
 

1. Introduction 

The extraction of hydrocarbons by well drilling is accompanied 

by tests of the physical properties of the reservoir fluid, which 

are performed both during the testing of a new well and during 

the field production phase. One of the important parameters de-

termined during well testing and productivity monitoring is the 

phase composition of the reservoir fluid. The phase composition 

significantly influences the technique that can be used for meas-

uring the fluid flow rate. In the oil (petroleum) and gas industry, 

processed reservoir fluids are mixtures that in addition to hydro-

carbons include water (frequently with dissolved salts) and non-

condensable gases (like hydrogen sulfide) [1]. The hydrocar-

bons form a mixture that may be a liquid, gas or two-phase me-

dium. Hydrocarbon liquid is typically crude oil, while dominat-

ing hydrocarbon gases are methane and butane (commonly 

known as natural gas). Natural gas can be dissolved (partially or 

completely) in the liquid phase and the amount of dissolved and 

free gases in the reservoir fluid strongly depends on the fluid 

pressure and temperature. Under certain thermodynamic condi-

tions, heavy hydrocarbons (paraffin) and asphalts present in the 

reservoir fluid may solidify. 

The traditional and most common method in oil and gas ex-

ploration for measuring the phase composition of the reservoir 

fluid involves the use of a separator enabling the measurement 

of each phase separately. This method is expensive and requires 

ongoing maintenance by qualified personnel. Due to the dimen-

sions of the separator, it also requires considerable space, which
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Nomenclature 

Greek symbols 

ɛr – relative permittivity 

 

Abbreviations and Acronyms 

ECT ‒ electrical capacitance tomography 

 

fF ‒ femtofarad (10-15 F) 

FPGA ‒ field-programmable gate array 

GVF ‒ gas volume fraction 

MFMS ‒ multiphase flow metering systems 

WLR ‒ water-in-liquid ratio 

may be a problem on offshore drilling platforms. Measurements 

acquired with this method have low time resolution due to the 

high inertia of the separator operation but they offer high meas-

urement accuracy for quasi-steady flows. This is because only 

single-phase flows are measured, for which high accuracy com-

mercial flowmeters are readily available. 

The development of electronics and computers in the 1980s 

resulted in intensified research on the direct measurement of 

multiphase flow rate, without prior phase separation. In the 

1990s, the first multiphase flow metering systems (MFMS) ap-

peared commercially that attracted the interest of the oil & gas 

industry [2, 3]. The usefulness of such systems has been appre-

ciated in the event of depletion of rich fields and the need to 

exploit less efficient and less accessible fields that were previ-

ously considered unprofitable. The use of MFMS instead of an 

expensive measurement separator offers a reduction in produc-

tion costs on such marginal fields. MFMS also enable monitor-

ing of a well production continuously and in real time. 

Measuring the volumetric flow rate of a multiphase medium 

requires determining the volumetric (void) fraction and velocity 

for each phase. These local quantities determine the flow pattern 

(structure) in the test cross-section or volume of the flow chan-

nel for the pressure and temperature conditions prevailing there. 

The flow velocities of individual phases may be the same but 

they are often different (so-called slip). Therefore, a volumetric 

MFMS most often consists of a sensor measuring the void frac-

tion and a module measuring velocity. To determine the mass 

flow rate, it is also necessary to measure or evaluate the density 

of each phase [4, 5]. 

Available information shows that MFMS are or were offered 

for the oil & gas industry by several companies. Their design 

details are often protected by the manufacturers and sometimes 

even their basic principles of operation are concealed [6]. One 

of the commercially popular and elaborated multiphase flow 

meters is marketed under the trademark Roxar 2600 [7]. The 

basic Roxar model uses impedance measurement to determine 

phase content and velocity. The velocity is determined based on 

the cross-correlation of measurements in two planes (flow cross-

sections). In the more advanced models, a Venturi tube is added 

to measure differential pressure and a gamma radiation source 

(Cesium 137) to measure density. As additional modules, a sa-

linity sensor (for water-dominated flows) and an acoustic sensor 

for sand monitoring are also available. Roxar 2600 MPFM can 

be used in three-phase oil, water and gas flows, in the full range 

of values (from 0% to 100%) of water-in-liquid ratio (WLR) and 

gas volume fraction (GVF). Under certain conditions, the lowest 

flowrate measurement uncertainty is 5% for gas, 3% for liquid 

phase and 2% for WLR [7].  

The multiphase flow sensor of the Roxar meter consists of 

two sets of plate electrodes flush-mounted on the inner wall of 

the vertical test section. The lower (downstream) set contains six 

electrodes with a height comparable to the diameter of the test 

section. Their width is similar to the spaces between them. The 

upper set consists of two electrodes placed opposite to each 

other, with the same height as in the lower set and a width cov-

ering a segment of a circle (approx. 70–90°). Depending on the 

electrical properties of the fluid, the same electrodes are used to 

measure capacitance (when the fluid is dielectric) or conductiv-

ity [6]. The measurement in the lower set is rotational and at  

a time only one electrode is active and the other five are passive. 

The rotation in the measurement means that the source voltage 

is switched at equal time intervals from the active electrode to 

the next (neighbouring) one. According to the manufacturer, 

processing of the sensor signals allows the determination of the 

volume occupied by large gas bubbles or slugs and the volume 

of the dispersed phase in a homogeneous liquid-gas mixture 

with small bubbles. For large bubbles/slugs, their deviation from 

the central flow axis is detected. The measurements are also sen-

sitive to the near-wall flow composition. The time of a single 

measurement is short enough to determine the velocity of large 

bubbles and the dispersed phase separately. The continuous 

phase can be either oil or water, and the instrument automati-

cally detects which liquid is present at a given moment.  

Non-invasive, fast-response and continuous methods for 

measuring phase content continuously and in real time remain 

a current research topic. Particular attention is paid to improving 

measurement accuracy, extending the measurement range and 

reliably recognizing multiphase flow structures. This work fo-

cuses on the tomographic method using measurements of the 

electrical capacitance of a multiphase medium. Basic infor-

mation on multi-electrode capacitive phase content meters can 

be found, for example, in [8, 9]. 

Capacitance measurements acquired by tomographic meters 

can be used to reconstruct the multiphase flow patterns from per-

mittivity distribution, which is equivalent to the spatial distribu-

tion of phases in the tested flow domain. An algorithm suitable 

for this task can be derived considering a set of equations de-

scribing the relation between the capacitance (c) and the permit-

tivity (. Assuming linear approximation, the change in capac-

itance (c) vector can be related to the changes of permittivity 

() according to the equation c = S, where S is the sensitiv-

ity matrix of the transducer [10]. Determining the permittivity 

from capacitance measurements, known as an inverse problem, 

can be formally treated as calculating the inverse of the sensitiv-

ity matrix (S). However, the problem is ill-posed and ill-condi-

tioned, that is there is no unique solution of the equation  
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c = S, and small changes in c (e.g. due to measurement 

noise) can result in great discrepancies in  [11]. Therefore, 

computing the inverse S is a challenging task for which many 

solution methods have been proposed, among which two classes 

can be distinguished: direct and iterative. Direct methods in-

clude for example linear back-projection, singular value decom-

position, and Tikhonov regularization. Examples of the iterative 

algorithms are Newton–Raphson and iterative Tikhonov meth-

ods, Landweber iteration or other steepest descent methods [10]. 

Apart from the above direct and iterative algorithms, uncon-

ventional reconstruction methods based on machine learning 

have been developed. Nooralahiyan et al. [12] were among the 

pioneers of using an artificial neural network for solving the in-

verse image reconstruction problem. Their paper describes the 

basic principles of an artificial neuron, the multilayer perceptron 

network and the back-propagation training algorithm, applied in 

real-time to electrical capacitance tomography (ECT) measure-

ment of multicomponent flows with small (gas/oil) and large 

(water/oil) difference in permittivity. Later, Marashdeh  

et al. [13], used a multilayer feed-forward neural network com-

bined with an analog Hopfield field network for solving the non-

liner inverse problem. At the same time, Flores et al. [14] inves-

tigated the application of neural networks in ECT used in the oil 

industry. Imaging using the least squares support vector ma-

chine (LSSVM) with a self-adaptive particle swarm optimiza-

tion algorithm was proposed by Chen et al. [15]. On the other 

hand, Wang et al. [16] studied multiphase flow monitoring by 

combining the LSSVM with a bacterial colony chemotaxis al-

gorithm. A three-layer feed-forward neural network with radial 

basis function activation was used by Chen et al. [17] to recon-

struct the permittivity distribution from the measured capaci-

tance. Xu et al. [18] proposed a convolutional neural network to 

predict the oil flow rate, gas flow rate and gas void fraction from 

measurements with dual ECT sensors and a Venturi tube. A brief 

overview of other machine learning-based methods can be found 

in [11]. 

Based on an own-design unique multi-electrode capacitance 

meter and machine learning, this article describes the applica-

tion of tomographic image reconstruction of a low-permittivity 

material. Reservoir fluid was used as an example of such mate-

rial. The capacitance sensor is a novel construction built with 

eight  charge modulators capacitance-to-digital converters 

(CDC). 

2. Multi-electrode capacitance sensor 

Electrical capacitance tomography is based on measurements of 

electrical capacitance between electrodes placed around the 

measured object. In the case of measurements on pipes [9], a set 

of electrodes is most often used in the form of identical thin 

plates, distributed evenly around the outer circumference of 

a non-conductive pipe. Mutual capacitances between individual 

electrodes are measured, so a single measurement result is 

a square data matrix of dimension n  n, where n is the number 

of electrodes. However, the diagonal of the matrix is not taken 

into account because it represents measurements with one elec-

trode, which have no physical meaning. Therefore, a single 

measurement produces N  =  n2  –  n values of electrical capac-

itance. An exemplary electrical capacitance tomography system 

is shown in Fig. 1. In this example, the excitation signal from 

module (3) is sent via the switches (2) to one of the electrodes 

mounted on the outer wall of pipe (1). This produces a signal 

proportional to the mutual capacitances on the other electrodes. 

These signals are amplified (4) and converted to digital (5). The 

switches (2) then reconnect the excitation (3) and amplifiers (4) 

to the next electrodes, one by one. Reconnections and measure-

ments are repeated by signal control and measuring system (6) 

until the capacitance matrix is completed. 

The own-designed and built capacitance measurement sys-

tem is based on the NEXYS-A7 digital circuit development plat-

form, the main component of which is the XC7A100T-

1CSG324C field-programmable gate array (FPGA) manufac-

tured by Xilinx [19]. The block diagram of the capacitance sen-

sor is shown in Fig. 2.  

The NEXYS-A7 board (4 in Fig. 2) has a number of addi-

tional circuits that allow it to be used directly in a wide range of 

applications. For the multi-electrode capacitance sensor, two 

eight-bit input-output ports, a USB interface and a numeric dis-

play were used together with the graphic Pmod MTDS (Multi-

Touch Display System) [20] add-on board (5). Moreover, the 

sensor set is supplemented with an original interface system of 

own design that is connected to two input-output ports and al-

lows the connection of up to 16 measurement modules via 

LVDS (low-voltage differential signalling) interfaces (3). Eight 

identical measurement modules (2) were built as  charge 

modulators capacitance-to-digital converters (CDC) and used in 

the research. The modulators were connected to eight electrodes 

mounted evenly around measuring pipe segment (1). Local dis-

play (5) can show current information, e.g. on actual capaci-

tance values. The measured capacitance values are transmitted 

in real time to the computer (6) where they are stored and pro-

cessed. Details of the used electronic components are summa-

 

Fig. 1. Electrical capacitance tomograph: 1 – pipe with electrodes,  

2 – switches, 3 – excitation, 4 – amplifiers, 5 – analog-to-digital  

converters, 6 – signal control and processing system. 

 

Fig. 2. Block diagram of the multi-electrode capacitance sensor:  

1 – pipe with electrodes, 2 – ΔΣ modulators with excitation,  

3 – LVDS interface, 4 – NEXYS-A7, 5 – local display, 6 – computer. 
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rized in Table 1. The arrangement of the measuring electrodes 

on the pipe wall in the test section is shown in Fig. 3 together 

with an XY coordinate system used in the subsequent discussion 

of tomograms. 

A single measurement in the proposed device involves gen-

erating an excitation signal on one of the electrodes and simul-

taneously collecting responses on the remaining seven elec-

trodes. This is followed by a program-controlled change of the 

excitation electrode. The complete measurement cycle requires 

eight partial measurements and returns 56 individual results for 

inter-electrode capacitances. The capacitance sampling fre-

quency is 8  kHz, therefore a single measurement is done in  

1 ms. At present, not all measurements are processed further and 

single measurements are transmitted once per second to the 

computer where they are written to a file. This is sufficient to 

analyze the stationary capacitance field in the test section. 

A complete measuring system is shown in Fig. 4. Operation 

of the sensor set (No. 1 in Fig. 4) requires proper programming 

of the FPGA circuit (4). This includes the generation of signals 

necessary for the proper operation of  modulators with exci-

tation (2), i.e. reference clock signals with a frequency of 

1.024  MHz, signals switching the modulator systems between 

the generation of the excitation signal and the capacitance meas-

urement, and the collection and processing of digital outputs 

from the modulators. These signals are connected to  modu-

lators through an LVDS interface (3). Local display (5) is used 

for a  quick overview of the sensor condition, e.g. actual capac-

itance values. For correct operation, the measuring system re-

quires three supply voltages, which are provided by power sup-

plies (6) and (7). The numbers 1 to 5 in Fig. 4 and in Fig. 2 

showing the block diagram correspond to each other. In addi-

tion, the MicroBlaze soft-core microprocessor was programmed 

in the FPGA (4). The microprocessor is responsible for collect-

ing the measurements and sending them to the cooperating com-

puter. The FPGA software was created using the VIVADO De-

sign Suite, while the program for the Microblaze microprocessor 

was written in the Xilinx Software Development Kit (SDK) en-

vironment. 

3. Measurements 

The constructed measuring system was installed on the wall of 

a polycarbonate pipe segment with an internal diameter of 

60  mm and a wall thickness of 5 mm, Figs. 3 and 4. The pipe 

dimensions were selected to withstand the target operating con-

ditions, i.e. temperature up to 70°C and pressure up to 4 bar. 

Eight electrodes mounted around the outer wall of the pipe were 

made of thin copper sheets measuring 20 mm  25 mm. Two 

series of measurements were carried out. The first series was in-

tended to generate reference data for reconstruction of the ca-

 

Fig. 3. Arrangement of electrodes in the test section:  

1 to 8 – electrodes, XY – coordinate system. Red dots indicate  

61 positions of the rod during reference measurements. 

 

Fig. 4. Photograph setup: 1 – pipe with electrodes, 2 – ΔΣ modulators 

with excitation, 3 – LVDS interface, 4 – NEXYS-A7 FPGA, 5 – local 

display, 6 – 5 V power supply, 7 – +15 V and −15 V power supply of 

the capacitance sensor. 

Table 1. Electronic modules used to build the multi-electrode capacitance sensor.  

No. in Figs. 2 & 4 Name Manufacturer Type Specification 

2 
 charge modulator 
capacitance to digital 

converter 

own design and 
construction 

– 
sampling frequency 100–1200 kHz,  

output resolution 1bit,  

second order  modulator 

3 
low-voltage differential 

signalling interface 
own design and 

construction 
– 

16 channels, two transmission lines  
and one receiving line in each channel,  

maximum transmission frequency 400 MHz 

4 
digital circuit develop-

ment platform 
Digilent NEXYS-A7 

Artux-7 FPGA (clock >450 MHz), 129 MB DDR2 
memory, USB, Ethernet, temperature sensor [19] 

5 local display Digilent Pmod MTDS 
2.8“ touchscreen display with QVGA resolution 

(320×240), PIC32MZ Microcontroller [20] 
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pacitance field, while the second one was intended to generate 

control data. 

The reference data included 62 measurements of electrical 

capacity in the inter-electrode space: one measurement for an 

empty pipe and 61 measurements with a polyamide rod placed 

vertically in various locations relative to the longitudinal axis of 

the pipe, see Fig. 3. To define the position of the rod in the pipe 

cross-section, a rectangular grid was used with the origin in the 

pipe axis, grid size of 5 mm5 mm and a range from −20 mm 

to 20  mm. Some of the rod positions at the grid nodes were 

omitted because they were outside the pipe. The diameter of the 

rod was 12 mm and its relative permittivity was ɛr = 3.6. 

The control data included a certain number of measurements, 

one for an empty pipe and the rest with a glass test tube filled 

with reservoir fluid and placed in different positions inside the 

pipe. The outer and inner diameter of the test tube was 15.5 mm 

and 13.3 mm, respectively. The relative permittivity of glass is 

ɛr = 5.2, while the relative permittivity of the reservoir fluid de-

termined from the measurement of the change in the capacity of 

the air capacitor is ɛr = 4.3. Table 2 shows capacitances meas-

ured with the empty pipe. As expected, measured values are in 

the range from a tenth femtofarad to sub-picofarad. 

4. Flow pattern reconstruction by artificial neural 

network 

A neural network was used to analyze the collected data and 

generate tomographic images. A neural network consists of in-

terconnected neurons, which are functions, most often non-lin-

ear, that convert the input signal. In the most commonly used 

networks, a neuron has n inputs and one output. Then, the 

weighted sum of n inputs is fed to the input of the function, and 

the output of the neuron is the result of the function. Neurons are 

stacked into layers, and the processed signals pass through sub-

sequent layers of the neural network. The connections between 

the outputs and inputs of neurons, along with the weights as-

signed to them, are called synapses. Synapses also connect the 

outputs of the previous layer with the inputs of the next layer, 

with the first layer, the input layer, receiving the external input 

signals, and the last one, the output layer, generating the final 

result of the example neural network, Fig. 5. 

The most important operation when creating a neural net-

work is its training or learning procedure. To put it simply, it 

involves feeding a known signal to the input of a neural network 

and comparing the result of the network's operation with the ex-

pected one. Then, the synapse weights and sometimes the pa-

rameters of neuron functions are changed so that the result ob-

tained is as close to the expected result as possible. This proce-

dure is repeated many times for different sets of input and ex-

pected signals. A properly trained neural network produces cor-

rect results for all, or at least the vast majority, of the data sets 

used for training and, more importantly, can correctly process 

other similar input data. 

The collected measurement data was processed using librar-

ies written in Python. The sequential model in TensorFlow li-

brary with the Keras interface was used to generate and train the 

neural network [21]. The input data is a square matrix of dimen-

sion 8 with a zeroed diagonal, representing the measured capac-

itances between the sensor electrodes. The output is the coordi-

nates of the polyamide test rod position. In order to simplify the 

neural network, the output data was written as a vector whose 

elements corresponded to specific positions of the rod, and de-

tection of one specific position of the rod was assumed. The fi-

nally applied single neural network has the following structure: 

 input layer of 64 neurons, 

 hidden (internal) layer of 256 neurons, 

 output layer of 2 neurons. 

The designed neural network was subjected to a training pro-

cess using model data normalized to the range from 0 to 1, after 

which it generated the correct result. The created single neural 

network was multiplied to detect all 61 standard positions of the 

rod, then all 62 partial neural networks were sequentially sub-

jected to the training process and combined into one network 

 

Fig. 5. Example neural network: A – input layer,  

B – hidden (internal) layer, C – output layer. 

Table 2. Sample matrix of measured capacitances in pF.  

  Measuring electrode 

1 2 3 4 5 6 7 8 

Ex
ci

ta
ti

o
n

 e
le

ct
ro

d
e 

1  0.7428 0.0515 0.0736 0.1211 0.0750 0.1078 0.7246 

2 0.7260  0.6860 0.0305 0.1061 0.0781 0.1409 0.0461 

3 0.0408 0.6536  0.7132 0.0592 0.0718 0.1522 0.0936 

4 0.0774 0.0418 0.7009  0.6967 0.0278 0.1443 0.1007 

5 0.0869 0.0775 0.0481 0.8124  0.7047 0.0982 0.0925 

6 0.0781 0.0831 0.0829 0.0327 0.6167  0.6889 0.0440 

7 0.0338 0.0762 0.0883 0.0727 0.0509 0.6616  0.5091 

8 0.6815 0.0316 0.0796 0.0803 0.0920 0.0277 0.5540  
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with the 8  8 input matrix and the output vector of 62 elements. 

An untypical structure of the neural network was forced by the 

low quantity of reference data, which caused problems with cor-

rect training of a single neural network. 

The output of the neural network was used to generate 

a  tomographic image of the flow patterns. For this purpose, pat-

tern images corresponding to the pattern sensor outputs were 

prepared. Sample patterns assigned to position Y = −10 mm and 

X = −10 mm, −5 mm or 0 mm are shown, respectively, as A, B, 

C images in Fig. 6.  

The output of the network was a tomographic image, which 

was a weighted composite of the pattern images. In the first 

stage of checking the operation of the trained network, the pat-

tern input data were reused and a practically accurate reproduc-

tion of the training data was received at the output, see Fig. 7, in 

which the rod positions correspond well with those in Fig. 6.

5. Results 

Measured data were statistically interpreted. Tables 3 and 4 

show, respectively, the standard deviation and mean square de-

viation averaged from all measuring series for the full measuring 

matrix. It can be seen in Table 3 that the maximum value of the 

standard deviation equals 2.40 fF, the minimum value is 0.12 fF, 

and the average is 0.73 fF. Corresponding values for the mean 

square deviation in Table 4 are 2.18 fF, 0.10 fF and 0.75 fF. Ta-

ble 5 shows absolute values of differences between capacitances 

measured with an empty pipe and one (typical) of the control 

measurements. For other control measurements, these values 

are similar. For the capacitance differences in Table 5, the cor-

responding maximum, minimum and average values are  

22.82 fF, 0.68 fF and 8.48 fF. 

More detailed analysis of the data presented in the tables 

leads to the conclusion that the average measured signal from 

   
A B C 

Fig. 6. Pattern tomographic images for three rod positions: 

A) X = −10 mm, Y = −10 mm; B) X = −5 mm, Y = −10 mm; 

C) X = 0 mm, Y = −10 mm. 

   
A B C 

Fig. 7. Output tomographic images for three rod positions  

(shown in Fig. 6): A) X = −10 mm, Y = −10 mm; B)  X = −5 mm, 

Y =−10 mm; C) X = 0 mm, Y = −10 mm. 

Table 3. Standard deviation of capacitance measurements in fF.  

 Measuring electrode 

1 2 3 4 5 6 7 8 

Ex
ci

ta
ti

o
n

 e
le

ct
ro

d
e 

1  0.9465 0.6765 0.1540 0.8125 1.1692 1.3954 0.8430 

2 1.2858  0.2860 0.2849 1.8582 0.2939 0.5941 1.3948 

3 1.0592 0.6496  0.2422 2.3983 0.2765 0.7954 0.5175 

4 1.1722 0.6917 0.8948  0.5086 0.3282 0.9162 0.4026 

5 0.7041 0.3241 0.3874 0.3495  0.3030 0.4687 0.7894 

6 0.6404 0.5667 0.8571 0.1727 0.9604  0.3967 0.6847 

7 2.0634 1.0953 0.1753 0.1232 0.4049 0.2758  0.3988 

8 1.0237 1.3063 0.8782 0.2486 0.4358 0.5352 1.2783  

 

Table 4. Mean square deviation of capacitance measures in fF. 

  Measuring electrode 

1 2 3 4 5 6 7 8 

Ex
ci

ta
ti

o
n

 e
le

ct
ro

d
e 

1  1.2879 0.5747 0.1293 0.6867 1.0652 1.2212 1.3083 

2 1.2172  0.3106 0.2402 1.8729 0.2571 0.5805 1.3344 

3 0.9432 1.0397  0.2072 2.1757 0.2502 0.8396 0.5796 

4 1.0591 0.9880 1.5000  0.5102 0.2795 0.8297 0.3988 

5 0.7558 0.3809 0.3352 0.6598  0.2650 0.4137 0.7610 

6 0.7116 0.5934 0.7754 0.1466 1.5413  0.3963 0.5763 

7 1.7749 0.9771 0.1639 0.1040 0.3774 0.2766  0.3470 

8 0.8583 1.2919 0.7816 0.2335 0.5941 0.4506 1.7812  
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those presented in Table 5 is about 11 times greater than the 

noise represented in Tables 3 and 5, and varies from about 0.65 

to 65. It might seem that these values are not very good but it 

should be noted that the average ɛr changes only by 25% when 

the filled glass test tube is inserted into the empty pipe. Moreo-

ver, the thickness of the pipe wall additionally decreases the sys-

tem sensitivity to changes inside the pipe. The comparison of 

standard deviation or mean square deviation and the measure-

ment range of 1 pF gives the average noise level at −63dB.  
The prepared neural network was used for processing of con-

trol measurements. In this case, the test filled with reservoir fluid 

was used. Photographs in Fig. 8 show a few pipe and test tube 

configurations used to create control data for the reconstruction 

software. The images are aligned with the XY coordinate direc-

tions shown in Fig. 3. Figure 9 shows corresponding tomogra-

phic reconstructions. It can be seen in the tomographic images 

that the system reproduces correctly the real test tube location in 

the pipe cross-section. 

6. Conclusions 

The paper presents a novel eight-electrode capacitance meter de-

signed to detect multiphase flow patterns in a medium with low 

permittivity, such as the reservoir fluid. Its operation was tested 

in laboratory conditions for static capacitance fields generated 

by introducing a polyamide rod or a glass test tube filled with 

reservoir fluid sample into the inter-electrode space. 

The measurement system performed very well. The results 

were repeatable and had a good signal-to-noise ratio. The recon-

struction of tomographic images in the case of data used to train 

the neural network was error-free, which confirms the selection 

of the appropriate structure of the neural network and the cor-

rectness of the training procedure. Reconstruction of target im-

ages with reservoir fluid also worked well. The position of the 

test tube was properly detected and the electrical permittivity 

was read at a noticeably higher level than in the case of data 

training the neural network. Both of these observations corre-

spond to the actual measurement arrangement. 

Table 5. Absolute value of differences between capacitance measures in fF.  

 Measuring electrode 

1 2 3 4 5 6 7 8 

Ex
ci

ta
ti

o
n

 e
le

ct
ro

d
e 

1  11.8022 0.6839 7.2696 21.7938 9.6818 4.6344 4.6308 

2 9.3650  1.4642 9.9730 20.4479 10.3518 8.5031 0.9020 

3 8.1539 10.8116  10.1570 22.5006 10.2041 8.4872 2.9265 

4 10.7341 9.6308 5.3480  2.1794 6.1330 9.7855 5.4407 

5 5.8758 6.1259 5.2418 14.4025  13.7443 9.9298 9.1028 

6 4.5810 2.9266 3.5715 4.2926 4.2589  10.2454 8.3952 

7 6.6521 4.9662 5.8284 1.6801 22.7186 17.8655  7.2578 

8 9.4027 9.2358 2.1333 3.0383 22.8179 7.7296 6.6307  
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C 

 
D 

Fig. 8. Pictures of control pipe configurations with the test tube:  

A) close to electrode no. 2, B) close to electrode no. 6,  

C) close to the pipe centre, D) close to electrodes no. 5 and 6. 

 
A 

 
B 

 
C 

 
D 

Fig.9. Output tomographic images of control pipe configurations 
shown in Fig. 8 with the test tube: A) close to electrode no. 2,  

B) close to electrode no. 6, C) close to the pipe centre,  

D) close to data electrodes no. 5 and 6.  
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However, attention should be paid to the limitations of the 

proposed measurement system and the tomographic image re-

construction method. The use of only eight electrodes to meas-

ure capacitance significantly limits the accuracy and resolution 

of the reconstructed flow image. Moreover, the applied tomo-

graphic image reconstruction algorithm forces the detection of 

phase structures with a circular cross-section. For disturbances 

with a different shape, an approximation using a circle will be 

done. However, it should be expected that increasing the number 

of electrodes combined with more extensive training of the neu-

ral network should lead to better results. 

Nevertheless, the designed capacitance meter has several 

significant advantages. The most important of them are a good 

signal-to-noise ratio and high sampling rate. The presented sys-

tem can achieve signal-to-noise ratio of 63 dB at a sampling fre-

quency of 1 kHz. For comparison, according to previous works, 

a generator-based two-electrode capacitance meters give signal-

to-noise ratio of about 30 dB at a sampling frequency about  

10 Hz. It should be noted that the capacitances measured here 

are very small, in the femtofarad range, which is difficult to 

measure accurately. Considering the above mentioned ad-

vantages, it should also be mentioned that the designed multi-

channel capacitance meter requires a specialized measuring sys-

tem based on an expensive field-programmable gate array plat-

form. The other meters can usually use commercially available 

integrated measurement circuits. 
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