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Abstract. This paper presents a preliminary study delving into the application of machine learning-based methods for optimising parameter
selection in filtering techniques. The authors focus on exploring the efficacy of two prominent filtering methods: smoothing and cascade filters,
known for their profound impact on enhancing the quality of brain signals. The study specifically examines signals acquired through functional
near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging modality offering valuable insights into brain activity. Through meticulous
analysis, the research underscores the potential of machine learning approaches in discerning optimal parameters for filtering, thereby leading
to a significant enhancement in the quality and reliability of fNIRS-derived signals. The results demonstrate the effectiveness of machine
learning-based methods in optimizing parameter selection for filtering techniques, particularly in the context of fNIRS signals. By leveraging
these approaches, the study achieves notable improvements in the quality and reliability of brain signal data. This work sheds light on promising
avenues for refining neuroimaging methodologies and advancing the field of signal processing in neuroscience. The successful application of
machine learning-based techniques highlights their potential for optimizing neuroimaging data processing, ultimately contributing to a deeper
understanding of brain function.

Key words: functional near-infrared spectroscopy; biomedical signal processing; Machine Learning; filtering, brain signals; smoothing
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1. INTRODUCTION

Brain signals are both electrical and chemical activity oc-
curring within the brain, facilitating communication and co-
ordination across various functions. Integral to brain func-
tion and information transmission within the nervous system,
these signals are indispensable for proper neural processing
[1, 2, 3, 4, 5].

Brain signals exhibit distinct characteristics owing to the
diverse types of brain waves corresponding to different fre-
quency ranges [1, 5]. Furthermore, the quality of signal ac-
quisition equipment varies significantly; for instance, there ex-
ists a notable discrepancy between clinical electroencephalog-
raphy (EEG) apparatus and EEG signal acquisition devices.
Beyond equipment quality, two fundamentally different mea-
suring techniques are employed. EEG focuses on captur-
ing electrophysiological brain activation, detecting the electro-
magnetic field generated by firing neurons, whereas fNIRS uti-
lizes hemodynamic response, tracking changes in blood oxy-
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genation as brain regions become active. Given the differing
sensitivities of EEG and fNIRS to various disturbances, which
can evolve over time, it becomes apparent that devising alter-
natives to the conventional single-filter approach for signal fil-
tering is imperative [6, 7, 8, 9, 10, 11].

Grasping their fundamental mechanisms is crucial for pro-
gressing our comprehension of brain function, cognitive pro-
cesses, and neurological disorders [1, 12, 13]. A range of tech-
niques and methodologies are employed to explore and deci-
pher brain signals, enriching our insight into how the brain pro-
cesses information and underpins our thoughts, behaviors, and
experiences [1, 4, 14, 15].

In this paper authors decided to apply Machine Learning-
based filtering system in order to analyse functional near-
infrared spectroscopy signals.

1.1. Applied Brain Signals

Brain signals are classified based on their recording method
and the invasiveness of their collection (see: Fig. 1) [1, 2,
16, 15]. The authors focused on fNIRS signals only [1].
The fNIRSn signals yield multiple parameters, as noted in
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Fig. 1. Invasiveness of various brain signals [1, 15].

[17, 10, 18]. Among these parameters, HbR and HbT indicate
changes in the concentration of deoxygenated hemoglobin and
total hemoglobin, respectively. In fNIRS, these measurements
assess alterations in tissue hemoglobin concentration [17, 19].

The HbR parameter indicates changes in deoxygenated
hemoglobin concentration in tissue. When brain activity rises
in a specific area, oxygen demand increases, causing a de-
crease in oxygenated hemoglobin (HbO) and an increase in
deoxygenated hemoglobin (HbR) [17, 20, 21, 22]. Thus,
HbR serves as an indicator of cerebral blood flow changes
linked to neural activity [21]. On the other hand, HbT re-
flects the total hemoglobin concentration, encompassing both
oxygenated and deoxygenated forms [22, 23, 24]. It of-
fers a measure of total blood volume in the tissue [23, 24].
Changes in HbT may stem from diverse factors, including al-
terations in cerebral blood flow, blood volume, and oxygena-
tion [22, 23, 25, 24, 26].

By concurrently measuring both HbR and HbO, changes in
HbT can be computed using the following formula (1) [23, 24]:

HbT = HbO+HbR (1)

The fNIRS gauges alterations in oxygenated and deoxy-
genated hemoglobin levels within the brain, offering an indi-
rect indicator of brain activity. Utilizing near-infrared light,
it evaluates fluctuations in blood oxygenation in the cere-
bral cortex. Importantly, fNIRS is a non-invasive technique
[1, 27, 3, 4, 28, 15].

Each form of brain signal offers distinct insights into various
aspects of brain function, and they can frequently be applied
together to provide more information [1, 4, 10].

2. MATERIALS AND METHODS

In order to acquire the brain signals, which are prone to various
disturbances and artifacts [29, 1, 30], more legible appropriate
filtering is necessary [30, 31, 32].

Fig. 2. Channel location (left) and the Cortivision cap (right).

Fig. 3. Application for eye stimulation.

2.1. Measurement Methods, Configuration and Study Par-
ticipants

The signals were obtained using the Cortivision fNIRS PHO-
TON+ cap [33] containing 12 channels, which consists of 12
light-sources and 10 detectors as illustrated with Fig. 2.

The channels were located as follows: Ch1: F4−FFC4h,
Ch2: FC4−FFC4h, Ch3: C4−FCC4h, Ch4: CP4−CCP4h,
Ch5: P4−CCP4h, Ch6: FCz−Cz, Ch7: CPz−Pz, Ch8: F3−
FFC3h, Ch9: FC3 − FFC3h, Ch10: C3 − FFC3h, Ch11:
C3−FCC3h, Ch12: CP3−CCP3h, Ch13: P3−CCP3h.

This study analysed data from a cohort of 30 healthy in-
dividuals. The research adhered to the principles outlined in
the Declaration of Helsinki and obtained approval from the
Bioethics Committee of the Nicolaus Copernicus University in
Torun—Collegium Medicum in Bydgoszcz, Poland (protocol
code no. KB 416/2008, dated September 17, 2008, valid until
December 31, 2027). The database containing the signals is
called "Neuroimaging EEG and fNIRS Dataset (NERD)" and
is openly available online ([34]).

The participant viewed a variety of images (see: Fig.3), in-
cluding positive, negative, and neutral as depicted with Fig. 4,
while their brain activity was recorded.

For the stimuli purposes the Open Affective Standardized
Image Set (OASIS), an online stimulus set featuring 900 color
images was applied [35]. The data can be found in [36] online
repository.
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Fig. 4. Sample of displayed images: negative (left) and positive (right).

Fig. 5. ML–based filtering scheme.

2.2. Applied Filtering

The theory of smoothing filters, particularly in the context of
EEG data, has been recently reviewed in [29, 37, 15, 28].

When the disturbances are expected to have a specific dis-
tribution, then smoothing filtering may be the best approach
[38, 39, 15, 28]. For this study purposes the authors applied
Moving Average, Savitzky-Golay and Kalman filters, as illus-
trated with Fig. 5 [40, 41].

The selection of a smoothing filter relies on the specific
application, noise characteristics, and the desired balance be-
tween noise reduction and signal detail preservation [42, 43,
44, 45, 46]. Each filter presents its unique strengths and weak-
nesses, and analyzing the signal’s frequency content or con-
ducting experimentation can aid in identifying the most appro-
priate filter for a given scenario [29, 45, 47].

The simplest form of a smoothing filter is the moving aver-
age (MA) filter. This finite impulse response (FIR) filter, with
length denoted as L, averages a certain number of samples of
the signal to smooth it. Increasing the filter length reduces
the true average of the signal and attenuates higher frequencies
[42, 47]. In an MA filter of length L all coefficients are equal
to 1

L . Among the most popular smoothing filters are the Sav-
itzky–Golay (SG) filters. These digital flat low-pass FIR filters
are commonly applied to equidistant data points. SG filters rely
on an nth degree polynomial fit within a symmetrical neighbor-
hood around each data point k typically spanning from k−m
to k+m, while using 2m+1 data points [29, 42, 48].

The Kalman filter [41] is frequently employed when distur-
bances adhere to a normal distribution [49]. It incorporates
various construction parameters to consider signal and mea-
surement variances. The 1D version of the Kalman filter is
commonly utilized for signal smoothing tasks [49].

As far as filters parameters selection is concerned, the key
design parameters of the Kalman filter were selected with re-

Fig. 6. Dataset used for model training purposes.

Fig. 7. Example signal values.

spect to the signal parameters and specifically – its (estimated)
variance being roughly around 0.1.

For the Savitzky-Golay filter the main design parameter is
the filtration window width. Having a look at the signals one
can see that the signal change which is of interest happens
around 1800− 1900s. Taking into account the sampling fre-
quency, we decided to choose window with of 31 samples to
not to overlook such change and on the other hand, to ignore
at the same time changes resulting from filtration noise.

The chosen window width was allowing to calculate signal
trend without being affected by the noise; and for the last of
the filters – the Moving average filter, the filtered value is be-
ing calculated based on the specific number of samples. For
coherency reasons (to make this filter design related to the de-
sign of the Savitzky-Golay filter) the number of samples based
on which a filtered value was calculated was chosen to be 31.

2.3. Test Methodology

The ML training task was performed using a designated CSV
file where the proper filter selection depending on the sig-
nal change value and trend value was specified. The training
dataset is shown in Fig. 6.

The filtered signal was provided in the CSV file (columns
represent signal acquired from different sensors (see Fig. 7).

Depending on the ML decision given as the result of the
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Fig. 8. Code Snippet showing ML-based filter selection.

ML prediction, the ML filter output switched to the appropriate
filter, respectively: Filter1 – Savitzky-Golay, Filter2 – Kalman
Filter and Filter3 – Moving Average Filter. The code snippet
showing ML-based filter selection is shown in Figure 8.

For the test purposes a test application was developed in
Python. Apart from three different filters implemented in this
application (Savitzky-Golay [40], Moving Average [50] and
Kalman Filter [41]) the application also includes:

• ML training module – this module allows training ML model
based on the provided decision-making dataset (see Fig. 6);

• ML prediction module – this module based on the Change
and Trend values specified value of which filter out of the 3
available and working in parallel filters should be used;

• Visualisation module – this module was responsible for
graphical presentation of the filtering results.

As for the ML model trained for the ML-based filter se-
lection we decided to use the K-Nearest Neighbors algorithm
which provided accuracy at the level of 0.9841%.

3. RESULTS

The results included in this section represent a pilot study and
proof of concept implementation of ML-based filter selection.
We have designed and implemented a system which will ex-
tract some desired features of the filtered signal and then these
features will be used to train the ANN (Artificial Neural Net-
work) model.

The key decision in successfully implementing this concept
is determining the training data structure. This choice is cru-
cial because it directly impacts the performance and accuracy
of the Artificial Neural Networks (ANN). In the simplest sce-
nario, the input data for the ANN could be just the signal
change value. Since noise typically has a limited amplitude
compared to the signal, any significant change in the signal
value would likely indicate a genuine step-change rather than
noise. However, relying solely on signal change may not al-
low the ANN to distinguish between actual changes and slight
variations caused by disturbances or noise.

To improve accuracy, additional features related to the sig-
nal (or environment, object characteristics, etc.) may be in-

corporated. For example, including the signal trend can pro-
vide better context for understanding specific signal changes.
The more features considered, the more justified the use of
ML/ANN becomes, as developing equivalent decision-making
logic using traditional methods (such as if/elif/else statements)
can be extremely challenging. Moreover, the flexibility and
adaptability offered by ML/ANN training capabilities far sur-
pass the potential of traditional reasoning systems, making
them more suitable for complex filtering tasks.

In general, in order to use ML for filter selection it is nec-
essary to extract certain signal features which could then be
used on one hand, for neural model training purposes and on
the other hand – these features being extracted on-line will al-
lowing choosing the best filter depending on the given signal
parameters. Obviously, depending on which features will be
selected and how they will be used to train the model one can
expect more or less accurate signal filtering yet we decided to
focus only on two of such features:

1. signal change – this property represents how the current sig-
nal sample differs from the previous one,

2. trend – this property allows represents the direction of the
signal change.

These are only 2 parameters but the whole approach we
present can be extended with any number of additional param-
eters and hence improve filter selection process.

Out of many existing trend analysing algorithms including:

• Linear Method,
• Mann-Kendall, Exponential growth method,
• Quadratic method,
• S-curve method,
• MAPE (Mean Absolute Percentage Error) method,
• MAD (Mean Absolute Deviation) method,
• MSD (Mean Squared Deviation) method.

we decided to use Mann-Kendall method [51] method. This
was because this method can be used when the signal is mea-
sured with varying time periods or units and that this method
can still be used in case certain values are missing in the set.
This is very useful feature because in some cases it is diffi-
cult to measure the signal due to some physical property of the
patient or the measured signal value is not very accurate due
to e.g. disturbances. Another reason for choosing the Mann-
Kendall method was that typically for trend analysis one of the
key parameters is the number of samples used to determine a
signal trend. Mann-Kendall method does not require this pa-
rameter instead it uses significance level parameter which is
used to determine optimal number of samples to detect linear
trend. In our case the significance level was at 0.05.

3.1. Test Results

Using the test software we have ran a number of filtering simu-
lation tests in order to compare how the hybrid (ML-based) fil-
ter selection compares to the filtering results provided by each
of the 3 co-operating filters independently.
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Fig. 9. Signal filtered using Savitzky-Golay filtering.

Fig. 10. Signal filtered using Moving Average filter.

Fig. 11. Signal filtered using Kalman Filter.

Firstly, the Savitzky-Golay filter was tested. We chose win-
dows width of value 31 and order of the filter 1. Filtering re-
sults are shown in Fig. 9.

Next, the Moving Average filter was tested. Its main design
parameter is window width which we set at the value of 30.
The resulting filtering results are presented in Fig. 10.

For the Savitzky-Golay filter and for the Moving Average
filter the window width was chosen based on the estimated
duration (the number of samples) of the signal value change
caused by disturbance(s).

Thirdly, we decided to test the Kalman filter. In the Fig. 11
we present filtering results with the design parameter Process
noise variance of value 0.0001.

Last of the tested filters was the ML-based Filter, This filter
is in a sense virtual because here the filtered value is originat-
ing from one of the 3 main co-operating filters whilst the ML
role was only to point at the value to be used in the specific
situation. Filtering results are shown in Fig. 12.

Although at the first glance the Fig.9–Fig.12 look very sim-
ilar, there are some differences between them. Each of the

Fig. 12. Signal Filtered using ML-based Filter.

filters was tuned up so that they would perform the filtration
task in the optimal way. However, the ML-based filter returns
signal which, depending on the circumstances, is a collation
of signals generated by each of the filters. As whole, it is not
identical to any of the signals originating from filters working
independently but zooming the picture would reveal that the
ML-based signal works best.

In order to compare how the different filters perform in
a more pronounced way, for each of the filters the over-
all variance of the filtered signal was calculated. Four
different ML models were trained for the comparison
(LogisticRegressioin), SVC, KNN and Gaussian. These all
models come from the Python’s module and are all simple
one-layer models (absolutely sufficient for this task) with the
number of input neurons corresponding to the specified num-
ber of input columns from the dataset. In the contrary to some
other Python’s modules (e.g. Keras model, these models do not
provide functions allowing to check their exact structure (e.g.
Keras model provides layers property containing information
abut the number of model layers) as the structure is easy to
determine just by considering the parameters of the training
dataset.

As it was shown in Fig.13, depending on which ANN model
was trained for filters selection in the ML/hybrid mode, in each
case the variance of the signal filtered by the ML-powered filter
was the lowest. Compared to the next best filter (Moving Av-
erage), the ML-based filter performed around 8% better, while
compared to the worst of the three base filters (Kalman Filter),
the ML-based filter preformed around 26% better. Overall,
the average increase of performance was around 17% which
proves that using AI for best filter selection allows a signifi-
cant increase of filtering accuracy.

4. CONCLUSIONS AND DISCUSSION

Analyzing HbR and HbT signals in fNIRS can offer valuable
insights into brain activation patterns, functional connectiv-
ity, and hemodynamic responses linked to cognitive processes.
This makes fNIRS a valuable tool in cognitive neuroscience
and neuroimaging research [23, 25, 26, 52].

In this paper, the authors decided to apply a Machine
Learning-based filtering system to analyze functional Near-
Infrared Spectroscopy signals.

Although Figures above (in the Results section) may appear
similar at first glance, there are notable differences between
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(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv LRE
Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06
The variance of MA signal : 1.5412155340799853e-06
The variance of KF signal : 1.9046377826296131e-06
The variance of ML signal : 1.4145270184375988e-06

(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv GAU
Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06
The variance of MA signal : 1.5412155340799853e-06
The variance of KF signal : 1.9046377826296131e-06
The variance of ML signal : 1.4212253159885521e-06

(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv SVC
Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06
The variance of MA signal : 1.5412155340799853e-06
The variance of KF signal : 1.9046377826296131e-06
The variance of ML signal : 1.4145270184375988e-06
(myML) mariusz@ThinkPad:~/myML$ ./PES_18.py ./s12_500.csv KNN
Reading model from disk...

The variance of SG signal : 1.6474143609402187e-06
The variance of MA signal : 1.5412155340799853e-06
The variance of KF signal : 1.9046377826296131e-06
The variance of ML signal : 1.4266427025928533e-06

Fig. 13. Comparison of Filtered Signals Variance.

them. Each filter was optimally tuned to perform the filtra-
tion task effectively. The ML-based filter, however, produces a
signal that integrates aspects of the signals generated by each
individual filter. This integration means the ML-based signal
is not identical to any single filter’s output. However, a closer
examination reveals that the ML-based filter outperforms the
others by providing a more accurate and reliable signal. This
superiority is evident when zooming in on the signal, where
the ML-based approach demonstrates its ability to handle vari-
ations and noise more effectively.

To sum it all up – analysis of the fNIRS and other brain
signals is a very challenging task due to the complexity and
variability of the signals involved. The brain’s activity is influ-
enced by numerous factors, including physiological and en-
vironmental conditions, making it difficult to extract mean-
ingful information. Noise and artifacts further complicate the
analysis, requiring sophisticated filtering and signal process-
ing techniques to obtain accurate results. The use of advanced
methods, such as Machine Learning-based filters, helps ad-
dress these challenges by providing more robust and adaptive
solutions for signal analysis.
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