)

=
bl (1) + bl (2) · z−1 + bl (3) · z−2 + bl (4) · z−3

al (1) + al (2) · z−1 + al (3) · z−2 + al (4) · z−3 , (27)

with the coefficient al(1) = 1, the filter coefficients bl and al are calculated using the butter()
function of the MATLAB system:

fp =
1
dt
, i30 = 15, [bl, al] = butter

(
4, i30/

(
fp
2

))
, (28)

where dt is the time sample and
(

fp
2

)
is the Nyquist frequency. The response of this filter is shown

in Fig. 2. The use of filter (27) serves to ensure a correct relationship between the fundamental
harmonics of the voltageV0 on the load and the current of the transformer [Is], which are expressed
by Eq. (26). The admittance of this filter (Y + jB) is given by Eq. (37) and serves, among other
things, to ensure the correct output voltage.

Fig. 2. Response of the low-pass filter [bl, al]
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This filter is implemented by the standard difference equation for the n-th time step:

al (1) · y (n) = bl (1) · x (n) + bl (2) · x (n − 1) + . . .+
+ bl (4) · x (n − 3) − al (2) · y (n − 1) − al (3) · y (n − 2) − al (4) · y (n − 3) . (29)

This calculation scheme was applied to the variables of interest: V0d,V0q, Isd, Isq . With each
tested variable, 8 equations of state were added, so they were extending the set of state variables
according to the numbering given in Table 2.

Table 2. Extended set of variables with variable numbering for the k-th time step, caused by the need to filter
the waveforms

x(k) x(k – 1) x(k – 2) x(k – 3) y(k) y(k – 1) y(k – 2) y(k – 3) for In Table 1
28 29 30 31 32 33 34 35 Vod 7
36 37 38 39 40 41 42 43 Voq 8
44 45 46 47 48 49 50 51 Isd 10
52 53 54 55 56 57 58 59 Isq 11

The results, i.e. the first harmonics of the waveforms, are included in the y(k) column. Due to
this numbering, relation (26) can be written as:{

x48 = Y · x32 − B · x40
x56 = Y · x40 + B · x32

. (30)

Each of the rows in Table 2 corresponds to the implementation of the filter into the system of
equations. With each line, there are 8 new state variables, specified in the first line of Table 2. The
following matrices are used for this purpose:

[AA] =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

bl(2) bl(3) bl(4) bl(5) −al(2) −al(3) −al(4) −al(5)
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,

[ee f ] =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−bl(1) 0 0 0 al(1) 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



(31)
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The first row of the variables in Table 2 is symbolically denoted by [YY]. The actual variable
numbers for each of the four filter implementation equations are contained in the following rows
of Table 2. These equations are transformed to discrete form (z = es ·dt , where s is the Laplace
variable, and dt is the integration step). Such an implementation, for example, for row two of
Table 2, that is, the first filter with variables 28–35, can be written as follows:

[ee f ] · [YY ] · z = [AA] · [YY ]. (32)

Equations for the other filters were created in a similar way.
Matrices [ee f ], [AA] should be put in appropriate places in the matrix A of extended Eq. (24),

as indicated by the numbers of the corresponding variables in Table 2. Additionally, row 1 of the
matrix in the position corresponding to the input signal to the filter (in this case V0d) in column
number 7 according to Table 1 should be –1.

In order to calculate the admittanceY + jB in Formula (26), which is to provide the appropriate
parameters at the output of the system (i.e. the maximum value of the load voltage V0 and power
transferred from the system to the network), the values of the fundamental harmonic of the positive
sequence voltage of the supply network are needed. This is of particular importance in the event of
possible mains failures. In this case, the IIR low-pass filter from Formula (28) is also used. There
is no need to integrate this filter into the equations of state variables (24), therefore the calculations
are carried out according to the scheme (29). In the diagram in Fig. 1, the network system consists
of the network voltage sources [ea, ebec], the network resistance and inductance R0a, L0b, the
neutral conductor R0n, L0n and the capacitor star C0. The symmetry of the network conductors
is assumed. Network failure states are allowed, consisting in changing the maximum value or the
phase angle of some voltages among [ea, ebec]. The load circuit of the diagram in Fig. 1 is replaced
by Thevenin’s equivalent diagram in the dq system with the following parameters Êz, Ẑ c:


Êz =

(
Ed1h + j · Eq1h

)
·

Ẑ C0

Ẑ + Ẑ C0

Ẑ c =
Ẑ · ẐC0

Ẑ + ẐC0

, (33)

where Ẑ is the line impedance:

Ẑ = Ro a + j · ωs · L0 a ,

while Ẑ C0 is the impedance of the load, star connected capacitors C0

Ẑ C0 = − j ·
1

ωs · C0
,

and Ed1h , Eq1h are the first harmonics of the positive-sequence voltage component of the source
voltage. The presented quantities Êz , Ẑ c, which characterize the network, can also be obtained
by measurement.

In order to determine the admittance components Y , B from (30) the following requirements
are introduced:
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1. The transformer current
[
Îs
]
should ensure the voltage on the load

[
V̂0

]
with the set

maximum value V0m zad , that is:

V̂0 = Êz + Îs · Ẑ c,
��V̂0

�� = V0m zad. (34)

2. The active power output from the transformer through the current Îs should amount PP zad:

Ŝ = V̂0 · Î∗s, P = real
(
Ŝ
)
= PP zad. (35)

The admittance value can be calculated from the formula:

Ĝ = Y + jB =
Îs
V̂0
. (36)

The Nelder–Mead method (multidimensional unconstrained nonlinear minimization) was used
to calculate this admittance. This computation is performed by MATLAB’s fminsearch() function,
which calculates the minimum of the function F (37), depending on the admittance Ĝ (or also
current Îs , which can be seen from Formula (36)):

F =
����V̂0

�� − |V0m zad |
�� + 0, 01 · |P − PPzad | + 10−6 ∗ |Q | + 0, 01 ·

��Ĝ�� , (37)

where Q is the reactive power provided by the transformer: Q = imag(Ŝ). The first two terms of
the F function from Formula (37) ensure that the requirements 1 and 2 are met. The remaining two
components protect against excessive increase in the power Q and admittance Ĝ. The presented
proposal of the function F form corresponds to a weak grid, where it is possible to regulate
the load voltage V̂0. For the rigid grid, there is little possibility of influencing the load voltage;
therefore, the influence of the first component of the F function in (37) should be limited.

The coefficients shown in Formula (37) are intended to ensure that the output voltage is set
at a given value while preventing excessive increases in the active power transmitted to the grid.
They have been selected experimentally. One should be aware, however, that with the limited
capabilities of the examined system in terms of power, it is not always possible to provide the
correct voltage at the load. In such cases, the control variable Ir from Eq. (38) reaches large values
exceeding the rated values. Its two components dq must then be reduced proportionally to ensure
the rated values of the rotor current. In this way, the examined system can only partially provide
the correct voltages due to its limitations.

The extended linear quadratic regulator (ELQR) was chosen to carry out the optimization
process because of its ability to work directly with the equations of the system under study. These
equations were reduced to a system with constant coefficients. In addition, there were external
inputs in the form of network voltages. The method used offers the possibility to directly take
into account the influence of properly extracted parts of these external inputs by modifying the
control [2]. This accelerates the correct operation of the system. The performance of the remaining,
non-isolated part of the grid voltages is improved by reducing their negative (destructive) influence
on the square cost function J (38).

The control used reduces the square cost function J, which can be formed with matrices Q
and R [2, 3]:

J =
N∑
k=0

[
ztk · Q · zk + I tr · R · Ir

]
, (38)
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where matrices are positively definite, i.e.: Q > 0, R > 0, zk represents the state variables and Ir
is the rotor current, which represents the control. By an appropriate matrix assignment, we can
achieve proper control effects. Seven possibilities to influence the waveforms of the system have
been assumed. These are:

1. Requirement to meet relationship (30) between the 1st harmonic of the load voltage [V0] and
the transformer current [I_s]. The values of Y and B can be set arbitrarily or calculated by
minimizing the function F from Formula (37).

2. In order to reduce the harmonics of the load voltage [V0], the control should minimize the
difference between the voltage [V0] and its 1st harmonic.

3. Similarly, the difference between the current [Is] and its 1st harmonic should be as small as
possible.

4. Reducing the oscillations of the rotor voltage [Vr ] can be achieved by limiting the current
flowing through the resistance Rf 1 in the diagram in Fig. 1.

5. In Fig. 1, the resonant circuit Rrez, Lrez,Crez is used. Efforts to reduce this current should be
made.

6. Rotor current fluctuations can be reduced by reducing the value of its derivative, especially
when it is big. In Table 1, successive increments of rotor currents are denoted as 26 and 27.

7. The matrix Q is also increased by the higher harmonics of the load voltage [V0], which are
calculated.

The individual components of the Q matrix, shown above, are multiplied by appropriate
weighting factors to emphasise their importance to the process currently under study.

The R matrix protects against the excessive growth of the control variable Ir .
The applied ELQR method can work for finite time and for infinite time [2, 3]. For finite

time, the problem is reduced to a system of differential equations with boundary conditions on
both time edges (two-boundary problem). It is difficult to solve it; therefore, a method with an
infinite time boundary is used. It also happens that the calculated rotor current control Ir exceeds
the rated values for the DFIG. In this case, both dq components of the control must be reduced
proportionally to meet the rated conditions.

5. Computer simulations

The simulation calculations were carried out for the data presented in Table 3.
In order to check the correctness of the system operation, various parameters of the supply grid

were assumed, i.e. the values of the source voltage of the network eaebec , resistances R0aR0b, R0c
and the supply line inductances L0aL0b, L0c . Cooperation with the rigid and weak grids was tested.
The grid failures in the form of a sudden unbalance of the source voltages eaebec were also
simulated. This imbalance was the reduction of the phase A voltage module ea and an additional
phase shift of this voltage by 1.75 rad. This asymmetry appeared at the end of the computation
with symmetrical voltage. Calculations for a rigid grid with 0.02 Ω line impedance and for a weak
grid with 5 Ω impedance will be presented. It is assumed that the system will seek to obtain
the load voltage maximum value of V0m zad = 400 V when the active power PPzad = 4000 W
is transmitted from the stator of the DFIG machine, in accordance with Formulas (34–37). For
the assumed rigid grid, obtaining the set voltage at the load would require large currents of the
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Table 3. Specification and parameters of the DFIG and the system shown in Fig. 1

Parameters Rating/Values

Rated power 11 kW

Stator voltage 50 V

Rs (stator resistance) 0.48 Ω

Rr (rotor resistance) 0.39 Ω

Ls (stator inductance) 0.0485 H

Lm (mutual inductance) 0.046 H

Lr (rotor inductance) 0.0485 H

DC link voltage 800 V

DC link capacitor 1000 µF

Ci triangle capacitor 0.5 µF

C0 star capacitor 50 µF

ξ transformer ratio 2.04

Rt (transformer resistance) 0.06 Ω

Lt (transformer inductance) 0.0485 H

Number of phases 3

Synchronous frequency 50 Hz

Number of pole pairs 30

Max. slip ±0.35

Air gap width 1 mm

DFIG, exceeding the rated values. Therefore, for the rigid grid, the voltage improvement [V0] was
abandoned. For this purpose, it was enough to multiply the first component of the function F from
Formula (37) by a small value or remove it. The load voltage waveforms [V0] are shown in Fig. 3.
In this and the following figures (Figs. 4, 5) one can clearly see the failure of the mains voltage.

The quality of the system control presented in Fig. 1 is evidenced by the way it reacts to
the disappearance of fault conditions in the power grid. It was assumed that at the moment of
failure the voltage of phase A of the grid decreases and its phase angle changes significantly.
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The effectiveness of the test system’s response to power grid failures, including distortion of the
voltage angle of phase A much greater than 1.75 rad, depends on the power of the system and the
susceptibility of the grid to improvement. The program is adapted to take into account various
failures of a different type, such as short-circuits of two phases of a grid. The waveforms after
removing the failure are shown in the following figures. As before, Fig. 5(a) shows the waveforms
for the weak grid, and Fig. 5(b) shows the rigid grid. This time the weak grid is characterized by
the impedance |Z | = 1Ω. For the rigid grid |Z | = 0.02Ω, the requirement is that the load voltage
[V0] should have a maximum value equal to V0m zad . Such a request would lead to an increase in
the system currents above the rated value. To avoid this also for a weak grid, the first term of the
function F from Formula (37) was multiplied by 0.1. Despite this, the system secured the assumed

(a) (b)

Fig. 3. Waveforms of dq0 components of the load voltage [V0] for (a) weak grid; (b) rigid grid

(a) (b)

Fig. 4. DFIG rotor voltage, i.e. dq components of voltage [Vz ] for (a) weak grid; (b) rigid grid
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(a) (b)

Fig. 5. Waveforms of 1st harmonic of dq components of the transformer current [Is] (10), load voltage [V0]
(10) against the difference of rotor speed ωr and synchronous speed ωs , i.e. (ωr − ωs) (10) for (a) weak grid;

(b) rigid grid

voltage V0m zad . The following figures show the recovery of the system after the failure has been
resolved. Figure 6 shows the dq0 components of the receiver voltage [V0] and the supply network
voltage E . Figure 7 shows the transformer current Is, its first harmonic and the set value (from
Formula (30)) of the first harmonic.

(a) (b)

Fig. 6. Recovery of dq0 components of the load voltage [V0] and dq0 components of the generator voltage
after the grid failure is resolved for (a) weak grid; (b) rigid grid

Despite a certain difference between the 1st harmonic of the current Is and its set values,
the operation of the system should be assessed positively. By improving the proportion of the
coefficients wi when creating the matrix Q of the cost functions, possibly a better agreement can
be obtained.
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(a) (b)

Fig. 7. The dq components of the transformer current Is (green) their first harmonics (red) and the values
given by Formula (30) of these harmonics for (a) weak grid; (b) rigid grid

6. Conclusions

The quality of the system control presented in Fig. 1 is evidenced by the way it reacts to the
disappearance of the fault condition in the power grid. It was assumed that at the moment of failure
the voltage of phase A of the grid decreases and its phase angle changes significantly.

All the presented waveforms (Figs. 3–5) are captured at the rotor speed change as shown
in Fig. 5. Figure 3 shows the load voltage [V0], Fig. 4 shows the rotor supply voltage [Vz], and
Fig. 5 shows the waveforms of the first harmonics of the voltage [V0] and current [Is] and the
assumed rotor speed curve. It should be emphasised that for a proper control effect, the individual
components of the quality matrix Q presented in Formula (38) must be properly balanced. It
should also be emphasised that the power output of the wind power plant with the DFIG under
study also determines the potential for grid performance improvement at grid failures.

The model is adapted to take into account various failures of a different type, such as short-
circuits of two phases of a grid or a phase angle shift greater than 1.75 rad. Exemplary waveforms
obtained with a short-circuit of 2 phases of the grid and then after the fault are shown in Figs. 6 and 7.

The author adopted the method of checking the effects of the described control method using
simulations of the studied system for a rigid and a weak network. The results both for the states of
failure-free operation of the network and for the failure that can occur in the network are presented.
The possibility of counteracting the network failure and the proper resumption of system operation
after the failure cessation is described. These actions take place automatically, according to the
adopted control principle. The fulfilment of the optimization assumptions of the DFIG control
system described by Eq. (24) was ensured by the applied modern ELQR method [2, 3, 21]. This
method and its derivation were first presented in 2017 in [2]. It has not been used to date to control
the operation of a DFIG. The system automatically detects the occurrence of network failures by
examining the Q-quality matrix. The extended linear quadratic regulator (ELQR) method used
allowed for automatic response to improve system performance. In order to do so, it used fault
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identification according to the 7 points considered in the creation of the quality matrix Q (38).
The inspiration for the development of the presented method came from reference [4].

In order to conduct a more detailed and practical examination of the system shown in Fig. 1,
controlled with the method described in the article, a physical model will be constructed. Then, it
will be possible to check the performance of the Phase Locked Loop (PLL) system, used to detect
the grid voltage phase angle during increased wind energy production in the case of weak AC
grids in different conditions including grid failures.
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