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Abstract. Gravitational classifiers belong to the supervised machine learning area, and the basic element they process is a data particle. So
far, many algorithms have been presented in the world literature. They focus on creating a data particle and determining its two important
parameters – a centroid and a mass. Hypergeometrical divide is one of the latest algorithms in this group, which focuses on reducing the amount
of processing data and keeping relevant information. The proportion of data to information depends on the data particle divide depth level. Its
properties and application potential have been researched, and this article is the next step of the work. The research described in this article
aimed to determine the relation of the depth level value of data particle divide to the effectiveness of the hypergeometrical divide algorithm.
The research was conducted on 7 real data sets with different characteristics, applying methods and measures of evaluating artificial intelligence
algorithms described in the literature. 63 measurements were performed. As a result, the effectiveness of the hypergeometrical divide method
was defined at each of the available data particle divide depth levels for each of the used databases.
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1. INTRODUCTION

The definition of artificial intelligence (AI) should be perceived
as the ability of a system thanks to which it can interpret col-
lected data correctly, learn from them, adapt to current con-
ditions, and use the processed information in the process of
achieving assumed goals [1]. Analyzing this definition, it can
be seen that the process of data processing by artificial intelli-
gence algorithms implements an information hierarchy, which
in the literature on information theory is called the Data, Infor-
mation, Knowledge, and Wisdom (DIKW) pyramid. The DIKW
pyramid describes the relations, including general transforma-
tion rules, between four levels of information processing [2]. The
functioning of modern intelligent systems, which apply machine
learning algorithms, is an example of the practical application
of this theory.

The history of the hypergeometrical divide (HypGD) algo-
rithm, whose name was mentioned in the title of this article,
started in 2022 [3]. The method published in the doctoral the-
sis of one of the authors of this publication was devoted to
artificial intelligence algorithms [1] using a theory of data grav-
itation [4], which is based on Newton’s law of universal gravita-
tion [5]. From a high-level point of view, the HypGD mechanics
combines the lazy learning strategy [6] used in the 𝑘 nearest
neighbours (𝑘NN) classifier [7] with the idea of density-based
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clustering algorithms such as DBSCAN [8] or OPTICS [9]. As a
result, the hypergeometrical divide, based on the density distri-
bution of multidimensional feature space, creates a generalized
description of its decision regions. The result of creation is a
small and easy-to-manage reference database without detailed
information about the source data, used in the pattern recog-
nition stage based on a minimum distance between objects in
the feature space [3]. A significant feature of HypGD in the
context of practical applications is the lack of requirement to
select parameter values depending on the characteristics of fea-
ture space. Moreover, it does not require a learning process that
leads to building a model, which distinguishes it from the sup-
port vector machine (SVM) [10] and the decision tree (DT) [11]
algorithms. The presented features implicate that the hypergeo-
metrical divide is dedicated to the following applications:
• Requiring rapid pattern recognition at the expense of its

accuracy.
• In which a training data set is quickly changed and dynami-

cally adapted to the current purpose of the pattern recogni-
tion process.

• With a high risk of revealing an inference mechanism or
even the reference database.

In the context of information theory, the overall idea of the
HypGD method is to reduce the amount of training data, simulta-
neously keeping relevant information in the pattern recognition
process. The subplot of the abovementioned dissertation [3] was
the impact of data particle divide depth level on the effective-
ness of the algorithm. This was a starting point for conducting
in-depth research and analyses presented in this publication.
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Hypergeometrical divide is a method belonging to the group
of supervised machine learning algorithms [3, 12] that focuses
on creating data particles whose inherent parameters are the
centre point and mass, according to the theory [4]. An essential
issue related to the processing of data particles is the process
of determining the mentioned parameters. These are activities
whose results may have a direct impact on the effectiveness
of the gravitation classifier. In world literature, much attention
has been paid to determining the centre point of data parti-
cles [13]. A simple and effective strategy is to construct it based
on the average values of particular attributes of the processed
database [4]. In a few research publications several approaches
to defining the value of data particle mass have been proposed
over the last years as well [4, 13, 14].

The mentioned algorithm extends the previously published
methods, which have been still applied to realize the classifica-
tion process only in two-dimensional data sets. The motivation to
develop the hypergeometrical divide algorithm was determined
by a significant disadvantage of previously published data par-
ticle geometrical divide methods – the possibility to apply them
only in the classification process of data sets whose elements
are placed in the feature space of dimension R2. The hyperge-
ometrical divide approach has put an end to that limitation and
facilitates the creation of a data particle by its geometrical divide
in data sets whose objects belong to the R2+ dimension feature
space. An important issue in using the HypGD method is the
selection of data particle divide depth level, which became a
main subject of this paper’s research problem [3].

The hypergeometrical divide algorithm has already passed
its practical exam [15]. The article [15] evaluated the potential
of its application in the task of specific emitter identification
(SEI) [16, 17] belonging to the field of electronic intelligence
(ELINT) [18,19]. At that time research was conducted to recog-
nize the belonging of particular pulses to one of six radar copies
of the same type. This is a key task performed by modern mobile
ELINT systems, in which increasingly often the sensor recogniz-
ing the radar signals along with the limited amount of reference
data are carried on an unmanned aerial vehicle (UAV) [20].
While conducting operational activities, UAVs are an object of
interest for a foe intelligence, therefore the resources carried on
their board should contain the most generalized information,
which could deliver minimal value in the case of such platform
interception. Moreover, the ELINT activities applying UAVs are
often carried out in emissions control (EMCON) conditions,
in which radio transmission resources are rigorously managed
and significantly limited, in order to avoid detection, localiza-
tion, and data leakage [21]. Therefore, taking into consideration
the dynamically changing targets and the reference data during
the reconnaissance activities, these types of systems require the
usage of small and easily manageable reference databases and
pattern recognition methods, in which the relearning process is
unnecessary. Since the described systems record many pulses in
a short time, another important issue is the usage of algorithms,
which limits the number of comparisons made in the decision-
making process at the expense of an acceptable decrease in
its quality. The results in [15] revealed that the hypergeometri-
cal divide method is characterized by good performance in the

process of specific emission sources identification. However,
despite its demonstrated advantages, the approach is not free
from weaknesses. Previous publications have shown that the
main problem of the hypergeometrical divide algorithm is the
need to manually define the depth level value of the data parti-
cle divide [3]. It was stated that the development of approaches
or rules dedicated to determining the value of the mentioned
parameter, maximizing the effectiveness of this classifier, may
constitute a significant contribution to the development of data
particle creation algorithms by its geometrical divide [3, 15].

Currently, when analyzing the abovementioned problem, it
was recognized that before automating the process of defining
the value of the data particle divide depth level, an in-depth
analysis of its impact on the effectiveness of the hypergeomet-
rical divide algorithm should be performed. This became the
purpose of this article and was directly included in the title
of this publication. The results of this research may be an im-
portant step towards the development of algorithms that enable
automatic selection of the value of data particle divide depth
level. The research described in this article was conducted on
seven data sets related to various areas of reality. 63 experiments
were carried out as part of the research. They showed changes
in the effectiveness of the hypergeometrical divide algorithm on
particular data sets, depending on the used data particle divide
depth level. One of the main conclusions refers to the fact that
not in every case there is a need to perform a divide at the max-
imum available depth level for an individual data set because
there is an iteration of the divide after which no subsequent it-
eration brings a significant improvement in the effectiveness of
the tested algorithm.

2. APPLIED METHODS AND MATERIALS

2.1. Hypergeometrical divide – theoretical details

The hypergeometrical divide algorithm, belonging to a pattern
recognition approaches set, was proposed in [3]. It is used in the
gravitational model-based classification process [4]. Its idea is
to manipulate the affiliation of atomic data particles to particular
data particles. The atomic data particle should be identified as
an elementary object of the feature space, which is processed by
the gravitational algorithm and created based on a single record
of the analyzed database. Such data particles cannot be divided,
which is pointed out in the name [4]. It is implemented by
iterative dividing of existing data particles. The number of divide
cycles is equal to the value of the data particle divide depth level
selected by the user. The impact of this parameter value on
the efficiency of the classifier is the main issue of this article.
It is important to emphasize that the result of divide are two
new data particles. Implementation of this process changes the
masses of data particles and the location of their central points.
The next link in the chain of changes is the data gravity forces
which determine the relations between the existing data particles
and the classified sample. The above-mentioned factors morph
the decision boundaries and modify the number of elements
processed in the decision-making process. This directly affects
the properties of the classifier.
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The divide of a data particle in 𝑛-dimensional feature space
(𝑛 ≥ 3) begins with determining the vectors defining the geomet-
ric centre c and the data particle centre of massµ. Assuming that
the values of the 𝑖-th in the 𝑛-element attributes set of data parti-
cle being processed constitute the set F𝑖 , then the vector defining
the data particle geometric centre c expresses equation (1) [3]

c =


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Knowing that there is a relationship shown in equation (2)
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Then the vector describing the data particle centre of mass µ is
given by equation (3) [3]
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Then, the condition is verified whether the vectors expressing
the geometric centre c and the centre of massµ are not identical.
If c≡µ, the process is terminated. At this moment, in the feature
space, there are data particles created in the previous iteration of
the divide. If c ≠ µ, the next step of the algorithm is performed
– determining the normal vector n of the searched hyperplane
(equation (4)), which will divide the data particle [3].
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Knowing that there is a relationship is shown in equation (5)

n = {𝑎𝑖 , . . . , 𝑎𝑛} . (5)

In the next step of data particle divide, considering the assump-
tion of the hypergeometrical divide method that the data particle
centre of mass µ belongs to the hyperplane dividing this data
particle, the value of arbitrary constant 𝑎0 is determined, which
is expressed in equation (6) [3]

𝑎0 =
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Having all the components of the equation of the hyperplane
dividing the data particle, the last step of the divide is to check
the position of each atomic component of the data particle p.
Knowing that the relation presented in equation (7) is true [3]

p = {𝑝𝑖 , . . . , 𝑝𝑛} . (7)

The process of assigning an atomic data particle p to one of
the two newly created data particles P𝐴 or P𝐵 is expressed by
equation (8) [3].

p ∈
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A measurable added value of the hypergeometrical divide al-
gorithm training phase is a reduction in the amount of data
processed at the classification phase. Denoting the number of
classes in the data set as 𝑐 and the hypergeometrical divide depth
level as 𝑑, the number of elements created by the HypGD for
the classification process (n_clf ) is expressed by equation (9)

𝑛_𝑐𝑙 𝑓𝑐, 𝑑 = 𝑐 ·2𝑑 . (9)

Assuming that:
• Each of the 𝑛-elements in the data set refers to exactly one

atomic data particle (ADP).
• Each ADP belongs to only one data particle.
• 𝑑 ≪ 𝑛 and 𝑐 ≪ 𝑛 (in practice).

Then, analyzing the computational complexity of the hyperge-
ometrical divide algorithm, during which only the dominant
component is preserved, it can be concluded that the computa-
tional complexity of the HypGD training phase is asymptotically
linear 𝑂 (𝑛).

2.2. Configuration details of the examined algorithm

To sum up, this approach focuses on creating new data parti-
cles by dividing existing data particles using their geometric
properties in multidimensional feature space [3,22]. As already
mentioned in the previous section, an important issue in using
this algorithm is the process of determining the depth level of
data particle divide 𝑑 [3, 15]. In the research carried out, the
maximum value of the 𝑑 parameter was determined for each
data set. As far as the philosophy of the examined method is
concerned, it is known that for each data set these values may
be different [3, 14, 15]. The established maximum depth levels
of data particle divide are presented in Table 1.

Table 1
The maximum depth level of data particle divide 𝑑 for particular data

sets (source: own elaboration)

Data set Maximum divide depth level (𝑑)

banknote_authentication 5

iris 3

magic_gamma_telescope 8

occupancy 7

Parkinson’s 3

sonar 4

wifi_localization 5
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As mentioned in Section 1. Introduction – the hypergeomet-
rical divide algorithm is used to create a data particle [3,15,22].
It is known from the theory of data gravitation that during data
particle processing it is also necessary to determine its two pa-
rameters – centre point and mass value [3,4,13]. In the conducted
research, the centre point was determined based on the strategy
of the average value of particular attributes in the context of all
elements of specific data particles. However, three approaches
were used to determine the data particle mass value. Two of
them were presented and described in detail in [13] – stochastic
learning algorithm (SLA) and batch-update learning algorithm
(BLA). They improve some properties of the popular centroid-
based classifier (CBC), whose popularity is due to its simple
theoretical foundation and linear computational complexity in
the training phase [13]. In the training phase, the SLA algo-
rithm iteratively corrects the value of the mass coefficient for
individual data particles to obtain the best possible match to the
entire training set [13]. In this research the stochastic learning
algorithm was configured as follows:
• Max. iterations number maxIters = 50.
• Mass value update factor 𝜉 = 0.0001.
• Expected error level 𝜀 = 0.00.

In turn, the second algorithm proposed in [13] – batch-update
learning algorithm – corrects the weight coefficients of particu-
lar data particles after completing the classification process of all
samples included in the training data set. The update factor of the
data particle mass value in the batch-update learning algorithm
was set to 𝜉 = 0.0001. The last approach used to define the data
particle mass values was the 𝑛-Mass Model. According to its phi-
losophy, the value of the mass of a data particle is equal to the size
of its base class [3,4,13,14]. In this research, a fourth variant was
used as well, which ignores the mass of data particles. Therefore,
at each level of data particle divide, four results were obtained for
each data set, based on which the average value was calculated,
describing the final quality of the classification process.

2.3. Evaluation method and quality metrics

The method and quality measures selected to evaluate the clas-
sification process have already been used in publications whose
topics fall within the field of artificial intelligence. In these stud-
ies, one of the most popular methods used for data sampling was
used to estimate the actual effectiveness of the classifier and pos-
sible tuning of its parameters [23]. The method described was
𝑘-fold cross-validation. Its use facilitated the elimination of the
phenomenon of predictive model overfitting in the evaluation
process. Moreover, thanks to its application, it was also possible
to examine the generalization ability of the tested algorithm. The
use of 𝑘-fold cross-validation required determining the value of
𝑘 parameter [24]. In these studies, it was assumed that 𝑘 = 10,
which ensured a slight difference in the values of measures [25].

The obtained classification results were saved in the form of a
four-element confusion matrix. It consisted of the following val-
ues: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) [26]. Based on the matrix organized
this way, the values of two quality measures of the predictive
model were determined – precision and recall [27,28]. Because
the abovementioned measures are determined for a single class,
macro variants of these measures were used to examine the

overall effectiveness of the classifier in each data set. Accord-
ing to the definition, PRECISIONmacro and RECALLmacro are
average values calculated based on PRECISION and RECALL
for each of 𝑛-classes [29, 30]. Equations (10) and (11) describe
PRECISIONmacro and RECALLmacro, respectively.

PRECISIONmacro =

(
𝑛∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 +𝐹𝑃𝑖

)
· 1
𝑛
, (10)

RECALLmacro =

(
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𝑇𝑃𝑖

𝑇𝑃𝑖 +𝐹𝑁 𝑖

)
· 1
𝑛
. (11)

Using domain knowledge, the characterized measures were re-
duced to a single 𝐹macro value, which is expressed by equa-
tion (12) [29, 30]

𝐹macro =
2 ·PRECISIONmacro ·RECALLmacro
PRECISIONmacro +RECALLmacro

. (12)

2.4. Details of data sets used in the research

As mentioned in the introduction of this article, seven data sets
were used in the research. Each of them concerns a different
problem occurring in a real environment. Issues related to par-
ticular databases include:
• Confirming the authenticity of banknotes based on image

entropy and features extracted from digital images with ap-
plication wavelet transform [31,32].

• Distinguishing the type of Iris plant based on the analysis of
photos [33].

• The discovery of high energy gamma particles on the im-
ages of hadronic showers recorded by the Cherenkov gamma
telescope [34, 35].

• The detection of room occupancy, based on the analysis of
temperature, humidity, light, and CO2, which were recorded
once a minute [36, 37].

• Distinguishing healthy patients from those with Parkinson’s
disease based on the analysis of their voice recordings [38,
39].

• Distinguishing sonar signals reflected from a metal cylinder
from signals reflected from a quasi-cylindrical rock [40].

• Smartphone location, based on the analysis of the strength
of WiFi signals [41].

In Table 2 the numbers of samples belonging to particular classes
in each of the applied data sets were presented.

Table 2
Number of samples in classes for particular data sets (source: [31–42])

Data set Number of samples in classes

banknote_authentication 762:610

iris 50:50:50

magic_gamma_telescope 12 332: 6688

occupancy 15 810:4750

Parkinson’s 48:147

sonar 111:97

wifi_localization 500:500:500:500
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All described datasets are available in the public repository
of the University of California, Irvine (UCI) [42].

3. RESULTS

In accordance with the aim of the article, the results reveal the
impact of data particle divide depth level on the effectiveness
of the hypergeometrical divide method. This section presents
the average results obtained by the tested algorithm on seven
data sets at all data particle depth levels available to them. The
results obtained with the well-known lazy learning 𝑘 nearest
neighbours algorithm, which is based on the distance between
the objects in a feature space, were used as the reference values.
The outcomes of eager learning approaches, i.e. the SVM and
decision trees, were taken into consideration as well. A total
of 63 measurements were performed. Figures 1–7 show the
results obtained for the described data sets in the following
order: banknote_authentication, iris, magic_gamma_telescope,
occupancy, Parkinson’s, sonar, wifi_localization.

Figure 1 shows that in the case of the banknote_authentication
dataset, the hypergeometrical divide algorithm without per-
forming data particle divide obtained a measure value of
𝐹macro = 0.849. The first three levels of data particle divide –
𝑑 = 1, 𝑑 = 2, and 𝑑 = 3 – brought an increase of 𝐹macro measure
value by: 0.024, 0.003, 0.003. The largest leap of 𝐹macro value
occurred after dividing data particles at the fourth depth level
(𝑑 = 4) and amounts to 0.082. Performing the last available for
this data set divide of existing data particles at depth level 𝑑 = 5,
brought an increase in the 𝐹macro value by 0.021. Finally, the hy-
pergeometrical divide approach on the banknote_authentication
dataset, performing 64 comparisons in the classification phase,
obtained a value of 𝐹macro = 0.982, whereas the 𝑘NN algorithm
𝐹macro = 0.993, using 1234 comparisons. The classification qual-
ity with the SVM approach was 𝐹macro = 0.999 and with the
decision tree algorithm 𝐹macro = 0.983.

Fig. 1. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the banknote_authentication dataset (source: own elaboration)

Figure 2 visualizes the results obtained on one of the two
smallest of the analyzed data sets – iris. It can be observed that
the change in the effectiveness of the tested algorithm depending
on the level of data particle divide depth used is small. Without

divide (depth level 𝑑 = 0), the hypergeometrical divide method
obtained 𝐹macro = 0.955. After dividing the data particle at depth
level 𝑑 = 1, the 𝐹macro value decreased to 0.940. The quality of
the classification performed on the data set after dividing the
data particles at the next depth level 𝑑 = 2 was described by
a higher value than in the case of depth level 𝑑 = 1, which
amounted to 𝐹macro = 0.946. After dividing the data particle
at the last available depth level for this data set, the algorithm
again reached an increase of the 𝐹macro value, obtaining a result
of 𝐹macro = 0.953 with 24 operations in the prediction phase.
For comparison, the quality of the 𝑘NN method was lower and
amounted to 𝐹macro = 0.945, applying 135 operations. However,
eager learning algorithms: the SVM, and decision trees resulted
in 𝐹macro = 0.942 and 𝐹macro = 0.934, respectively.

Fig. 2. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the iris dataset (source: own elaboration)

In Fig. 3 it can be observed that for the magic_gamma_tele-
scope data set, the hypergeometrical divide algorithm without
the application of dividing a data particle obtained the value
𝐹macro = 0.667. The first divide of data particles (𝑑 = 1) deter-
mined the decrease of the 𝐹macro value by 0.031. After imple-
menting the next divide of data particle 𝑑 = 2, an increase in
the value of measure used by 0.005 was followed. The quality
of the classification process after each of the two subsequent
divides of data particles – at levels 𝑑 = 3 and 𝑑 = 4 – decreased

Fig. 3. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the magic_gamma_telescope dataset (source: own elaboration)
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consecutively by 0.009 and 0.005. After each subsequent avail-
able depth level of existing data particles divide (𝑑 = 5, 𝑑 = 6,
𝑑 = 7, 𝑑 = 8), the value of the 𝐹macro measure increased respec-
tively by 0.005, 0.004, 0.005, and 0.029. The definitive quality
of the classification process carried out using the hypergeomet-
rical divide algorithm on the magic_gamma_telescope data set
was described by measure 𝐹macro = 0.670, performing 512 com-
parisons. However, the result obtained using the 𝑘NN method,
which was 𝐹macro = 0.810 for 17 118 comparison operations in
the training phase, was taken as the reference value. On this
dataset, the SVM reached the value of 𝐹macro = 0.837, and deci-
sion trees obtained 𝐹macro = 0.806.

Figure 4 visualizes the results obtained on the largest of the
analyzed data sets – the occupancy data set. It could be seen
that the divide of data particles at subsequent depth levels never
reduces the quality of the classification process. Without divid-
ing the data particle, the mentioned quality was described by
𝐹macro = 0.722. After dividing the data particle at depth level
𝑑 = 1, the 𝐹macro value increased to 0.748. However, the great-
est increase in the value of the measure used can be observed
for the parameter 𝑑 = 2. Then the 𝐹macro measure reached the
value of 0.880. The divide of data particles at three subsequent
depth levels 𝑑 = 3, 𝑑 = 4, and 𝑑 = 5 improved the results to
𝐹macro = 0.938, 𝐹macro = 0.946, and 𝐹macro = 0.975, respectively.
For the 𝑑 = 6 parameter, the quality of the classification pro-
cess increased slightly, reaching the level of 0.980, using 128
comparisons. The 𝐹macro value did not change after the data
particle divide at the last available depth level 𝑑 = 7. For com-
parison, the quality of the 𝑘NN algorithm, performing 18 504
operations, amounted to 𝐹macro = 0.987. The classification qual-
ity using the SVM approach was 𝐹macro = 0.982, and applying
the DT algorithm 𝐹macro = 0.985.

Fig. 4. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the occupancy dataset (source: own elaboration)

Figure 5 shows the results obtained on the Parkinson’s data
set. It can be observed that without dividing the data particle
(𝑑 = 0), the hypergeometrical divide method obtained the value
of 𝐹macro = 0.765. After the divide was carried out at the depth
level 𝑑 = 1, the 𝐹macro value decreased and amounted to 𝐹macro =
0.748. The quality of the classification performed on the data
set after dividing the data particles at the 𝑑 = 2 depth level was

described by a higher value than at the 𝑑 = 1 level and was equal
to 𝐹macro = 0.798. Performing the last available for this dataset
divide of the existing data particles, at a depth level 𝑑 = 3,
resulted in an increase in the 𝐹macro value, which amounted
to 𝐹macro = 0.817, applying 16 comparisons in the prediction
phase. The 𝑘NN algorithm obtained 𝐹macro = 0.924, performing
175 compare operations. On the other hand, the SVM classifier
achieved 𝐹macro = 0.765, and the decision tree algorithm 𝐹macro =
0.858.

Fig. 5. Average value of the 𝐹macro measure obtained by Hypergeomet-
rical Divide at each of the available data particle divide depth levels on

the Parkinson’s dataset (source: own elaboration)

Analyzing Fig. 6, it can be observed that on the sonar data set,
each iteration of the data particle divide increased the effective-
ness of the hypergeometrical divide algorithm. Without dividing
the data particles, the quality of the classification process was
described by 𝐹macro = 0.693. The first iteration of the data par-
ticle divide resulted in an increase in the value of the 𝐹macro
measure by 0.003. After the divide was carried out at the next
depth level 𝑑 = 2, an increase in the quality of the classification
process by 0.049 was obtained. Performing pattern recognition
after another data particle divide 𝑑 = 3 resulted in another in-
crease in the value of the quality measure used by 0.018. After
performing the last divide possible for this data set at the level
of 𝑑 = 4, the value of the 𝐹macro measure increased by 0.022 and

Fig. 6. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the sonar dataset (source: own elaboration)
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finally reached the level of 0.785, based on 32 compare opera-
tions. For comparison, the reference quality obtained using the
𝑘NN algorithm was higher and amounted to 𝐹macro = 0.826, per-
forming 187 comparisons in the classification phase. Whereas
the SVM and decision tree algorithms obtained 𝐹macro = 0.828
and 𝐹macro = 0.747, respectively.

Based on Fig. 7, it can be seen that on the real wifi_localization
data set, without the data particle divide (𝑑 = 0), the classifica-
tion process quality described by the 𝐹macro measure was at the
level of 0.918. After the data particle divide at the 𝑑 = 1 level,
the greatest improvement in results can be seen. Then the value
of 𝐹macro = 0.958 was reached. Another iteration at depth level
𝑑 = 2 resulted in a slight increase in the value of the measure
used, leading to 𝐹macro = 0.960. The data particle divide with
the parameter 𝑑 = 3 resulted in a greater improvement in the
quality of the classification process than in the previous iter-
ation of the divide, up to the level of 𝐹macro = 0.970, which
in subsequent loops of divide process (𝑑 = 4 and 𝑑 = 5) finally
stopped at the level of 𝐹macro = 0.972 with 64 comparisons in the
prediction phase. However, the 𝑘NN classifier obtained the re-
sult 𝐹macro = 0.980, applying 1800 compare operations, the SVM
achieved 𝐹macro = 0.981, and the last of the evaluated algorithms
– decision trees obtained the value of measure 𝐹macro = 0.970.

Fig. 7. Average value of the 𝐹macro measure obtained by hypergeomet-
rical divide at each of the available data particle divide depth levels on

the wifi_localization dataset (source: own elaboration)

4. SUMMARY

Based on the conducted research a relation between data particle
divide depth level and the effectiveness of the hypergeometrical
divide algorithm was defined. Therefore, the aim of the paper
was achieved – the impact of data particle divide depth level on
the effectiveness of the examined method was revealed.

The first time an added value of the hypergeometrical divide
algorithm training phase on the number of objects reduction,
applied in the classification process, was clearly explained. The
mentioned case has not been considered in world literature so
far. This relationship was expressed by equation (9) in Section 2.

Analyzing Figs. 1–7, it can be concluded that the maximum
value of the data particle divide depth level for each data set
may be different.

By analyzing Fig. 4 and Fig. 7, it can be concluded that
in the case of selected data sets, in the process of dividing data
particles, there is an iteration after which each subsequent divide
does not determine a significant change in the effectiveness of
the hypergeometrical divide algorithm.

Another conclusion related to the abovementioned is the fact
that using the highest available level of data particle divide depth
is not necessary to achieve its almost maximum efficiency for
the hypergeometrical divide classifier. This is important in the
context of maximizing the effectiveness of the classifier while
minimizing the data processing time. Moreover, the analysis of
Fig. 4 and Fig. 7 allows us to conclude that the mentioned level
of data particle divide depth, from which there is no signifi-
cant change in the effectiveness of the hypergeometrical divide
method, is different for each data set. Therefore, there is no uni-
versal value for the depth level of the data particle divide that is
optimal in the considered criteria.

Analyzing Figs. 2, 3, and 5, it can be concluded that not
each iteration of the data particle divide results in an increase
in the classifier effectiveness. Moreover, there are datasets in
which dividing the data particle even at the maximum available
divide depth level does not improve the effectiveness of the
hypergeometrical divide approach.

Based on the analysis of the results, it can be concluded
that the hypergeometrical divide algorithm obtained an average
value of the 𝐹macro measure lower than the 𝑘 nearest neigh-
bours algorithm. However, the HypGD performed an average
of 120 compare operations in the classification process, while
the 𝑘NN algorithm performed 5593 comparisons, which gives
a difference of two orders of magnitude with an advantage for
the hypergeometrical divide algorithm.

Another conclusion arising from the analysis of the results is
the hypergeometrical divide algorithm obtained an average value
of the 𝐹macro measure lower than the support vector machine and
decision trees, which are eager learning algorithms, applying an
earlier prepared model in the classification process.

In conclusion, the article fills the gap in the knowledge re-
garding the properties of algorithms, which found application
in Specific Emitter Identification based on the analysis of many
pulses. The paper is the next step in research and development
work on automating the parameterization of the hypergeometri-
cal divide algorithm.

The direction of further research in this area, which may
positively affect the usability of the hypergeometrical divide al-
gorithm, might be the development of a method of automatically
defining the data particle divide depth level.

Another significant direction for further research may be a
comparison of the hypergeometrical divide algorithm proper-
ties with artificial neural networks, especially deep learning
methods.
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