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Necessary optimality conditions for a Lagrange
problem governed by a continuous Roesser model
with Caputo derivatives

Rafal KAMOCKI

In the paper, we consider a Lagrange problem governed by a continuous Roesser type
system with single partial Caputo derivatives. The necessary optimality conditions for such a
problem are derived. In our approach, the increment method, as well as a fractional version of
Gronwall’s type lemma for functions of two variables are used.

Key words: partial fractional integrals and derivatives, Roesser type system, maximum principle,
Lagrange type cost functional

1. Introduction

The investigation object of the present paper is the following optimal control
problem:

minimize J(u):/fo(x,y,zf,(x,y),zi(x,y),u(x,y))dxdy, (D
P

subject to
‘Dt = fl(x,y, 2 Aw),

Db = Ay, 2 o), (2)

u(x,y) e M c R"
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a.e.on P = [0,a] x [0, b] and

21(0,y) =6(y), ye[0,b] a.e.,

2 (3)
7“(x,0) =y(x), x¢€]0,a] a.e.,

where a,8 € (0,1), CZ)}Q, Ci)f . denote single partial fractional differential
operators in the Caputo sense, f0: PXR" xR xR™ — R, fi: PxRM xR™ x
R™ - R%,i=1,2,6: [0,b] > R",y: [0,a] - R™, z, = (z,ﬂ,z,%) is a unique
solution of system (2)—(3), corresponding to any fixed control u.

Systems of the above type reduce to a classical 2D continuous Roesser model
(@« = B = 1) which is a counterpart of the 2D discrete model introduced by
Roesser in [13]. Such models are used to describe chemical processes occurring
in reactors with varying catalyst activity [10, 11, 15]. Many papers are devoted to
linear continuous and discrete-time systems described by the fractional Roesser
model. In [14], using the 2D Laplace transform, a general response formula for
the problem of type (2)—(3) has been derived. In [7], the authors obtained the
formula of such a type for fractional discrete-time Roesser model with the aid of
Z-transform. Furthermore, in both papers the necessary and sufficient conditions
for the positivity and stability have been studied. Existence of solutions, as well as
positivity of a fractional hybrid (discrete-continuous) Roesser model have been
investigated in [1].

The aim of this paper is to derive the maximum principle for problem (1)—(2).
In [2, 8] results of such a type for the classical nD Roesser model and linear sys-
tems 2 with the Riemann-Liouville derivatives, respectively, have been obtained.
To derive the necessary optimality conditions, a smooth-convex extremum prin-
ciple by loffe—Tikhomirov ( [6]) was applied there. In our approach, we use the
increment method in which it is necessary to estimate the increments of the trajec-
tory and the cost functional. In contrast to the method used in [2, 8], compactness
of the set M is not required (boundedness of M is sufficient). Furthermore, our
method allows us to avoid a convexity-type assumption on f°, f!, £2 which is re-
quired in a smooth-convex extremum principle. A key role in our approach plays
some fractional version of the Gronwall lemma for functions of two variables
(Appendix) which enables us to obtain pointwise equiboundedness of trajecto-
ries (Proposition 1). In [4], existence of optimal solutions for a Lagrange problem
governed by the classical and fractional (with the Riemann-Liouville derivatives)
Roesser model has been obtained. Different structures of the control system, sets
of controls, as well as different growth conditions imposed on f° have been con-
sidered there. In [12], a linear—quadratic optimal control problem described by
2D Roesser model with Caputo derivatives is studied. A numerical solution of
such a problem by using the Ritz method and the Laplace transform has been
obtained there.
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The paper is organized as follows. In Section 2, definitions of partial fractional
integrals and derivatives are recalled. Section 3 is devoted the main result of
the paper, namely the maximum principle for problem (1)-(3). A theoretical
illustrative example is contained in Section 4. Finally, in Appendix mentioned
Gronwall’s lemma, as well as a theorem on the existence of a unique solution
to a linear differential system with the right-sided Riemann-Liouville partial
derivatives are proved.

2. Preliminaries

In this part of the paper, we recall some necessary definitions and results
concerning fractional calculus of functions of two variables (for details, see [5,9]).

Let R = [c1,d1] X [c2,d>] € R? be any bounded rectangle.

We will use the following notation:

* L' ([c,d]) — the space of all r-summable functions ¢: [c,d] — R”", en-
1

d r
dowed with the norm ||| 7 ([¢.a]) = (/ |<p(t)|’dt) forany 1 <r < oo;
c

* LX([c,d]) —the space of all essentially bounded functions ¢: [c,d] — R",
endowed with the norm ||@|| e ((¢,4]) = ess sup|e(1)];
te[c,d]

* L’ (R) — the space of all r-summable functions ¢: R — R", endowed with

r

the norm ||¢l|zr (k) = (/ |<p(x,y)|rdxdy) forany 1 < r < oo;
R

* L>(R) — the space of all essentially bounded functions ¢: R — R”, en-

dowed with the norm |[[¢l|z=(r) = ess sup|p(x, y)].
(x,y)eR

Let @ > 0. By the left—sided Riemann—Liouville integrals of a function
w e L,li(R) of order @ with respect to x and y we shall mean functions

e L[ (s

cl+,xw)(x’ y) = F(Q) (x _ S)]_a ds, (X,y) €ERa.e.

1 - w(x, 1)
M) oo

(IS W) (x,y) = dt, (x,y)€Ra.e.,

respectively, with the convention that
(I?Itxw)(x,y) = w(x,y) and (I?zww)(x,y) = w(x,y) for ae. (x,y) € R.
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Similarly, we define the right-sided Riemann-Liouville integrals, namely

d
] w(s,y)
(g, w)(x,y) = (@) G _x)l_ads, (x,y) €R a.e.
L win
wi(x, 1t
(Ig,— yw)(x,y) = dt, (x,y)€Ra.e.,

L@ J -y
y

whereby
(121—,xw) (x,y) = w(x,y) and (122_,yw) (x,y) = w(x,y) for a.e. (x,y) € R. To
simplify the notations, we will use the symbols 7}, and I}, to denote the left-sided
fractional integrals Ig+,x’ Ig+,y’ respectively.

Now, we give definitions of partial fractional derivatives in the Caputo sense
introduced in [9]. In the rest of this section we assume that @ € (0, 1). Let us

consider a class of functions w € L} (P) such that

(a) w(-,y) is continuous on [0, a] for a.e. y € [0, b],

(b) w(0,") € L,([0,b]).
By C,0(P,R") we shall denote the set of all functions w: P — R”, for which
there exists a function w € L!(P) such that w = w a.e. on P and w satisfies
conditions (a), (b). We shall identify any function w € C,o(P,R") with its
representant w described above.

Similarly, we define the set of functions denoted by C, o(P,R"). In this case
conditions (a) and (b) are replaced with the following ones:

(a) w(x,-) is continuous on [0, b] for a.e. x € [0, a],
(b) w(-,0) € L, ([0, al).

For a function w € Cyo(P,R") (w € C,o(P,R")) we define the left—sided single

partial Caputo derivative ©DZ,w (“DZ,w) of order e, with respect to x (y) as
follows:

(CD4W)(x,y) = DL (w(--) = w(0,))(x,y), (x,y) € P a.e.

((CD;¥+W)(X’ y) = D§+(W(’ ) - W(',O))(X, y)’ (X, y) epP a.e.),

provided that right-hand side of the above equality exists. Here DY, DY, are
single partial fractional differential operators in the Riemann-Liouville sense

(cf. [5]).
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Let 1 < 1 < p < oo. By CAC{;” (L ([0,5])) we denote the set of all
functions w: P — R" given by
w(x,y) =n(y) + (ILe)(x,y), (x,y) € Pae., 4
with some functions n € L ([0, b]) and ¢ € L (P). Similarly, we define the set
CAC;;” (L ([0,a])), namely:
CACT (LY ([0.a]) = {w: P > R"; w(x,y) = k(x) + (I},¥)(x, ),
(x,y) eP a.e.},
with some functions x € L ([0,a]) and ¢ € L} (P).

Remark 1. From [9, Lemma 3 and Theorem 5] it follows that if w €
CACQP(L‘X’([O b])) then w(0,y) = n(y) and there exists the Caputo derivative

CDw = pa.e. on P. Similarly, ifw € CAC “P(L2(10,al)) then w(x, 0) = k(x)
and there exists the Caputo derivative CZ)" w =1y a.e. on P.

3. Maximum principle

In this section we derive the necessary optimality conditions for problem

(1H)-(3).
We introduce the following assumptions on functions f 0 and f="4F 2):
(A) f’( A z u) is measurable on P for all (z!,z%,u) € R™ x R™ x R™,
fi(x,y,z', 2%, ) is continuous on R™ for a.e. (x,y) € P and all (z!,2z?) €
R xR™, f i(x, v, -, -, it) is continuously differentiable on R x R for a.e.
(x,y) € Pandall u € R™, whereby i =0, 1, 2,

(Ajo) there exist functions 0 € C(R]XRGXR,R{), cp0 € L'(P, R{) such that

|f0('x’ Y, ZI’ZZ, I/t)l < CfO(x, }’)77]‘0(|Zl|’ |Z2|’ |I/l|) (5)

£y, 2 2] <npo(l2'] |22 Jul),  i=1,2 (6)

for a.e. (x,y) € Pandall (z!,z%,u) e R xR"™ x M,

(Ay) there exist a constant L > 0 and functions ns € C(R{,R(), y1 €
L7([0,a]), y2 € LY ([0, b]), with p > 1, such that

|fiey, 2t 22 u) = fiey, whw? w)] < L(|2' = w'| + |22 = w?)),

|f1(xay’ 050’ I/l)' < ’)/l(x)nfl(lul)v |f2(-xay’ 07 0’ ’/l)l < 72()’)77f2(|u|)
forae. (x,y) € Pandallu e M, 7/,w' e R",i=1,2.
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Leta,B € (0,1),1 < /13 <p<o,l<lcp<oonseLy([0,b])andy €
L, ([0, a]). By a solution (trajectory) to control system (2)—(3), corresponding
to a control u € Uy, we mean a function (z',z%) € CACL” (LY ([0,b])) x

CACf;p (L, ([0, a])) satisfying system (2) a.e. on P and boundary conditions
(3), where

Uy ={uclL,)(P); u(x,y)eM, (x,y)ePa.e}cClL,(P)

(one can show that under assumptions (A) and (Ay), for any fixed u € Uy
problem (2)—(3) possesses a unique solution'). In such a case, the pair ((z!, z2), u)
is called an admissible process, whereby u, (zl,zz) are said to be admissible
control and state, respectively. A couple ((z!, z2), u.) is called an optimal solution
to problem (1)—(3) if it is admissible process and minimizes cost (1) among all
admissible processes ((z', %), u).

Now, we prove the following useful result

Proposition 1. Let ((z',2%),u) € (CAC:” (L ([0, b]))x CACff(LZ‘;([O, al)))
XU be an admissible process. [f M C R™ is bounded, then there exists a constant
C > 0 (independent on u) such that

121, ), 122 (e, y) < €, (x,y) € P ae.

for any u € Uy.
Proof. By (Ay) it follows that
2! (e I < 1181l (oo +ge|“ Dz’ (x, y)]

= 11611z o.on +Heel £ (v, 21 (6, 9), 22 (2, 3), u(x, )
<16l crosn + LI (12! (e )|+ 12 (6 YD+ (1 () 1 (e (v, )1)),

for a.e. (x,y) € P. Since M is bounded, therefore there exists a constant C; > 0
(independed on u) such that

ne(lu(x,y)) <G, (x,y)ePae., i=12.
Hence, with the aid of the Holder inequality, we assert that
|28 (x, y)| <LI% (12 (x, y)| + 122 (x, »)) + C3,  (x,y) € P a.e.,

IThe existence result can be obtained for example with the aid of the Banach contraction principle,
applied to problem with zero boundary conditions. Next, using an appriopriate substitution the result of such
a type can be obtained for problem with nonzero boundary conditions ( [9]).
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where

1 1

C1||71||Lf([0,a])aa_p p-1\"
I'la@)

Cs = 161l (f0.61) ap—1

Similarly, we obtain the estimation
122 (e )| <LIL (12 (6, 9) [ + |26, 9)) + Cas - (x,7) € P ace,,

where
1

, p-1 L
Callyallpr o0 7 (p—l )

Cs = lyllre (10,01 +
(04D r(g) Bp -1

Consequently,

2! (e, )1+ 127 (x, )]

L{18.(12" (e ) + 12206 ) 1) + (12" (e 9)] #1226, 7)) + s+ Cy

X
1 2
ngaX{ 1 ’ 1 }/Iz (s, )|+ 1z (s,y)lds
0

I'(a)” T'(B) (x =)l

dt |+ C3 + Cy,

y
2! (x, )| + |22 (x, 1)
+/ (y-nl-#

for a.e. (x,y) € P. From Corollary 1 (Appendix) it follows that there exists a
constant Cs > O such that

' )+ 122 (x, )] < (C3+Ca)Cs,  (x,y) € P ae.,
Putting C = (C3 + C4)Cs, we conclude

17, V| < 128 )| + 122, y)| < €, (x,y) € Pae., i=1,2.

Now, we formulate and prove the main result of this paper.

Theorem 1. Let M be a bounded set. Under assumptions (A), (Ayo), (Ay)
if ((z.22).u.) € (CACE(LE([0.])) x CACE (L (o, a]))) X Uy is an
optimal solution to problem (1)—(3) and A2 = (1',2%) € (L7 (P)) %
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If_,y(L,‘Z (P))? is a solution to the conjugated system

{(Dg—,x/ll)(x7y) = lel [x’y]/ll(-x’y) +fZ2| [x,y]/lz(x,y) _fzq [)C y]

(7
(DF ) (x.y) = Al y1A () + F21x 12 (e y) = fOLx, y]
a.e. on P with boundary conditions

(1)2221(0,y) =0, y e [0,b] ae. 8
(1A (x.0) =0, xe[0.a] ae. ©

where fzij[x’y] = f;f(x,y,zi(x,y),zz(x,y),u*(x,y)), i = O’ 1’2) ] = 1’2’ D[ay—x

and Df_, are partial right—sided Riemann-Liouville differential operators (cf. [ 8,
Remark 2]), then

2
Z/li(x’ )’)fl (.X, y’ Zi(x’ )’), Zi(x’ y)’u*(x’ y))
i=1

= £ (v 2 ey 22y ()

2
—_ i i 1 2
B Igle%/)l({l_zl A, y) (e y, 2. (2, y), 2 (x, y), v)

_fo(x7y’Z}k(-x’y)’Zz(-x’y)’v)} (9)

fora.e. (x,y) € P.

Proof.

Let ((z!,z2),u.) be an optimal solution to problem (1)-(3) and
((z',z%),u) denotes an admissible process. Then the increment

(Az',AZ%) = (! =2l = 2))
is a solution to the following system

COL A = Af(x,y, 7', 22, u)
CZ))[LAZz = Afz(x’ ) Zla ZZ’ l/l)

(10)
u(x,y) e M c R

2The sets 15_ (Ly, (P)) and Ij7 y(L;l"; (P)) are defined as follows:
15 <(Ly (P)) :={w: P > R" :

w=Ig_,pae onP, ¢elLy(P)},
Ig_,y(Lff;(P)) ={w: P >R™:

w=Iy Wae onP, yelLy(P)}
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a.e.on P and

1 _
{Az (0,y) =0, yel[0,b] ae. (11)

AZ?(x,0)=0, x¢€[0,a] a.e.,

where Afi(x,y,z!, 2%, u) = fi(x, v, 2", 22 u) — fi(x,y, 2}, 22, u,), i = 1,2. More-
over,

AJ(u):J(u)—J(u*)=/Afo(x,y,z‘(x,y),zz(x,y),u(x,y))dxdy,
P

whereby Af(x,y,z!, 2% u) = fO(x,y, 2, 22, u) — fO(x, v, 2}, 22, u.). Now, let us
fix any function (4',42) € Ly’ (P) x Ly (P). Then, the increment AJ (i) can be
written as follows:

AJ(u) :/ (Afo(x,y,zl(x,y),zz(x,y),u(x,y))
P

+ 21, 3) (DL AL (2, y) = AF (3, 2 (6, 3), (3, y), u(x, Y)))

+ 22(x, ) (DL A2 (x,y) = Af (6, v, 21 (0, ), (3, y), u(x, y))) | dxdy

- [ @)D a2 (x03) + P ) D AR () dady
P

- [ (#6052 ). 2 ). )R )
P

— H(x,y, 20 (x, ¥), 20 (x,y), u(x,y), A" (x,¥), A (x, y))
+H(x,y,24(x, y), 22 (x, y), u(x, y), A" (x,y), 22(x,y))
— H(x,y, 20 (x, ¥), 22 (x,y), us(x,y), A' (x, ), A% (x, y))) dxdy,
where: P X R X R x R" x RM x R"™ — R,
Hex,y,2h 2o AN 22) = AL (x y, b 22ou) + 22, v, 21, 22 )
- Oy, 2 ).

From the Mean Value Theorem it follows that for a.e. (x,y) € P there exists
0(x,y) € (0, 1) such that

H(x7 y9 Z17 Zz, u, /117 /12) - H(X, ya Z:u Z3$ u, /119 /lz)
=H,(x,y, 200, y)AZ, 22+ 0(x, y)AZ%, u, A1, A2)AZ!
+ Hpa(x, y, 20+ 0(x, y)Az', 27+ 0(x, y) A%, u, A1, %) Az
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Consequently,

2w = [ (210 D5 AT (103) + B0 3) D AR (. 3)) dady
P

—/(AM*HZI(x,y,ZL(x,y),ZE(x,y),u(x, ), A (x, ), A% (x, ) Az (x, )
J

+ Ay H2(x,y, 20 (x, ), 20 (x,y), u(x,y), A (x, ), A2 (x, ) AZ* (x, )
+ Ay H(x,y, 20 (x, ), 22(x, y), u(x, y), A (x,y), 2(x, )

+ H i (x,y, 20 (5, ), 22, ), ua(x, ), A (x, ), A% (x, ) AZ' (x, y)

+ Ha(x,y, 20 (6, ), 22 (X, ), ua(x,y), A (x, ), A2 (x, ) AZ* (x, )

+ R(x, y))dxdy,

where

A, G(x,y, 28, 22, u, A8, 2%) = G(x, y, 28, 22, u, 21, A2 =G (x, y, 2L, 22, u., A1, 2%,

R(x,y) = (Ha (x5, (21 (), 26, 9)

+0(x, ) (Az' (x, ), A2 (x, y)). u(x, y), A (x,y), 22(x, y))

- Zl(x,y,zi(x,y),zf(x,y),u(x,y),ﬁl(x’y),/lz(x,y)))Azl(x,y)
+(Ha (v, (21063, 26, 9)

+0(x, y)(Az' (x,y), A2 (x, ), u(x, y), A (x,y), 1*(x, y))

— Ho(x,y,24(x, ), 22 (x, y) u(x,y), A' (x, ), A (x, y)))Azz(x, y).

Since (Az', Az?) is a solution to (10), therefore
A =18 DAL, AP =1, CD0 A

Thus, using Fubini’s theorem, we conclude

/Hzl(x,y, 206, ), 22(x, ¥), s (x, ), A (x, ¥), A2 (x, ¥) Az (x, y)dxdy
P

= / I8 Hoi(x,y,z0(x, ), 22 (x, ), ua(x, ), A (x, ), 2 (x, ) D2, Az (x, y) dxdy
P
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and

/sz(x,y, 20 (0, ¥), 226, y), s (%, y), A1 (x, ), A%(x, ) AZ% (x, y) dxd y
P

= / 1) Ho (63,2 06 ), 220 ) (3, 1), 4 (3, 9), 42 (3, ) DY AZ (x, ) dedy.
P
Now, let (1',4%) € 12 (L (P)) X If_ 4 (L33 (P)) be a solution to conjugated
system (7)—(8). Then (by definition of /;_ , (L, (P)) X Ibﬁ_ y(L;’; (P))), it satisfies
the following integral system
A, ) = IS Hoi (x,, 24 (%, Y), 22 (%, ), ua(x, ¥), 4 (x, ), 2 (x, )
R(x,y) = Iy Hoa(x, y, 2006, 9), 2206, 9)s (%, 1), A (5, 1), 42(x, )

a.e. on P. Consequently,

AJ(u) = —/(AM*HZI (6 v,z (6, ), 22 (0, ), u(x, y), A (x, ), A% (x, ) Az (x, )
P

+ A Ho (3,9, 22036, ), 25 (6, ), u(x, ), 4 (36, ), 4% (2, 9)) A2 (x, )
+ A H 3,210 3), 226 9), 106, 9), 41 (5,9), 23, 9)) + R(x, ) dxdy.

Now, let us fix any v € M and denote by L, a set of the Lebesgue points
(£,0) € ]0,a) x [0, b) of functions

(x,3) = 10y, 2006, ¥), 2 (6, 3), 1 (%, ),
(6, y) = [y, 206, ), 22 (x5, y),v),  i=0,1,2.
For a fixed (&,¢) € L, and sufficiently small £ > 0 (such that £ + € < a and
{ + & < b) we define an admissible control u, in the following way
_ws (x,y) €Pp=[£,6+6) X [{,{ +8)
e (x, y) = |
u«(x,y); (x,y) € P\ Ps.
Then
A1) = = [ (B (e 21050, 200209021 (1090, B3 AL )
P
+ A Ho (%, ,20(%,9), 22 (6, ), v, 4 (x,3), 4 (x, ) Az (%, y)
+ Ay H(x,y, 24 (x,9), 22(x, ), v, 41 (x,9), 22 (x, ) + Ry (x, y))dxdy, (12)
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where (z}g, zg) is an admissible trajectory (a solution of (2)—(3), corresponding to
ug) and

RS,V (x’ }’)
= (Har (3, (210,30, 2206, ) + 008, ) (Azk (x5, ), A2 x, ), v, (o, ), 2, )

- Hz' (X, Y, Zi(-x’ y)’ ZE(X’ y)’ v’/ll(x’ y)’ /lz(xa y)))AZ(}:(X, )’)
+ (Haa (3. (22, 22009)) + 00 3) (A2 (6, 1), A2 (), v 4! (7). (3. 3))

= a3, 21069, 220630, 7,41 (), 42, 10) ) AZE (3, ).

Now, we investigate the behavior of increments Az}g, Azﬁ on P.. First, let us note
that since (Az!, Az2) is a solution to (10)—(11), corresponding to u,, therefore
problem (10)—(11) splits into two systems:

‘DAz =0,

Col,Az2 =0. (13)

u(x,y) e M c R"

a.e.on P\ P, with boundary conditions

{Azé(O,y) =0, ye]l0,b] a.e.,

(14)
AZ2(x,0)=0, x€[0,a] a.e.

and

CDLAZL = fl(x,y, 2L, 22.v) = fl(x, v, 2L, 22, ),
COPAZE = f2(x,y, 2L 20v) = (%, y, 2k, 22w, (15)
u(x,y) e M c R"

a.e. on P,. It is clear that the solution (Az., A2) of problem (13)—(14), corre-
sponding to u., satisfies the following conditions:

e Azl(x,y) =0forall x € [0,¢) and a.e. y € [0, b],
» Az2(x,y) =0forae.x € [0,a] and all y € [0, 7).

In view of continuity of Az! with respect to x and Az2 with respect to y we
conclude that Az (£,y) = 0 for ae. y € [0,b] and Az2(x,) = O for ae.
x € [0,a]. Consequently, problem (15) can be considered with the boundary
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conditions

1 —
{Aze(f,y) =0, ye[l,l+e)ae., (16)

AZ2(x,0) =0, x€l[&E+¢) ae.

Now, we estimate pointwise on P the solution to (15)-16. Using (Ay) and
Proposition 1 we obtain

Az ) < 12, (17 Gy 2h (), 22 9)ov) = £y, 2h (), 22 ), )]
+H sz (2 y), 2 (x, ), v) = f! (x,y,z*(x,y),zz(x,y),u*(x,y))l)
< LIZ, (102 (e, ) + 1822 (e, p)) + 2LE, (122 (e, p) | + 122 (x, )

¥2C1 (1%, y) () < LIZ, (1Azh (e )] + [AZ2(x, y)]) + D167 77,

fora.e. (x,y) € Pg, where

1

|-

D1=8

arc  2Cinlicroa ( p-1 )1_

INa+1) " I'(a) ap —1

Similarly,
1
AZ2(x, y)] < LG, (IAz(x, y)| + 1AZ2(x, y)]) + Das 77,

fora.e. (x,y) € P., where

voare 2G0valros) ( p-1 )1‘5
D, =

T+ 1) Bp -1

(here C, Cy, C; are constants from Proposition 1). Consequently,
IAZl(x I+ 1Az (x, y)|
< L(1E, (A2 e, )+ AZ20n D + 1, (A2 (x, 3+ A2 ) )

+ Dlsa_F + ngﬁ_i

Lmax{ ! } /'Azs(s y)|+|AZ (s, y)I

I'(e)’ T(B) (x = s)l-@

/ |AzL(x, )| + |AZ2(x, 1)

e dr +maX{D1,D2}(sa_% +8’3_%),
y f—
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fora.e. (x,y) € P.. From Corollary 1 it follows that there exists a constant D > 0
(independent on u) such that fori = 1,2

. 1 _1
IAZL(x, y)| < |AZL(x, y)| + |AZ2(x, y)| < D(e* 7 +°77),  (x,y) € P: ae.

Now, we calculate AJ(u.) given by (12). First, let us note that by Proposition 1,
fori = 1,2 we have

|2, (x, y) + 0(x, »)AZL (x, )| < 2|28 (x, y)| + 125 (x, »)| < 3C,  (x,) € Ps.
Hence

[ 1Resxldxdy < 4LDO sz, + 2z, + X" 4.6775) [ dndy
P, Pe

= 4LD (I Iz + 142, + E) (677 + 67772,

where E = max{np(ri,r2,r3) : |ril,[r2] < 3C, [r3] < v}, v > 0isa
constant such that |w| < v forallw € M.
Similarly, fori = 1,2, we obtain

/lAu*Hzf(x,y,zi(x’ )22 (x, ), v, A1 (x, ), A% (x, ) Az (x, y)|dxdy
b

QLD(IA gz, + 18]Iz, + E) (77 + 777)e2.

Consequently, since ((z., z2), u.) is an optimal solution to problem (1)—(3), there-
fore

0<J(ug) < - / Au H(x,y, 28 (x,y), 22(x, ), v, 2" (x, ), A% (x, y)) dxdy
Pe
LD (|4 Iy + 18]Iz, + E) (677 +&°77)e?,

SO

1
. / A H(x, v, 2 (6, ), 206 3), v, A (3, ), 226, y)) dxdy
Pe

1 1
<BLD([A' [l + 1P|y, + E) (&7 +6777) — 0.

e—0

Using the Lebesgue Differentiation Theorem, we assert that

A H(E L ZHE 0, 2,0, v, ANE 0, AH(E,0) <0, (£,0) €P ae.,

so condition (9) is satisfied. The proof is completed.
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4. Theoretical example
Example 1. Let us consider problem (1)—(3), where

1 3
ay 20225’ p>2 P=[0,2]x[0,2],M = (—%,Eﬂ), v, 6:[0,2] = R?,

y(x) = (x*x), x€[0,2], 5(y) =y, yelo.2],
fOr PXxRZXxR*xR - R,
oy, 2t 2 u) = Oy, (21, 23), (21, 23) u) = 2y — 225 + 23 + 25 + cos u,
fili PXxR>*xR?>xR — R?,

fix, v, 24, 2% u) = AiZd — Bicosu, i=1,2,

01 00 -2 -1
SR LR R R B R
It is easily to check that all assumptions of Theorem 1 are satisfied. Conse-

1 1
quently, if (zl, 22, u.) € (CACET (LS ([0,2]))x CACLT (LS ([0,2])))x Uy is an

I 1
optimal solution to problem (1)~(3) and (4',4%) € I7 (LS (P))x I} J(LZ(P))
is a solution to the conjugate system

(DZ%_’x/ll)(x, y) = ATA (x, y) + _21
o (17)
(DZ%—,y/l2) (x,y) = ATA%(x,y) + :i
for a.e. (x,y) € P and
(12%_’)6/11)(2,y) =0, yel0,2] a.e., (18)
(Ié_’y/lz)(x, 2)=0, xe€][0,2] a.e. (19)

then

(/ll(x, V)B + 22(x,y) By + 1) (= cos s (x, y))
= max {(A'(x,y)B1 +2%(x,y)Ba + 1)(~cosu)} (20)

ME(_%7%7T)

for a.e. (x,y) € P.
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It is easy to verify that the solution (11, A7) to system (17)—(19) is given by

——(Z_X)% x—2+w-
(2 I E
[28‘33 i _(2—y>£2+)y_z _<z—y>(§) . (wy)ePae.
r(3) r(3)

Consequently, condition (20) is equivalent to the following one

(x+y—=5)cosu.(x,y) = max {(x+y—5)cosu}

ME(—i,iﬂ

for a.e. (x,y) € P.
Thus, u. is of the form

u.(x,y)=mn, (x,y)€Pa.e.

It means that for a.e. (x,y) € P

2 Zx% _x%
X -x-— x-—
ey ] _ r(3) r(3)
(%, y) y% 3 y% ’
YT y =y ;
(3) (3)

so the pair

(24, ) = ((zi,zf),u*)

is only one candidate to be the optimal solution to problem (1) — (3).

5. Conclusions

In the paper we considered a Lagrange type problem described by a frac-
tional Roesser model with Caputo derivatives. Using the increment method the
necessary optimality conditions in the form of a Pontryagin maximum principle
for such a problem were derived. Let us note that in the above example the set
M is not compact, as well as functions f°, f!, fZ are not convex with respect to
u. The aim of a forthcoming work will be studying of the sufficient optimality
conditions for problem (1)—(3).
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Appendix

In the first part of this section we formulate and prove a some version of
Gronwall’s lemma for functions of two variables.

Leta,B8>0and w € L,ll(R), R = [c1,d1] X [c2,d>]. The left—sided mixed
Riemann-Liouville integral of order («, ) of the function w is defined by

a,B W(S,t)
(I ) (5.9) = T )F(ﬁ)//(x_s)l_a(y_t)l_ﬂdsdt,

1 2

(x,y) €R a.e.
One can show ( [5]) that
e kcreyW) (6 3) = (I T yw) (X, )
( Caty I, ow)(x,y), (x,y) €R a.e. 21)

Lemma 1 (Gronwall’s lemma). If g, h € L} (R) are nonnegative, N > 0 and

¢(5,7) g(x, 1)
g(r,y) < h(x,y) + N /( s /(y_t)l_ﬁ ,

(x,y) €R a.e. (22)
then

g(x,y) <¥(h)(x,y), (x,y)€Ra.e., (23)

where V' Li(R) — L}(R) is a linear and bounded operator, depending on R,
N, a, .

Proof. The proof of this result is analogous to the proof of [3, Lemma 3.1]. For
the convenience of a reader, we present a sketch of the proof of Lemma 1.
Assumption (22) can be written as follows:

g(x,y) < h(x,y)+G(¢ , . cz+y)g(x,y), (x,y) €R a.e.,
where G = N max{I'(a),T"(B)}. Hence, for n > 1, we obtain

g(x,) < ZGk( I s+ 10, )FR(x,y) + G (L

+ 1§2+y)"g(x,y), (x,y) €R a.e., 24)
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whereby (see (21))

k
k k
( Ccit,x + IC’BZ"’ y)kw(x’ y) = Z ( )Ié(ll+xlc(2+l)?ﬁw(x, y)
i=0

5 (k
(ki
=3 (§)rnt i)
|\ |
i=0
for any nonnegative function w € L} (R). Let k¢ be the smallest integer such that

ko
2

Then, for k > kg, we have

min{a, B8} > argmin{I"(u); u > 0}.

( ClH,x + Icﬂz+ y)kw(x’ y)
k\max{1, (d; — c))**=1} max{1, (da — c2)*#~1} y
S k . (Ic1+,x,c2+,yw) (X, y)
0<i<k r ([5] mm{a,ﬁ}) E
ia>1,
(k=i)p=1
k max{l, (dl — cl)k“_l} (ki
o3 (el 0D s )
0<i<k, r ([5] mm{a,ﬁ})
ia>1,
(k—i)B<1
max{1, (dp — c2)*#1} X
" Z ( ) (Ié(ll+xc2+y )(x’)’),
0<i<k, ([2] mln{a,ﬁ})
ia<l,
(k=i)p=1

where E = min{I"(x); u > 0}. Let us define the linear operator
B: Li(R) — L{(R) as follows:

o 1,1 1,jB8 ia,l
B(w) := Ic1+ch+y+ Z 161+x02+y+ Z 101+x02+y

0<j<k, 0<i<k,
jp<l1 ia<l

Since B consists of a finite number of terms, therefore it is bounded. Then, for
k > ko

GHUIS, + 12, ) Fw(x,y) < dB(w)(x, ),
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where
2G)k
r ([%] min{a/,,B})
X (maX{l, (dl - cl)ka/_l} maX{l, (d2 - CZ)kﬁ_l}
E

+max{1, (d; — c1)**1} + max{1, (ds — Cz)kﬁ_l).
It is easy to check that the sequence (dj)ren is convergent to 0, as well as, the

[o¢]
series Z dy 1s convergent. Consequently, (24) gives
k:k0+1

g(x,y) < DGR, + I, ) h(x,y) < A(h)(x,) + dB(h) (x, ),
k=0

(x,y) €eR a.e.,

where d = Z dr and A: L%(R) — L%(R) is a linear bounded operator

k=ko+1
given by
ko
Ay = G2, + 12, )Fh.
k=0
Putting
Y(h) = A(h) +dB(h),
we get (23).

From the above Gronwall’s lemma, we immediately obtain the following
useful result

Corollary 1. If h(x,y) = C > 0 then there exists a constant D > 0, depending
on R, N, a, B, such that

g(x,y) <CD, (x,y)€Ra.e.

In the second part of this section, we shall study the existence and uniqueness
of a solution to the following linear problem

(Dg—,x/ll)(x’ y) = All(xa y)/ll(x’ y) + AIZ(X’ }’)/lz(x, y) + Bl(x’ y)’

B2 1 2 (25)
(D), A7) (%, y) = A21 (x, )4 (%, y) + A (x, )A7(x, ¥) + Ba(x, y)



532 R. KAMOCKI

a.e.on P = [0, a] x [0, b] with boundary conditions
(1,=5A)(0,y) =0, y € [0,b] a.e

5 (26)

(Ib—,y/l )(x,0) =0, x€]0,a] a.e

where @, 8 € (0,1), A;jj: P = R" M Bi: P—>R"Y,i,j=1,2.
By a solution of the above problem we mean a function

A= (L% € 1L (L (P) X I (L2 (P)).

It is easy to check that the existence of the solution to problem (25)—(26) in
(L (P)) X I (L >(P)) is equivalent to the existence of a solution to the
followmg mtegral problem in L5 (P) x L, (P)

YY) = An (o U W) (6 y) + Al ) () u?)(x,y) + Bi(x, ),
Y2, y) = Az (6 Y) @) (6, ) + A (6, y) (I ) (x, ) + Ba(x, y)

a.e.on P = [0,a] x [0, b]. In such a case (', 2%) = (1% xt,//l, bV v?).
We have

Theorem 2. If A;; € L;’l"Xn (P), B; € L°°(P) i = 1,2 then problem (25)—(26)
has a unique solution A = (/l1 A el _x(Ly (P)) X Iﬁ (L (P)).
Proof. It is sufficient to prove that the operator
= (T',T%): Ly (P) X Ly (P) — Ly (P) X Ly (P),
defined by
WP = A ) T () + Ap () (1) 97 (x,y)
+B,-(x,y), i=1,2,

possesses a unique fixed point. Of course, 7" is well defined. Let us consider in
Ly (P) X Ly (P) the Bielecki norm given by
1 2 1 2
”0' o ||r,n1><n2 = ||0' ||r,n1 + ”0- ||V,n23

where . |
o1, = esssup e PV (x, y)], i = 1,2
(x,y)eP

and r > 0 is a fixed constant. Due to the relation

e @) || ol O'||L°°(P)><L;°1(P) ot a2 myseny < Nl 0'||L°°(P)xL (P)s
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where ||o!, o ||Loo (P)XLg, (P) = €88 sup|o! (x,y)| + ess sup|o?(x, y)|), we assert
(x,y)eP (x,y)eP
that the space L, (P) x Ly (P) with the norm ||, +[| 5, xn, is complete.

Now, we show that the operator T is contraction. Indeed, let

ci = max{||Ailly (), 1An2llgyp}.  i=1.2.

Using the fact that

a (5=1) r(a—x) )
—r{s—X 1 1 1—‘
L ds = — e Tt dr < — | e dr = _(a/)
(S _ x)l—(y re re ra
X 0 0
and
e L _T®
t-y'F" " rf
y
we have

7' v®) = T' (' )
< i (I (v —so>||rm+||1 S0 =)

r(s—x) —r(a s+b—y)|l// (S y) —¢ (S y)|dS

< ¢j| esssup

(x,y)eP I'(e) (s —x)l-@
X
+ ess sup o (17Y) pr(a=—x+b- z)W (x,1) — 9> (x, t)|dt
e T(B) (1—y)I8
y

1 “ e—r(s—x)

1 1
Ci - ess su ds
|10 =l esssuprees |
X

e T(1=y)

+4? = ||y, €55 sUp
o (x,y)eP F(IB) (t - y)l_'B

< cimax{r,r P (g - ¢ ||r,m 1% = @l
=Ci max{r_a’r_ﬁ}”(lpl’ WZ) - (‘101’ Qoz)llr,annz
fori = 1,2 and any (41, ¥2), (¢1,92) € L, (P) X L) (P).
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Consequently,

1T =T D), 0 eny

St et - T P, + 72w ) - T

<max{cy, c2} max{r~, r P} (", v?) = (@ )|, 0 -

Let us choose r such that (max{cy,c,} max{r=®,r#}) € (0,1). Then T is a
contraction, so from the Banach contraction principle it follows that 7" has a
unique fixed point. The proof is completed.
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