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 In this work, the oxyfluoride glass-ceramic materials containing LaF3 nanocrystals, prepared 
by using the sol-gel method, were described. The influence of fluoride nanocrystals on the 
photoluminescence properties of selected lanthanide ions was determined. The experimental 
results obtained for nano-glass-ceramics were compared to the precursor xerogels. Those 
Ln3+-doped sol-gel materials with dispersed LaF3 nanocrystals exhibit several visible 
emission bands. It was observed that heat-treatment process caused the elongation of the 
lifetimes of the 5D0 state from τ = 0.22 ms to τ1 = 0.79 ms, τ2 = 9.76 ms (for Eu3+-doped 
materials) and of the 4F9/2 state from τ = 0.027 ms to τ1 = 0.034 ms, τ2 = 1.731 ms (for 
Dy3+‑doped materials). The performed studies clearly revealed that luminescence behaviour 
also depends on an activator concentration and a distribution of energy levels of lanthanide 
ions.  
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1. Introduction 

Glass-ceramics (GCs) are considered as an intriguing 
group of modern materials, combining the unique features 
of both amorphous and crystalline media. The heat-
treatment process carried out at controlled time and 
temperature conditions results in a formation of very 
interesting glass-ceramic materials in terms of various 
properties and applications. Dr S. Donald Stookey 
pioneered this research field [1] and George Beall 
progressively continued those studies [2–4]. Since then, 
many papers have been published on glass-ceramic systems 
and concentrate on their synthesis and structure [5–7], but 
also on commercialization fields and various, often 
multifunctional applications [8, 9]. The diversity of 
chemical compositions, the development of innovative 
synthesis methods, and the unique structures obtained at the 
nano/microscale have contributed to a renewed perspective 
on the definition of glass-ceramic materials [10]. 

Transparent glass-ceramic materials doped with 
lanthanide ions, capable of emitting irradiation in the 
visible, as well as near- and mid-infrared range, have 
gained significant interest in photonics, i.e., amplifiers [11], 

solid-state lasers [12–14], optical fibres [15], and up-
conversion devices [16, 17]. Among GCs doped with Ln3+ 
ions, the materials doped with Eu3+, Dy3+ and Pr3+ exhibit 
interesting optical properties. 

The transformation from glass to glass-ceramic results 
in an enhancement of luminescence bands and prolongation 
of the luminescence decay times of Ln3+ ions [18]. 
Additionally, manipulating plentiful parameters, e.g., tem-
perature and time of heat treatment of as-prepared glasses, 
their initial composition, or type of crystallized phase, 
allows for a successful tunability of Re3+ resultant emission. 
Thus, Eu3+-doped GCs can be successfully used as red-
emitting components for white light emitted diodes 
(WLEDs) [19, 20] or in luminescence thermometry [21]. 
Further, Dy3+-doped GCs are commonly utilized as white 
light emitters [22–24], but also – similarly as Eu3+-doped 
GCs – in optical thermometry [25]. Finally, the lumines-
cence features of Pr3+-doped GCs predispose them to use 
as wide-range colour converters with for blue LEDs [26], 
as white-light-emitting fibre lasers [27] or in optical-fibre 
temperature sensing [28], as well as in down-conversion 
luminescence applications [29]. 

Among the numerous glass-ceramic materials, the 
oxyfluoride systems containing lanthanide ions deserve 
special attention. During initial glass or xerogel heat *Corresponding authors at: wojciech.pisarski@us.edu.pl  
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treatment, the fluoride nanocrystals could successfully 
precipitate inside an amorphous oxide host matrix. 
Lanthanide ions are extensively used as optically active 
dopants and are typically present in both amorphous phase 
and crystalline fraction. As a result, the optical properties 
change significantly due to the partial alteration of the 
nearest surrounding around the lanthanide ion. In recent 
years, a series of oxyfluoride GCs containing LaF3 nano-
crystals (where Ln3+ [Ln  =  Ho [30], Yb [31], Er [32–34], 
Nd [35, 36], Pr/Yb [37] ions partially replace La3+ ones) 
have gained significant importance. Some of such systems 
were fabricated using the sol-gel method [38–40]. This 
paper refers to this issue. This research aimed to investigate 
the effect of LaF3 nanocrystals dispersed in sol-gel materials 
on the emission properties of selected lanthanide ions.  

The work concerned with performing a comparative 
analysis of photoluminescent features of silicate sol-gel 
materials singly-doped with Eu3+, Dy3+, and Pr3+ ions, 
described by us earlier [41–43]. The aim of this work was 
to compile the conclusions, specifying how the diversity of 
the energy level structure, as well as differences in the ionic 
radii between La3+ (from parent LaF3 crystal phase) and 
individual active dopants determine the photoluminescent 
properties of the prepared sol-gel materials. 

2. Experimental 

The sol‐gel preparation method was used to synthesize 
the xerogels doped with Eu3+, Dy3+, and Pr3+ ions. To obtain 
the nano-glass-ceramic materials, the as-prepared xerogels 
were annealed at selected time and temperature conditions; 
the details were presented elsewhere [41, 42]. The solutions 
of La(III) and Eu(III), Dy(III), and Pr(III) acetates 
dissolved in water and trifluoroacetic acid (TFA) were 
added dropwise to the pre-hydrolysis mixtures containing 
tetraetoxysilane (TEOS), ethanol, deionized water, and 
acetic acid in molar ratio equalling 1:4:10:0.5. The 
prepared sols were dried for several weeks, then the 
obtained xerogels were further transformed into glass-
ceramic materials via the controlled heat treatment at 
appropriate temperature and time conditions. 

The structural characterisation of the fabricated sol‐gel 
materials was provided by X‐ray diffraction (XRD) 
analysis using an X’Pert Pro diffractometer supplied by 
PANalytical with CuKα radiation with λ = 1.54056 Å 
wavelength. The optical properties of the prepared materials 
were investigated using a Photon Technology International 
(PTI) Quanta-Master 40 (QM40) UV/VIS Steady State 
spectrofluorometer equipped with a tunable pulsed optical 
parametric oscillator (OPO) pumped by the third harmonic 
of a Nd:YAG laser. The laser system was supplied with 
a double 200 mm monochromator, a xenon lamp, as well 
as a multimode UV/VIS PMT detector (R928, PTI Model 
914), and a Hamamatsu H10330B-75 detector. 

3. Results and discussion  

3.1. Structural studies 

XRD studies showed that the heat treatment of the 
initial xerogels leads to the formation of nano-GCs. 
The  XRD  pattern  confirmed  the  crystallization  of  LaF3  

phase in a P63cm space group according to ICDD card 
no. 00‑008‑0461 [44, 45]. The average size of the precipi-
tated fluoride nanocrystals fluctuates from 8.1 nm [41] to 
13.5 nm [43]. Figure 1 presents the diffraction patterns of 
the sol-gel systems before and after the controlled heat-
treatment process. The results from the XRD analysis were 
confirmed by the transmission electron microscopy (TEM) 
[41–43].  

3.2. Luminescent studies  

Figure 2 illustrates the luminescence spectra of europium 
ions in xerogels and nano-glass-ceramic-materials. The 
series of registered luminescence bands assigned to the 
electronic transitions from the 5D0 state to the lower-lying 
7FJ levels (J = 0–4) of trivalent Eu3+ ions. Notably, two 
luminescence bands are located in the orange and red 
spectral ranges, respectively. Those emission bands corre-
spond to the 5D0 → 7F1 and the 5D0 → 7F2 transitions of Eu3+ 
ions and are also shown in the energy level diagram (Fig. 3). 

The intensity ratio of the photoluminescence bands 
changes due to the heat-treatment process. As a result  
of annealing the amorphous xerogels, a decrease in 
a 5D0 → 7F2 electric-dipole band intensity was observed; 
subsequently, the intensity of the band, associated with 
a magnetic-dipole 5D0 → 7F1 transition significantly in-
creased. The observed changes in the emission spectra 
profile clearly indicate an increase in local symmetry 
around Eu3+ ions. It also suggests a significant contribution 
of ionic bonds between the activator ions (Eu3+) and their 
nearest surrounding. These differences in luminescence 
behavior denoted before and after controlled heat treatment 
of initial xerogels are strictly related to the successful 
migration of europium ions (with ionic radius 1.120 Å) into 
LaF3 nanocrystals (ionic radius of La3+: 1.216 Å) [46]. 
Consequently, a decrease in the luminescence intensity 
R/O-ratio, according to the 5D0 → 7F2 and 5D0 → 7F1 bands, 
was observed [3]. Considering the results, the fabricated 
materials could be used as red or reddish-orange light 
emitters for optoelectronic applications [20, 41]. 

 
Fig. 1. XRD patterns of sol-gel materials before and after the 

annealing process. 
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Figure 4 presents the emission spectra of trivalent 
dysprosium ions in fabricated sol-gel materials before 
(xerogel) and after heat treatment (nano-glass-ceramic). 
The 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ 
ions are located within blue and yellow light spectral 
ranges, respectively. Those transitions are schematically 
presented in the energy level scheme (Fig. 5). 

The emission spectra were presented for two selected 
systems, (I) and (II), which differ in the La3+:Dy3+ ratio, 
equalling 0.988:0.012 and 0.7:0.3. The results clearly 
showed that the luminescence properties of Dy3+ ions 
critically depend on the activator concentration [42]. For 
low Dy3+ concentrations (determined by molar ratio 
La3+:Dy3+ = 0.988:0.012), the heat-treatment process 
influenced an increase in the luminescence intensities. 
Concerning a higher activator concentration (determined 
by molar ratio La3+:Dy3+ = 0.7:0.3), the conversely 
luminescence behavior is observed, and the emission 
intensity of Dy3+ ions is higher for xerogels than for glass-
ceramic materials. This phenomenon could be explained by 
the significant reduction of the inter-ionic distances (and 
the simultaneous unfavorable increase in interaction) 

between neighboring Dy3+-Dy3+ ions inside LaF3 
nanocrystals, leading to the concentration quenching of the 
luminescence. Similarly as for Eu3+ ions, a decrease in the 
calculated Y/B-ratio values (associated with the  
4F9/2 → 6H13/2 and 4F9/2 → 6H15/2 band intensities of Dy3+ 
ions) is noted. The values of both R/O (Eu3+) and Y/B 
(Dy3+) ratios are lower for nano-GCs compared to those 
denoted for the initial xerogels and other inorganic oxide 
glasses synthesized by the conventional melt-quenching 
method [47, 48], indicating incorporation of Ln3+ ions 
inside the LaF3 nanocrystalline phase. However, it should 
be clarified that the denoted decrease in Y/B ratio is not as 
noticeable as for R/O ratio (Eu3+), suggesting less efficient 
migration of Dy3+ into LaF3 nanocrystals. Such a result 
could be explained by greater differences in ionic radii in 
Dy3+ (1.083 Å) - La3+ (1.216 Å) pair than in Eu3+ (1.120 Å) 
- La3+ (1.216 Å) one [46]. The results suggest that the 
obtained GCs could find application as visible light 
emitters [22, 42].  

Figure 6 presents the photoluminescence spectra 
recorded for the sol-gel materials doped with Pr3+ ions. For 
xerogel, none of the characteristic luminescence bands 

 
Fig. 2. Photoluminescence spectra of Eu3+ ions in xerogels and 

nano-GCs. 

 
Fig. 3. The energy level scheme for Eu3+ ions. Orange and red 

arrows illustrated the major emissions. 

 

 
Fig. 4. Photoluminescence spectra of Dy3+ ions in xerogels and 

nano-GCs. 

 
Fig. 5. The energy level scheme for Dy3+ ions. Blue and yellow 

arrows illustrated the major emissions. 
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were observed. The probable reason for this observation is 
correlated with too small energy gaps between the 
appropriate states of Pr3+ ions and the presence of high-
vibrational energy hydroxyl groups. The vibrations of OH- 
groups overlap with the gaps between Pr3+ states, which is 
responsible for effectively quenching the photolumines-
cence. It should be noted that for xerogel, only a broad band 
was registered. Based on the literature, this broad band 
could be originated from defects inside the sol-gel host 
[49]. The effect of photon recombination in the silicate sol-
gel host could be reduced or disappear after the thermal 
treatment. Conversely, the spectrum recorded for the nano-
glass-ceramic material revealed the well-visible emission 
bands within the blue, green, and red ranges, assigned to 
the characteristic transitions of Pr3+ ions, i.e., 3P0 → 3H4, 3P1 
→ 3H5, 3P0 → 3H5, 3P0 → 3H6, 1D2 → 3H4, and 3P0 → 3F2 
(Fig. 7). Since the intensities of emission bands from the 
3P0,1 levels are enhanced, it could be expected that Pr3+ ions 
are well-incorporated inside precipitated LaF3 nanocrystals. 
Indeed, there are differences in ionic radii between Pr3+ 
(1.179 Å) and La3+ (1.216 Å), compared to other Eu3+-La3+ 
and Dy3+-La3+ ionic pairs [46]. It is worth noting that in the 
case of the studied Pr3+-doped GCs, the combination of 

blue, green, and reddish-orange luminescence is appropriate 
for white light generation, described by chromaticity 
coordinates (0.400|0.337) and correlated colour tempera-
ture equal to 3124 K [43]. 

Furthermore, the decay analysis from the appropriate 
excited states of studied Ln3+ ions was also performed. The 
lifetimes of the 5D0 (Eu3+) and the 4F9/2 (Dy3+) levels were 
determined both for xerogels and glass-ceramic materials 
after controlled heat-treatment process. The resultant 
values were collected in Table 1. 

Table 1.  
The lifetimes of appropriate excited states of Ln3+ ions  

estimated for xerogles and nano-GCs. 

Ln3+ Excited state Luminescence lifetimes (ms) 

Eu3+ 5D0 

xerogels 0.22 

nano-GCs 
0.79 
9.76 

Dy3+ 4F9/2 

xerogels 0.027 

nano-GCs 
0.034 
1.731 

 
Conversely to the initial xerogels, the photolumines-

cence decay curves recorded for nano-GCs exhibited a 
biexponential character. The curve with shorter and longer 
decay components is associated with the distribution of 
Eu3+ and Dy3+ ions between the amorphous sol-gel host and 
the nanocrystalline fluoride phase. The obtained results 
clearly showed that the overall emission and luminescence 
lifetimes are significantly enhanced for nano-glass-ceramic 
systems containing LaF3 nanocrystals compared with 
initial fully amorphous xerogels. 

4. Conclusions 

This paper presents the selected research results for 
xerogels and nano-glass-ceramic materials fabricated by 
the sol-gel technology. The emission characterisation was 
conducted for samples doped with selected Ln3+ ions, i.e., 
Eu3+, Dy3+, and Pr3+ ions.  

The results revealed that for prepared nano-glass-ceramic 
materials, the luminescence intensities are noticeably 
enhanced and the decay times are prolonged (5D0 (Eu3+): 
τ1 = 0.79 ms, τ2 = 9.76 ms; 4F9/2 (Dy3+): τ1 = 0.034 ms, 
τ2 = 1.731 ms) compared to the initial xerogels (5D0 (Eu3+): 
τ = 0.22 ms; 4F9/2 (Dy3+): τ = 0.027 ms). This phenomenon 
could be explained by successfully entering trivalent Ln3+ 
ions inside LaF3 nanocrystal lattice, formed during a heat 
treatment of xerogels. A decrease in the values of the R/O-
(xerogel: 2.37, GC: 0.78) and Y/B-ratio (xerogel: 2.31, 
GC: 1.94) also indicates the migration of the dopant ions 
into the crystalline phase. The studies demonstrated the 
impact of LaF3 nanocrystals dispersed in a sol-gel host on 
the photoluminescence properties of Eu3+, Dy3+, and Pr3+ 
ions. The luminescence behaviour also depends on the 
activator concentration, similarity in ionic radius in 
individual Ln3+‑La3+ pair, and individual distribution of the 
energy levels. 

Nano-glass-ceramic materials obtained by the sol-gel 
method are promising systems able to generate visible light 
and may find applications in photonics, like optical hosts 

 
Fig. 6. Photoluminescence spectra of Pr3+ ions in xerogels and 

GCs. 

 
Fig. 7. The energy level scheme for Pr3+ ions. The major 

emissions were illustrated by blue, green, and red arrows. 
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for multicolour displays or colour screens. Indeed, Eu3+-
doped GCs can generate red or reddish-orange lumines-
cence, while Dy3+-doped samples produce efficiently 
yellow light. Importantly, in the case of Pr3+-doped GCs, 
the intensities of blue, green, and reddish-orange emissions 
are relevant for warm-white light generation. 
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