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STAFGCN: a spatial-temporal attention-based fusion
graph convolution network for pedestrian trajectory

prediction
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Abstract. Pedestrian trajectory prediction provides crucial data support for the development of smart cities. Existing pedestrian trajectory
prediction methods often overlook the different types of pedestrian interactions and the micro-level spatial-temporal relationships when handling
the interaction information in spatial and temporal dimensions. The model employs a spatial-temporal attention-based fusion graph convolutional
framework to predict future pedestrian trajectories. For the different types of local and global relationships between pedestrians, it first employs
spatial-temporal attention mechanisms to capture dependencies in pedestrian sequence data, obtaining the social interactions of pedestrians in
spatial contexts and the movement trends of pedestrians over time. Subsequently, a fusion graph convolutional module merges the temporal weight
matrix and the spatial weight matrix into a spatial-temporal fusion feature map. Finally, a decoder section utilizes time-stacked convolutional
neural networks to predict future trajectories. The final validation on the ETH and UCY datasets yielded experimental results with an average
displacement error (ADE) of 0.34 and an final displacement error (FDE) of 0.55. The visualization results further demonstrated the rationality
of the model.

Keywords: pedestrian trajectory prediction; micro-level spatial-temporal relationship; spatial-temporal attention; fusion graph convolution;
time-stacked convolutional neural network.

1. INTRODUCTION
Pedestrian trajectory prediction essentially involves analyzing
and extracting historical trajectory features of pedestrians, and
then predicting their future movement directions and paths.
Pedestrian trajectory prediction is crucial in many fields. For
example, accurately predicting pedestrian movements in traffic
forecasting can improve traffic efficiency and reduce conges-
tion [1, 2]. In smart city design, optimizing city layout can be
achieved by predicting pedestrian movement trajectories. Ad-
ditionally, in security monitoring [3], real-time prediction of
pedestrian behavior can help promptly detect abnormal behav-
ior or potential safety risks. Therefore, trajectory prediction can
advance the development of smart cities, making this research
highly significant for practical applications and of great aca-
demic value.

The challenge of pedestrian trajectory prediction lies in si-
multaneously capturing both pedestrian-pedestrian interactions
and pedestrian-environment interactions. Before making predic-
tions, it is essential to comprehensively analyze the relationship
between time points and spatial positions. As shown in Fig. 1,
there is a correlation between the pedestrian’s current time point
and position, which necessitates assessing the influencing fac-
tors within the spatial-temporal context. This increases the com-
plexity of pedestrian trajectory prediction.
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Fig. 1. Pedestrian interaction diagram

Early trajectory prediction methods based on mathematical
and physical principles [4–6], including Gaussian process re-
gression and kinematic methods, typically focused on short-term
predictions of individual trajectories, overlooking pedestrian in-
teractions. Subsequently, researchers turned to deep learning
techniques for modeling human trajectories, primarily using re-
current neural networks [7], long short-term memory networks,
and convolutional neural networks [8–11]. Later, researchers
proposed utilizing pooling to gather potential states of pedes-
trians in the current scene [12]. Many scholars also employed
generative adversarial networks to address challenges in be-
havior inference and uncertainties in future choices [13–15].
Early models mostly relied on recurrent structures, which suf-
fered from low training efficiency and high costs [16]. Many
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models utilizing aggregation layers have been insufficient in in-
tuitively representing physical features among pedestrians. The
subsequent article uses graphs to simulate pedestrian movement
scenarios [17], which is more fitting for describing pedestrian
scenarios than aggregation, but lacks sufficient representation of
social aspects. To better leverage graph representations, schol-
ars proposed the Social-STGCNN model [18], which modeled
pedestrian scenes as spatial-temporal graphs replacing aggrega-
tion layers and used kernel functions to define influences among
pedestrians. The following model builds upon this by using
graph attention mechanisms to calculate the weights represent-
ing the mutual influence between pedestrians [19], yet accurately
representing local and global relationships among pedestrians
remains a significant challenge.

In the early trajectory prediction, only the interactions among
local pedestrians were considered, while ignoring the motion
trends of pedestrians in the distance. The later approach es-
tablished a holistic model, employing the same mechanism for
pedestrians in both spatial and temporal dimensions. However,
it failed to fully consider the micro-level changes of individ-
ual pedestrians across different dimensions and did not extract
interaction weights at multiple levels. Trajectory information
between spatial and temporal is often strongly connected; there-
fore, after obtaining interaction information, we need to analyze
pedestrian interactions under the fusion of spatial and temporal.
When the model uses temporal convolutional network (TCN)
for prediction, there may be cases of insufficient feature ex-
traction; Therefore, this paper proposes the following improve-
ments:
1. After modeling pedestrian trajectories as trajectory graphs,

the spatial-temporal attention mechanism applies a convolu-
tion operation to compute the weight information of pedes-
trians across different dimensions. The model dynamically
updates the weight information matrix, enabling it to explore
micro-level interactions between pedestrians from multiple
perspectives.

2. The fusion graph convolution module is used to integrate
spatial and temporal features, providing a more compre-
hensive understanding of the spatial-temporal structure and
dynamic changes in the data. This generates more effective
interaction feature representations, thereby enhancing the
model ability to understand and represent spatial-temporal
data.

3. The decoder utilizes a time-stacked convolutional neural
network (TSCNN) to recognize and learn long-term depen-
dencies within trajectory data. This enables the model to
delve more deeply into learning detailed pedestrian trajec-
tory feature representations and making predictions.

2. RELATED WORK

2.1. Pedestrian interaction model

The earliest model of crowd interaction was proposed by Hel-
bing et al. known as the social force model [20], which rep-
resents the attraction and repulsion between pedestrians us-
ing Langevin equations. After decades of refinement, exper-

iments in some studies have validated that such models are
not sufficiently accurate in representing real-world crowd in-
teractions. Subsequent models such as discrete choice mod-
els [21] and continuous dynamics models [22], which integrate
mathematical and physical principles, also suffer from insuffi-
cient accuracy in trajectory prediction. The integration of deep
learning methods with trajectory prediction has improved ac-
curacy [23]. Alahi et al. encode pedestrian interactions as “so-
cial” descriptors [24], while Xu et al. use spatial affinity to rep-
resent weights between pedestrians [25]. The Behavior-CNN
model employs CNNs to model crowd interactions. Zhang et
al. simulate neighbors’ current intentions using an iteratively
updated refinement module [26]. Mohamed et al. utilize kernel
functions to extract pedestrian relationships in graph representa-
tions. Many studies have shown that graph attention mechanisms
can better encode trajectory data, effectively aggregating fea-
tures of neighboring nodes [27, 28]. The AST-GNN model uti-
lizes attention mechanisms to extract agent interactions within
spatial-temporal graphs. Subsequent studies have employed self-
attention mechanisms to calculate the temporal and spatial inter-
actions among pedestrians [29–31]. However, existing models
still fail to adaptively consider different-dimensional interac-
tions between pedestrians. To better utilize attention mecha-
nisms in computing interaction matrices, this model employs
spatial-temporal attention mechanisms to learn the temporal
and spatial relationship weights between nodes. This allows the
model to adapt better to different tasks and data distributions, re-
ducing overfitting to specific attention weights. This mechanism
flexibly and dynamically extracts information from different di-
mensions, enhancing understanding of pedestrian behavior in
complex environments.

2.2. Graph network in trajectory prediction

In trajectory prediction tasks, the model needs to analyze se-
quential data in both spatial and temporal dimensions. Se-
quences can be represented using a graph structure with nodes
and edges, where nodes correspond to pedestrians and edges
represent interactions between pedestrians. Huang et al. uti-
lized attention mechanisms to extract spatial interactions and
employed an LSTM model to capture temporal dimension in-
formation [32]. However, different modeling approaches im-
pose limitations on the model ability to handle different di-
mensions. Subsequent research has adopted a spatial-temporal
graph frameworks for trajectory modeling [33], simulating in-
teractions between pedestrians in the spatial dimension and
modeling each pedestrian’s historical trajectory in the tempo-
ral dimension, as seen in action recognition [34], traffic pre-
diction [35], etc. However, these models do not consider the
joint relationships between temporal and spatial dimensions.
Our model addresses this by incorporating a fusion module
within the spatial-temporal graph framework to analyze the
microscopic connections between temporal and spatial dimen-
sions. Additionally, it employs a Time-stacked convolutional
neural network for specific step-length trajectory predictions,
thus enhancing its application in complex and dynamic real-
world scenarios.
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3. PROBLEM FORMULATION
Given the historical observed trajectory positions of 𝑁

pedestrians from the initial time to time 𝑇𝑜 as 𝑡𝑟𝑛𝑜 ={
P𝑛
𝑡 =

(
X𝑛
𝑡 ,Y𝑛

𝑡

)
|𝑡 ∈ {1, . . . ,𝑇𝑜}

}
, the model needs to predict the

position 𝑡𝑟𝑛𝑝 =

{
P̂𝑛
𝑡 =

(
X̂𝑛
𝑡 , Ŷ𝑛

𝑡

)
|𝑡 ∈

{
1, . . . ,𝑇𝑝

}}
at time 𝑇𝑝 , the

predicted position (X̂𝑛
𝑡 , Ŷ𝑛

𝑡 ) represents the probability distribu-
tion random variable of pedestrian 𝑁’s coordinates at time 𝑡.
Assuming observed positions follow a bivariate Gaussian dis-
tribution P𝑛

𝑡 ∼ N
(
𝜇𝑛𝑡 ,𝜎

𝑛
𝑡 , 𝜌

𝑛
𝑡

)
, the predicted pedestrian trajec-

tories also adhere to this distribution P̂𝑛
𝑡 ∼ N

(
�̂�𝑛𝑡 , �̂�

𝑛
𝑡 , �̂�

𝑛
𝑡

)
. To

achieve minimization of the negative log-likelihood loss func-
tion for this model:

𝐿𝑛 (W) = −
𝑇𝑝∑︁
𝑡=1

log
(
P(p𝑛

𝑡 | �̂�𝑛𝑡 , �̂�𝑛
𝑡 , �̂�

𝑛
𝑡 )
)
, (1)

where �̂�𝑛𝑡 denotes the mean, �̂�𝑛
𝑡 denotes the variance, �̂�𝑛𝑡 denotes

the correlation of the distribution, and W represents the learned
network parameters.

4. ARCHITECTURE OVERVIEW
The paper introduces the STAFGCN model, which employs an
encoder-decoder architecture as depicted in Fig. 2. The encoder
consists of two key modules: (1) the spatial-temporal atten-
tion module, which extracts interaction weights of pedestrians
through spatial-temporal attention mechanisms, encompassing
temporal motion trends and spatial social interactions; (2) the
fusion graph convolution module, which utilizes fusion graph
convolution to capture the spatial-temporal correlations within
pedestrians’ complex interactions. The decoder utilizes a Time-
Stacked Convolutional Neural Network, focusing on predicting
long-term future trajectories. Thus, the overall structure of the
model is made more complete, enabling it to predict pedestrian
movement trajectories with greater accuracy.

4.1. Graph representation of pedestrian trajectories

Due to the sparsity of raw trajectories and the advantageous
ability of graph structures to capture complex correlations in
sequential information, therefore, pedestrian trajectory data is

transformed into graph structures for representation. The orig-
inal data consists of the coordinate positions of 𝑁 pedestrians
observed in the scene over the past 𝑇𝑜 time steps, The size of
the input tensor is represented as (𝑁 ×𝑇𝑜 ×2).
1. Spatial graph representation

First, the input pedestrian position information is constructed
into a set of spatial graphs 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠), representing the
relationships and states among pedestrians at time 𝑡. The
nodes are denoted as 𝑉𝑠 =

{
𝑣𝑖𝑠 |∀𝑖 ∈ {1, . . . , 𝑁}

}
, where 𝑣𝑖𝑠 rep-

resents the position information (𝑥𝑖𝑡 , 𝑦𝑖𝑡 ) at time 𝑡. 𝐸𝑠 rep-
resents the edge set information of the graph, denoted as
𝐸𝑠 =

{
𝑒
𝑖 𝑗
𝑠 |∀𝑖, 𝑗 ∈ {1, . . . , 𝑁}

}
. If there is interaction between two

edges, then 𝑒𝑖 𝑗𝑠 = 1; otherwise, 𝑒𝑖 𝑗𝑠 = 0. Then, the spatial-temporal
attention mechanism is utilized to obtain the weighted adjacency
matrix of the nodes.
2. Temporal graph representation

Modeling pedestrians along the temporal dimension, con-
structing the temporal graph 𝐺𝑡 for the 𝑛-th pedestrian. Using
the temporal graph𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ), pedestrians’ relative positions
at different time steps are represented.𝑉𝑡 =

{
𝑣𝑡
𝑖
|∀𝑖 ∈ {1, . . . ,𝑇𝑜}

}
denotes the node information of pedestrian positions, where
(𝑥𝑡

𝑖
, 𝑦𝑡

𝑖
) signifies the coordinates of pedestrian 𝑛 at time 𝑡.

The edge set information of the temporal graph is denoted
as 𝐸𝑡 =

{
𝑒𝑡
𝑖 𝑗
|∀𝑖, 𝑗 ∈ {1, . . . ,𝑇𝑜}

}
, while 𝑒𝑡

𝑖 𝑗
indicates the in-

teractions between pedestrians at time 𝑡. Subsequently, through
spatial-temporal attention mechanisms, more accurate correla-
tions between nodes are captured, providing the model with
more precise input features.

4.2. Spatial-temporal attention

The model employs a spatial-temporal attention mechanism to
perform feature extraction on the graph structure. Due to the
various factors affecting pedestrian movement direction, it is
necessary to analyze the diversity of pedestrian motion patterns.
This mechanism can model temporal and spatial dependencies
from different perspectives, without relying on a fixed weighted
adjacency matrix, thereby improving the model’s capability to
adapt to diverse types of data. The structure is depicted in Fig. 3.

Fig. 2. Spatial-temporal attention-based fusion graph convolutional model framework diagram
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Fig. 3. Spatial-temporal attention architecture diagram

Performing spatial-temporal attention mechanisms on differ-
ent graph representations, compute the motion trends in the
temporal dimension and the social interactions in the spatial
dimension. Traditional attention models utilize linear mappings
to generate discrete input vectors. However, spatial-temporal
attention employs convolutional operations to generate learn-
able parameters𝑄 and 𝐾 , producing local evolutionary features.
Here, spatial attention and temporal attention are used in paral-
lel to compute pedestrian interaction weights along the temporal
and spatial dimensions, respectively. The calculation process of
attention coefficients between pedestrians is as follows:

𝐸 = 𝜑 (𝐺,𝑊1) , (2)

𝑄 = conv (𝐸,𝑊2) , (3)

𝐾 = conv (𝐸,𝑊3) , (4)

where𝐺 represents the input temporal or spatial graph represen-
tation, combined with dynamically changing weight matrix 𝑊 ,

Fig. 4. Fusion graph convolutional structure diagram

we compute the corresponding spatial dimension queries 𝑄𝑠

and keys 𝐾𝑠 , as well as temporal dimension 𝑄𝑡 and 𝐾𝑡 .

𝑎𝑠 =
exp(𝑆(𝐾𝑠 ,𝑄𝑠))∑︁
𝑗

exp(𝑆(𝐾𝑠 ,𝑄𝑠))
, (5)

𝑎𝑡 =
exp(𝑆(𝐾𝑡 ,𝑄𝑡 ))∑︁
𝑗

exp(𝑆(𝐾𝑡 ,𝑄𝑡 ))
, (6)

where 𝑆(·) denotes the function that computes correlations, 𝑗
denotes all neighboring nodes, 𝑎𝑠 is the normalized spatial at-
tention coefficients, and 𝑎𝑡 is the temporal attention coefficients.
The attention coefficients at different time points are concate-
nated to form the temporal adjacency matrix 𝐴𝑡 , and use this
method to obtain the spatial adjacency matrix 𝐴𝑠 for different
pedestrians’ attention coefficients, with information propagation
and feature updates conducted simultaneously in both spatial
and temporal dimensions.

4.3. Fusion graph convolution module

This module consists of two operations. First, perform a fusion
operation on the temporal features and spatial features to obtain
different fusion matrices. In the next step, the obtained fusion
feature matrices are input into a graph convolutional neural net-
work to generate a spatial-temporal fusion convolutional matrix.
The specific operations are shown in Fig. 4.
1. Feature fusion

Using the concept of global attention mechanisms, perform
feature extraction and fusion operations on temporal and spatial
adjacency matrices. First, input weighted adjacency matrices
of different dimensions, apply pooling operations to the spatial
weighted adjacency matrix to extract features, and then use an
activation function to generate the spatial weight matrix.

𝐴𝑠𝑝 = Sigmoid
(
Maxpooling(𝐴𝑠) ·𝑊𝑚

+ Avgpooling(𝐴𝑠) ·𝑊𝑎

)
, (7)
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where 𝐴𝑠𝑝 is the obtained spatial weight matrix, 𝑊𝑚 and 𝑊𝑎

are the weight during the pooling operation.
The corresponding temporal weighted adjacency matrix is

multiplied element-wise with the self-connected spatial weight
matrix to obtain the spatial-temporal fusion matrix, while the
temporal-spatial fusion matrix is derived by performing a dot
product between the spatial weighted adjacency matrix and the
self-connected temporal feature matrix.

𝐴𝑠−𝑡 = 𝐴𝑡 ⊙ (𝐴𝑠𝑝 + 𝐼), (8)

where 𝐴𝑠−𝑡 is the spatial-temporal fusion matrix obtained after
the dot product ⊙.

The spatial weighted adjacency matrix is then concatenated
with the spatial-temporal fusion matrix, followed by a softmax
operation to produce the spatial-temporal fusion aware matrix.

𝑅𝑠−𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑐𝑎𝑡 (𝐴𝑠 , 𝐴𝑠−𝑡 )), (9)

where 𝑅𝑠−𝑡 is the spatial-temporal fusion perception matrix. The
temporal adjacency matrix 𝐴𝑡 undergoes similar fusion convo-
lution operations to sequentially produce the temporal feature
matrix 𝐴𝑡𝑒, the temporal-spatial fusion matrix 𝐴𝑡−𝑠 , and the
temporal-spatial fusion aware matrix 𝑅𝑡−𝑠 .
2. Graph convolutional network

The above-generated fusion aware matrix and the feature map
are input into the two-layer graph convolutional network to pro-
duce the spatial-temporal fusion convolution matrix, as illus-
trated in equation (10).

𝐹𝑆𝑇 = 𝛿 (𝑅𝑡−𝑠𝛿(𝑅𝑠−𝑡𝐺𝑠𝑊𝑠)𝑊𝑡 )
+ 𝛿 (𝑅𝑠−𝑡𝛿(𝑅𝑡−𝑠𝐺𝑡𝑊𝑡 )𝑊𝑠) , (10)

where 𝐹𝑠𝑡 represents the spatial-temporal fusion convolutional
matrix of pedestrians, 𝛿 denotes the corresponding activation
function, 𝐺𝑠 is the spatial graph representation, 𝐺𝑡 indicates
the temporal graph, and 𝑊𝑠 and 𝑊𝑡 are trainable linear trans-
formation matrices. The output of graph convolution operations
are summed together to obtain the output features, which are the
spatial-temporal fusion convolutional matrix.

4.4. Time-stacked convolutional neural network

In the decoder, a time-stacked convolutional neural network is
used to predict future trajectories. The spatial-temporal fusion
convolutional matrix generated by the encoder serves as the in-
put to the decoder. Future trajectories are generated through a
series of feature transformations and time-stacked convolution
operations. To fully leverage the trajectory features extracted at
each TCN layer and capture feature information at different tem-
poral scales, the features are first input into the initial TCN layer,
where they are mapped from 8 dimensions to 12 dimensions.
The features are then passed to the subsequent TCN layers to
extract trajectory features, and the features learned by the three
TCN layers below are stacked together. Finally, they are input
into the final TCN layer for more precise feature extraction and
prediction. By learning from historical time series data, the net-
work generates position features P̂𝑛

𝑡 that adhere to a bivariate
Gaussian distribution. The features consist of predicted means

Fig. 5. Time-stacked convolutional network architecture diagram

and covariance matrices. The network architecture is shown
in Fig. 5.

The network performs multiple layers of TCN to extract fea-
tures. The concatenation of features allows the network to bet-
ter focus on significant regions and more relevant neighboring
pedestrians. Compared to previous methods, the network set-
tings aggregated by TSCNN are more conducive to parameter
optimization and relationship extraction, enhancing the model
gradient propagation capability and improving deep learning
efficiency.

5. EXPERIMENTS AND RESULTS ANALYSIS

The model is implemented on the PyTorch framework, utilizing
Adam as the optimizer. Training is configured for 300 epochs,
with a batch size of 128 per epoch. The initial learning rate is
set to 0.01, with a decay of 0.001 every 100 steps.

5.1. Datasets

ETH [37] and UCY [38] datasets are derived from real street
surveillance videos, containing Overhead View and 2D posi-
tions of each pedestrian. The ETH dataset comprises two scenes:
ETH and HOTEL. The ETH dataset captures pedestrian trajec-
tories from the top floor of the ETH central building, over-
looking pedestrian pathways, while the HOTEL dataset records
pedestrian trajectories from the fourth floor of a hotel, also over-
looking pedestrian pathways. The UCY dataset includes UNIV,
ZARA1, and ZARA2. The UNIV dataset depicts scenes from a
road within a university campus. ZARA1 and ZARA2 datasets
capture pedestrian movements passing by the entrance of ZARA
clothing stores. During training and evaluation, similar to other
baseline methods, the model employs the preceding 8 frames as
observation data to predict pedestrian trajectory information for
the subsequent 12 frames.

5.2. Evaluation metrics

The performance of the model is assessed using two trajec-
tory error metrics: average displacement error (ADE) and final
displacement error (FDE). ADE determines the mean distance
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between each predicted position and the corresponding ground
truth position, reflecting the model average performance over the
entire prediction sequence. FDE represents the distance between
the predicted final position and the actual final position, with a
particular emphasis on evaluating the model accuracy in pre-
dicting the endpoint of the trajectory. By integrating ADE and
FDE, a thorough assessment of the model effectiveness can be
achieved. The computation methods are shown in equation (11)
and equation (12):

𝐴𝐷𝐸 =

∑︁
𝑛∈𝑁

∑︁
𝑡∈𝑇𝑝

𝑝𝑛𝑡 − 𝑝𝑛𝑡 2

𝑁 ×𝑇𝑝
, (11)

𝐹𝐷𝐸 =

∑︁
𝑛∈𝑁

𝑝𝑛𝑡 − 𝑝𝑛𝑡 2

𝑁
, 𝑡 = 𝑇𝑝 . (12)

5.3. Quantitative analysis

Table 1 presents the comparative analysis results of errors, in-
dicating that our model demonstrates better performance when
compared with various traditional and advanced models. This
suggests that our model exhibits higher efficiency and accuracy
in handling spatial-temporal interaction information. Regard-
ing the ADE metric, the error outperforms that of the previous
best-performing baseline model, showing a 3% improvement.
In terms of the FDE metric, the model also shows a significant
reduction in error, with a 15% improvement in accuracy com-
pared to the SGCN, outperforming the RDGCN model by 7%,
and achieving a 17% improvement in prediction accuracy on the
ZARA1 dataset. The results demonstrate that our model achieves
the best performance on most datasets. Although it performs
slightly lower than other models on some datasets, our model
exhibits a higher level of performance in pedestrian trajectory
prediction across the majority of datasets. This further proves
the effectiveness of the model predictions, even in densely pop-
ulated pedestrian movement scenarios, where it maintains high
prediction accuracy.

5.4. Ablation study

These experiments systematically remove or modify parts of the
model to evaluate the impact of different components on the
overall performance.
1. The effectiveness of each module

The experiment validates the contribution of different mod-
ules in improving the model performance. (1) STA represents
the model that uses spatial-temporal attention to capture pedes-
trian interactions; (2) FGCN is the model that incorporates a
fusion graph convolution module; (3) TSCNN is the model
that utilizes a time-stacked convolutional neural network for
prediction. Table 2 results indicate that each module enhances
the prediction accuracy to varying degrees. After incorporating
spatial-temporal attention, the model more accurately captures
pedestrian interactions across different dimensions, resulting in
errors smaller than those of the original model, with a par-
ticularly noticeable improvement in final displacement error.
Fusion of temporal and spatial dimensions improves prediction
accuracy by 3% and 9%, making predictions more aligned with
actual trajectories. In the encoder, TSCNN further enhances pre-
diction accuracy. By simultaneously considering various types
of pedestrian interactions, the model more accurately captures
the relative importance among pedestrians, adapts to diverse
interaction scenarios.
2. The effectiveness of fusion graph convolution

The experiment investigates the impact of fusion graph con-
volution on model performance. (1) Base refers to the model
without the fusion graph convolution module; (2) S-T uses only
the spatial-temporal fusion aware matrix in graph convolution
for interaction modeling; (3) T-S denotes modeling pedestrian
trajectories using only the temporal-spatial fusion feature. From
Table 3, it can be seen that the modeling approach is related to the
performance of the model. Utilizing spatial features to enhance
spatial-temporal interaction modeling improves the model abil-
ity to extract trajectory features that vary with space, modeling
pedestrian social trends has led to a 3% improvement in ADE.
Incorporating temporal features assists in modeling temporal-

Table 1
Comparison of trajectory prediction results on ADE/FDE metrics, where ADE and FDE evaluation metrics are measured

in meters and world coordinates

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-LSTM [12] 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
SR-LSTM [26] 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94
S-GAN-P [13] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
PIF [36] 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
STGAT [32] 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social-STGCNN [18] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
AST-GNN [19] 0.66/1.02 0.37/0.61 0.46/0.83 0.32/0.52 0.28/0.45 0.42/0.69
SGCN [29] 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
STIGCN [30] 0.58/0.96 0.30/0.44 0.38/0.67 0.28/0.47 0.23/0.42 0.35/0.59
RDGCN [31] 0.58/0.94 0.30/0.45 0.35/0.65 0.28/0.48 0.25/0.44 0.35/0.59
STAFGCN (ours) 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55
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Table 2
Ablation study of different modules on the model performance in ADE/FDE metrics

STA FGC TSCNN ETH HOTEL UNIV ZARA1 ZARA2 AVG

0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

✓ 0.60/0.99 0.34/0.49 0.39/0.71 0.27/0.46 0.22/0.42 0.36/0.61

✓ 0.59/0.94 0.33/0.47 0.37/0.64 0.29/0.49 0.22/0.43 0.36/0.59

✓ 0.61/1.01 0.33/0.52 0.38/0.69 0.28/0.47 0.23/0.43 0.37/0.62

✓ ✓ ✓ 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

Table 3
The impact of spatial-temporal fusion operations on model performance in ADE/FDE metrics

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Base 0.58/0.99 0.30/0.45 0.38/0.68 0.28/0.47 0.24/0.43 0.36/0.60

S-T 0.58/0.96 0.31/0.47 0.37/0.64 0.27/0.45 0.23/0.43 0.35/0.59

T-S 0.57/0.93 0.32/0.47 0.38/0.62 0.26/0.44 0.22/0.42 0.35/0.58

STAFGCN 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

spatial interactions, allowing the model to focus on changes
in pedestrian movement, and modeling movement trends has
reduced the FDE error by 3%. This model employs a combina-
tion of both fusion modeling methods simultaneously to fully
extract the complex relationships within the graph structure, en-
hancing the diversity of pedestrian interactions. This results in
a 6% improvement in ADE and an 8% improvement in FDE.
It indicates that fusion graph convolution enables a deeper and
multi-faceted exploration of pedestrian interaction relationships,
thereby achieving better prediction results.
3. The effectiveness of the TSCNN architecture

The experiment investigates the impact of TCN structure on
model performance. Shallow networks struggle to capture sub-
tle changes in trajectories effectively, especially when extracting
pedestrian interaction information in high-density scenes. How-
ever, an excessive number of layers can lead to overfitting, as
the increase in layers also results in increased errors, leading to
significant bias in the prediction results. Previous model data
suggests that a five-layer TCN yields favorable prediction re-
sults, but simply using networks sequentially may impact the
effectiveness of information extraction. (1) TSCNN1-4 uses the
first TCN layer to process dimensions, sequentially employ-
ing four TCN layers to extract features and generate predicted
trajectories; (2) TSCNN1-2-2 uses the first layer to process di-

mensions, stacks the output features from the second and third
layers, and then feeds these features into the last two TCN lay-
ers; (3) TSCNN1-3-1 uses the first layer to process dimensions,
stacks the output features from the middle three layers, and then
inputs them into the final layer. As shown in Table 4, stacking
the output features from three layers can better reduce prediction
errors. Compared to the network structure without stacked TCN,
it reduces ADE by 3% and FDE by 8%, and also outperforms the
two-layer stacked network structure. Extracting trajectory infor-
mation at different levels significantly enhances the model abil-
ity to extract features, thereby improving prediction accuracy.

5.5. Model performance comparison

Table 5 provides a comparison of our model with other baseline
models regarding parameter count and inference time, it can
be seen that these model performance is significantly improved
after overcoming the limitations of recurrent architecture and
aggregation methods. The inclusion of spatial-temporal atten-
tion and fusion graph convolution modules in this model will
incur some increase in computational workload and inference
time. However, the parallel computation feature of the spatial-
temporal attention mechanism results in an increase in inference
time only due to the calculation of additional parameters, with-
out significant time cost. The main increase in inference time

Table 4
The impact of the TSCNN structure on the model performance in ADE/FDE metrics

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

TSCNN1-4 0.57/0.94 0.32/0.48 0.38/0.68 0.27/0.47 0.22/0.42 0.35/0.60

TSCNN1-2-2 0.58/0.95 0.31/0.47 0.37/0.65 0.27/0.43 0.22/0.42 0.35/0.58

TSCNN1-3-1 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55
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occurs when fusing features. This indicates that while the model
increases in complexity to enhance computational precision, it
does not incur an excessive increase in time cost.

Table 5
Model performance comparison

Model Inference time(s) Parameters count

SR-LSTM [26] 0.1758 64.9K

PIF [36] 0.1145 360.3K

Social-STGCNN [18] 0.0020 7.6K

SGCN [29] 0.0040 25.3K

STAFGCN (ours) 0.0045 29.7K

5.6. Visualization results

To demonstrate visually the practical performance improve-
ments of the model enhancements, experiments utilized visu-
alization to depict the predicted scenarios at the same moment
in time.

Figure 6 shows the visualized trajectory distributions of dif-
ferent models. Each region represents the distribution range
of the predicted trajectory mean for an individual pedestrian,
with darker colors indicating a higher probability of the tra-
jectory occurring at that location. The first column depicts a
scenario with two parallel pedestrians, where our model ex-
hibits minimal deviation and overlap in the trajectory distribu-
tion, resulting in a relatively accurate overall prediction effect.
The second column features pedestrians walking towards each
other, with the STAFGCN model generating the most reason-
able avoidance behavior in this scenario. The third column il-
lustrates a scenario with multiple interacting pedestrians. Our
model trajectory distribution closely matches the real-world sce-
nario, while the SGCN model produces an overly sparse distribu-
tion. The STIGCN model, influenced by interaction perception,
shows overlapping trajectory distributions, resulting in redun-
dant avoidance behaviors. These results demonstrate the feasi-
bility of the model predictions across various contexts, showing
that trajectory distributions are more accurate when dealing with
complex interactions.

Fig. 6. Visualization of trajectory distribution

Figure 7 demonstrates the performance of three models in
real-world scenarios. The first row shows a scenario with two
pedestrians walking towards each other at an intersection. It
can be observed that our model predicts the endpoints closest
to the actual trajectories on a micro level, whereas the other
two models exhibit inaccuracies in either speed or direction.
The second row presents the results of predicting the trajecto-
ries of two pedestrians walking one behind the other, with a
less influential pedestrian diagonally ahead. It can be seen that
the models exhibit varying degrees of avoidance behavior, with
our model achieving the smallest average displacement error.
The third row depicts a scenario involving multiple interacting
pedestrians, where two pedestrians walking together towards a
store encounter pedestrians walking in the opposite direction.
While SGCN and Social-STGCNN perform well in predicting
individual pedestrian trajectories, our model overall predicted
trajectory is the closest to the real trajectory. This indicates that
our model excels in capturing the micro-level spatial-temporal
interactions between pedestrians, allowing for more accurate
predictions of pedestrians’ spatial-temporal movement trends.
These results further validate the effectiveness and rationality
of the model improvements.

Fig. 7. Visualization of real-world scenarios

6. CONCLUSIONS

This paper presents a pedestrian trajectory prediction model
using a spatial-temporal attention-based fusion graph convolu-
tion network. To more accurately extract interaction relation-
ships, the model employs a seq2seq framework. In the encoder,
spatial-temporal attention is first used to analyze various types
of microscopic relationships between pedestrians and their en-
vironment in both temporal and spatial dimensions, and then
employs a fusion graph convolution module to extract spatial-
temporal correlation information. In the decoder, TSCNN is uti-
lized for a more comprehensive analysis and prediction of trajec-
tories. The model underwent extensive experimental validation
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on multiple real-world pedestrian trajectory datasets, yielding
superior results compared to other mainstream algorithms, with
a 3% improvement in ADE and a 7% improvement in FDE.
Visualizations comparing different models further confirm the
effectiveness of the model improvements. In future research, we
will further address the limitations of multi-modal interactions
between pedestrians and various types of vehicles, and employ
mathematical methods to enhance the safety decisions of our
models. We hope to apply the model to complex urban traffic
scenarios involving multiple pedestrians and vehicles, aiming to
enhance its practicality and reliability.
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