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Abstract. In this paper, the problem of backward compatibility of active disturbance rejection control (ADRC) is investigated. The goal is to
contextualize ADRC to deliver its interpretations from the established field of linear control systems. For this study, a control algorithm, denoted
here as integral disturbance rejection control (IDRC), is considered that combines classical state-feedback control with an integral compensator.
At first, an interpretation of ADRC is involved in terms of existing state-space control approaches. Next, a transition to the frequency domain
is performed, which is justified as a significant part of practical control engineering is conducted in that domain. For assumed specific plant
structures, both ADRC and IDRC are then holistically compared in terms of transfer function representation and frequency characteristics, as
well as steady-state convergence conditions. Such a juxtaposition helps to highlight the similarities and differences of both approaches, whereas
the utilized bandwidth parameterization is shown to bring the control system to the same form, thus indicating some interesting practical aspects.
Finally, the theoretical results concerning both considered control structures are validated in a set of numerical simulations and experiments
conducted on a laboratory hardware testbed.
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1. INTRODUCTION

The disturbance observer-based control has been extensively
studied in the scientific literature as an alternative to integral
control. In this approach, an observer estimates the disturbance,
which is subsequently countered by the control law. This method
is grounded in the internal model principle: whereas integral
controllers implicitly reconstruct the disturbance through their
integral component, disturbance observers explicitly incorpo-
rate the disturbance model. Recent reviews [1, 2], along with
related references, analyze the vast research area and point to
active disturbance rejection control (ADRC) as one of the more
prominent approaches.

The ADRC methodology was developed based on a firm
premise that theoretical concepts must be applicable in real-
world scenarios and that meaningful control theory should not
merely be an extension of mathematics based on precise mathe-
matical models of physical processes [3]. This manifested itself
in the body of work on ADRC that showcased how to design
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control systems naturally resistant to unmodeled/uncertain dy-
namics and disturbances [4].

As it recently turned out, ADRC has more in common with
standard controllers than initially thought [5, 6]. One can ar-
gue that if ADRC methodology is viewed from the perspective
of the Gartner Hype Cycle, then it finally reached its plateau of
productivity stage. It also indicates that the applicability and rel-
evance of ADRC are now better understood and its mainstream
adoption took off (based on the recent integration of ADRC by
top industry players like Texas Instruments and Mathworks). It
seems that the current meaningful development of ADRC has
shifted because of that and now goes towards finding connec-
tions with classical controllers rather than distancing from them
and simply claiming superiority. For one, it was recognized that
ADRC is not a single, rigid set of equations; it is an idea of
how to look at, analyze, and solve control problems. The ADRC
methodology can produce control schemes in different forms,
all depending on what is expected from the control solution and
what limitations are posed [7, 8].

As an example, there has been increasing interest within the
control community to investigate more deeply the structural [9]
and parameter [10] similarities between proportional-integral-
derivative (PID) controller and ADRC and possibly show a tran-
sition formula. A major step towards connecting theory and
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practice with ADRC and enabling its backward compatibility
with classical controllers came with the parameterization of
all controller gains based on bandwidth [11]. By integrating
ADRC design principles with Bode’s and Nyquist’s frequency
domain concepts and terminology, ADRC has become more ac-
cessible to engineers and has frequently become the preferred
tool in practical applications. The proposed bandwidth param-
eterization also enhanced its user-friendliness and positioned
it as a practical alternative to PID due to its simplicity, ro-
bustness, performance, and ease of tuning. Interestingly, it was
demonstrated that, with some simplifications and for low-order
systems, ADRC is indeed backward compatible with standard
PI [12] and PID [13] controllers when considering first- and
second-order plant dynamics, respectively.

The topic of finding equivalences of ADRC with other con-
trol approaches led to investigations done for sliding mode con-
trol [14], so-called flat filters [15], and eventually the standard
internal model control [16, 17].

Based on the above, the motivation for this work comes from
the need for ADRC to overcome one of its crucial challenges:
achieving backward compatibility with classical controllers. As
argued in [18], overlooking this challenge arguably caused many
established advanced control schools to stagnate and led to
doubts about their relevance in practical applications.

Therefore, the goal of this paper is to take another step towards
backward compatibility of ADRC. Here, we revisit a particular
control approach, namely a classical state-feedback control with
integral compensator [19], and investigate the existence of any
equivalences between these two approaches. For convenience
and brevity, we will denote the classic approach as IDRC. The
specific contributions of the paper are:
• derivation of the control system structure with an integrating

compensator and a Luenberger observer in a version not
overly dependent on the availability of a mathematical model
of the governed plant;

• side-by-side comparison of ADRC and IDRC for assumed
specific plant structures in terms of transfer function rep-
resentation, frequency characteristics, and steady-state con-
vergence conditions;

• showing similarities and differences between ADRC and
IDRC as well as proposing parameterization bringing both
control systems to the same form, thus indicating certain
practical aspects;

• and finally validation of theoretical results using simulation
and hardware tests conducted on a laboratory ball-balancing
experimental table.

The rest of the paper is organized as follows. Section 2 recalls
some of the key information from existing literature regarding
both ADRC and IDRC approaches that will become useful in
the course of the subsequent analysis. It also shows what are
the general plant model and control objective considered in the
paper. Section 3 contains the main results of the work, namely, it
shows the detailed investigation into the backward compatibility
analysis of ADRC and the classic IDRC approaches. Then, in
Section 4, validation of the findings is shown using a set of
various simulation and experimental tests. Finally, Section 5
concludes the work.

2. PREREQUISITES

2.1. General plant model and control objective

Consider a dynamical system of 𝑛-th order, described by the
following differential equation

𝑦 (𝑛) = −𝑎𝑛−1𝑦
(𝑛−1) − . . .− 𝑎1 ¤𝑦− 𝑎0𝑦 + 𝑑 +𝑔(·) + 𝑏𝑢, (1)

where 𝑦 = 𝑦(𝑡) is the output signal, 𝑦 (𝑛) = 𝑦 (𝑛) (𝑡) is the 𝑛-th time
derivative of the output, 𝑢 = 𝑢(𝑡) is the control signal, 𝑏 is the
input gain scaling factor, 𝑑 = 𝑑 (𝑡) is the external disturbance,
𝑔(·) = 𝑔(𝑦, . . . , 𝑦 (𝑛−1) , 𝑢, 𝑡) is the function containing system
nonlinearities and unmodeling dynamics part, and 𝑎𝑖 ∈ R are
parameters describing the linear part of the system dynamics
(characteristic polynomial coefficients).

Let us rewrite the dynamics equation (1) assuming that pa-
rameters 𝑎𝑖 and terms 𝑑 and 𝑔(·) are unknown and that the value
of the input gain 𝑏 is replaced by its estimate �̂�. In such a case,
one can define a total disturbance of the system (1) as:

𝑓 (·) = −𝑎𝑛−1𝑦
(𝑛−1) − . . .− 𝑎1 ¤𝑦− 𝑎0𝑦 + 𝑑 +𝑔(·) + (𝑏− �̂�)𝑢. (2)

Taking advantage of the total disturbance, one can put dynamics
equation (1) into the following form

𝑦 (𝑛) = �̂�𝑢 + 𝑓 (·). (3)

The state-space representation of the system (3) in the canonical
form can be described by{

¤𝑥 = A𝑥 + �̂�𝑏𝑢 + ℎ 𝑓 (·),
𝑦 = 𝑐T𝑥,

(4)

where the state of the system is considered in the phase configu-
ration 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]T = [𝑦, ¤𝑦, . . . , 𝑦 (𝑛−1) ]T and matrices in
Eq. (4) are given as

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


, 𝑏 =



0
0
...

0
1


, ℎ =



0
0
...

0
1


, 𝑐 =



1
0
...

0
0


.

In this work, the control task is to stabilize the output 𝑦

of the system (4) at the constant reference value 𝑟 = const.
Therefore, derivatives of the reference signal are not consid-
ered ( ¤𝑟 = . . . = 𝑟 (𝑛) = 0). The occurrence of the feedforward part
in the presented control laws is also not assumed.

2.2. ADRC

For ADRC control, an extended state observer (ESO) that esti-
mates the state of the plan and a total disturbance is an essential
component, which is used in the decoupling loop to actively
reject a disturbance. Next, the external control loop is designed
for the decoupled system. The idea of ADRC operation is given
in Fig. 1.
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Fig. 1. Block diagram of the considered ADRC structure

The main assumption of the ADRC approach is to shape
the dynamics of the control plant to approximately match the
following integral chain model

𝑦 (𝑛) = 𝑢0, (5)

Comparing the desired system dynamics (5) and the control
plant model (3), one can obtain the general control law depen-
dent on the new control signal

𝑢 =
1
�̂�
(𝑢0 − 𝑓 (·)). (6)

Assuming the extended state vector 𝑥
𝑒

= [𝑥T, 𝑓 (·)]T ∈ R𝑛+1,
the extended state-space representation of model (4), used in the
control system synthesis, can be described as follows{

¤𝑥
𝑒
= A𝑒𝑥𝑒 + �̂�𝑏𝑒𝑢 + ℎ𝑒 ¤𝑓 ,

𝑦 = 𝑐T
𝑒
𝑥
𝑒
,

(7)

where

A𝑒 =

[
A 𝑏

01×𝑛 0

]
, 𝑏

𝑒
=

[
𝑏

0

]
, 𝑐

𝑒
=

[
𝑐

0

]
, ℎ

𝑒
=

[
ℎ

0

]
.

For the state estimation process, the following Luenberger-
based observer is used

¤𝑧
𝑒
=

(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

)
𝑧
𝑒
+ 𝑏

𝑒
�̂�𝑢 + 𝑙

𝑒
𝑦, (8)

where 𝑧T
𝑒
= [𝑧1, 𝑧2, . . . , 𝑧𝑛, 𝑧𝑛+1] = [ �̂�, ¤̂𝑦, . . . , �̂� (𝑛−1) , 𝑓 (·)] is the

estimated state vector and 𝑙
𝑒
= [𝑙1, 𝑙2, . . . , 𝑙𝑛+1]T represents the

gains of the ESO.
To stabilize the plant output at constant value 𝑟 one can use

the estimated state vector 𝑧 in control law (6). Assuming that
gains of the observer (8) are selected such that the estimation
error is

𝑧
𝑒
− 𝑥

𝑒

 < 𝜖 , where 𝜖 > 0 is some positive constant
small enough, one can apply the following control law

𝑢0 = 𝑘1𝑟 − 𝑘T𝑧
𝑒,1:𝑛, (9)

where 𝑘T = [𝑘1, 𝑘2, . . . , 𝑘𝑛]. Thus, combining (9) and (6), one
obtains the final form of the control law as

𝑢 =
1
�̂�
(𝑢0 − 𝑧𝑒,𝑛+1) =

1
�̂�

(
𝑘1𝑟 − 𝑘T

𝑒
𝑧
𝑒

)
, (10)

with 𝑘T
𝑒
= [𝑘T,1].

Parameterization of ESO and controller

The ESO gains vector 𝑙
𝑒

and the controller gains vector 𝑘 are
selected such that the eigenvalues of the observer and closed-
loop system matrix are equal to the desired parameters. Here,
a design based on the separation principle is used which is a
key ingredient in the ADRC design. To be more precise, gains
satisfy the following relationships

det
(
𝑠I−

(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

))
= 𝜑ADRC

𝑜 (𝑠),

det
(
𝑠I−

(
A𝑝 − 𝑏

𝑃
𝑘T

))
= 𝜑ADRC

𝑐 (𝑠),
(11)

where I is the identity matrix, 𝜑ADRC
𝑐 (𝑠) and 𝜑ADRC

𝑜 (𝑠) stand
for the assumed Hurwitz-stable polynomials. To facilitate the
selection of these polynomials, one can employ a simple pole
placement method, commonly used in ADRC design [11], rep-
resented by the following formulas

𝜑ADRC
𝑜 (𝑠) = (𝑠+𝜔𝑜)𝑛+1, 𝜑ADRC

𝑐 (𝑠) = (𝑠+𝜔𝑐)𝑛, (12)

where 𝜔𝑜 and 𝜔𝑐 are observer and controller bandwidths, re-
spectively. Combining (12) and (11), one respectively gets

eig𝑖
[
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

]
= −𝜔𝑜 for 𝑖 = 1,2, . . . , 𝑛+1, (13)

eig 𝑗

[
A𝑝 − 𝑏

𝑃
𝑘T] = −𝜔𝑐 for 𝑗 = 1,2, . . . , 𝑛, (14)

where eig𝜁 (·) means the 𝜁-th eigenvalue of the given matrix.
The solution to (13) and (14) can be briefly specified as

𝑙𝑖 =

(
𝑛+1
𝑖

)
𝜔𝑖

o, 𝑘 𝑗 =

(
𝑛

𝑗 −1

)
𝜔
𝑛− 𝑗+1
c , (15)

where
(
𝑣

𝑚

)
=

𝑣!
𝑚!(𝑣−𝑚)! stands for binomial coefficients.

2.3. IDRC

The IDRC combines classical state-feedback control with inte-
gral compensator [19], along with specific assumptions regard-
ing the system model. Similarly to ADRC, it is assumed that
the system dynamics (characteristic polynomial and nonlinear
components from (1)) are generally unknown. Synthesis of the
algorithm is based on preliminary knowledge about the system
dynamics order and input gain coefficient. The sctructure of the
IDR controller is presented in Fig. 2.

Plant

SO

+ +
-- +

+

Fig. 2. Block diagram of the considered IDRC structure

In this approach, it is assumed that the system dynamics is
represented by (4). It is worth noting that, unlike in ADRC,
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an estimate of the total disturbance function from (4) is not
used in the IDRC controller synthesis. A detailed explanation is
provided in Section 3.

Employing the Luenberger state observer (SO) to estimate the
state of the system (4) the formula is obtained

¤𝑧 =
(
A− 𝜄𝑐T

)
𝑧+ 𝑏�̂�𝑢 + 𝜄𝑦, (16)

where the observer state vector 𝑧 consists of 𝑧 =

[𝑧1, 𝑧2, . . . , 𝑧𝑛]T = [ �̂�, ¤̂𝑦, . . . , �̂� (𝑛−1) ]T and 𝜄= [𝜄1, 𝜄2, . . . , 𝜄𝑛]T con-
tains set of observer gains.

The control law for constant value control is defined as state
feedback with an integral action to compensate the steady-state
error and constant external disturbances

𝑢 =
1
�̂�

©«−𝜅T𝑧+ 𝜅int

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏)) d𝜏ª®¬ , (17)

where 𝜅T = [𝜅1, 𝜅2, . . . , 𝜅𝑛] and the 𝜅int term is an integral path
gain. Assuming that 𝑧 ≈ 𝑥 and substituting control law into
model (4) leads to following closed-loop dynamics

¤𝑥 = A𝑥− 𝑏𝜅T𝑥 + 𝑏𝜅int

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏)) d𝜏, (18)

then extending the state vector 𝑥 by integral of control error

𝑞 =

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏)) d𝜏 gives the form

[
𝑥

¤𝑞

]
=

[
A− 𝑏𝜅T 𝑏𝜅int

−𝑐T 0

]
︸                ︷︷                ︸

HIDRC
CL

[
𝑥

𝑞

]
+

[
0
1

]
𝑟, (19)

where 𝑟 is the reference value for the closed-loop system.

Preliminary parameterization of SO and controller

Following the commonly used parameterization for ADRC, we
apply it to the IDRC structure. Similarly, we separate the feed-
back and observer design and consider the following

det
(
𝑠I−

(
A− 𝜄𝑐T

))
= 𝜑IDRC

𝑜 (𝑠),

det
(
𝑠I−HIDRC

CL

)
= 𝜑IDRC

𝑐 (𝑠),
(20)

with 𝜑IDRC
𝑐 (𝑠) and 𝜑IDRC

𝑜 (𝑠) being the assumed Hurwitz-stable
polynomials. Similarly as in ADRC, one can use parameters 𝜔𝑐

and 𝜔𝑐 to tune the feedback and observer bandwidths, respec-
tively. In this case one assumes

𝜑IDRC
𝑜 (𝑠) = (𝑠+𝜔𝑜)𝑛, 𝜑IDRC

𝑐 (𝑠) = (𝑠+𝜔𝑐)𝑛+1, (21)

from which it follows that

eig𝑖
[
A− 𝜄𝑐T] = −𝜔𝑜 for 𝑖 = 1,2, . . . , 𝑛, (22)

eig 𝑗 [HCL] = −𝜔𝑐 for 𝑗 = 1,2, . . . , 𝑛+1. (23)

The SO and controller gains satisfying equations (22), (23) can
be obtained using Newton’s binomial form as

𝜄𝑖 =

(
𝑛

𝑖

)
𝜔𝑖

o, 𝜅 𝑗 =

(
𝑛+1
𝑗 −1

)
𝜔
𝑛− 𝑗+2
c . (24)

Moreover, according to (19), 𝜅 𝑗 obtained from (24) the form of
extended controller gains vector [𝜅T, 𝜅int]T, where 𝜅T is the state
feedback vector consisting of 𝜅 𝑗 gains for 𝑗 = 2,3, . . . , 𝑛+1 and
𝜅int is the integral path gain such that 𝜅int = 𝜅 𝑗 for 𝑗 = 1.

Remark 1. Due to the assumption that the plant is subject to
modeling uncertainties, the selection of settings is heuristic. The
bandwidth values are selected to obtain the desired properties
of the closed-loop system (the desired speed or sensitivity to
noises), and some of its features will be visible in the transfer
function notation presented in the next section. In addition, the
range of parameter values that ensure stable system operation
depends on the structure and parameters of the plant.

Examples of the influence of ADRC parameters on the opera-
tion of the control system can be found in detail in [20]. Studies
on the influence of uncertainty of selected parameters on the
control quality can be found in [21, 22].

3. THEORETICAL ANALYSIS OF ADRC AND IDRC

This section compares ADRC and IDRC approaches in vari-
ous aspects. The steady-state convergence (conditions to elim-
inate the steady-state error and compensating the external dis-
turbances) are analyzed. Transfer function representations are
derived and tuning parameterizations are proposed.

The main difference between ADRC and IDRC lies in the
method of extending the system state. In ADRC, the state is
extended due to the observer structure, whereas in IDRC, the
state extension occurs within the controller.

Remark 2. It is noteworthy that in the IDRC approach, the total
disturbance 𝑓 (·) present in the model in (7) is not explicitly
taken into account in the controller synthesis process. However,
in this approach, disturbance rejection is embedded within the
controller loop and lacks a direct interpretation as in the clas-
sic ADRC approach. Thus, the employed Luenberger observer
in (16) does not have the extended state variable representing the
estimate of the total disturbance. Implications of non-extended
state estimation are discussed in Section 3.1.

Remark 3. According to obtained control laws in both algo-
rithms, in IDRC approach equation (17) the 𝑘1𝑟 term is not
required as in ADRC equation (10), because incorporating an
integral compensator ensures the unit static gain of the closed-
loop system.

3.1. Steady-state convergence analysis in ADRC and IDRC

The considerations in this section are conducted under the fol-
lowing assumptions:
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• closed-loop system is asymptotically stable for both struc-
tures and the influence of external disturbance is considered
after the transition process due to the reference signal;

• input gain coefficient 𝑏 is known and used in the synthesis
of both algorithms (�̂� = 𝑏);

• ESO and controller gains 𝑙
𝑒
, 𝑘T in ADRC are selected with

respect to (15);
• observer and controller gains 𝜄, [𝜅T, 𝜅int]T in IDRC are se-

lected with respect to (24).
To facilitate the analysis, the following linear model of the

external disturbance (uncorrelated with the system state) is taken
into account

𝑑 = 𝜀𝑡 + 𝜉, (25)

where 𝜀 and 𝜉 are constant (coefficients of the linear equation).

ADRC

Dynamics of estimation error 𝑒
𝑜
= 𝑥

𝑒
− 𝑧

𝑒
under influence of

external disturbance from (25) in ADRC approach is

¤𝑒
𝑜
=

(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

)
𝑒
𝑜
+ ℎ

𝑒
¤𝑑, (26)

thus, since H𝑜 =
(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

)
is a Hurwitz matrix, the norm

of estimation errors converge to a constant for any constant ¤𝑑
and zero for any constant 𝑑. In particular, the estimation error
𝑒
𝑜

caused by constant ¤𝑑 can be obtained using the final value
theorem in 𝑠 domain

𝐸𝑜 (𝑠) = (𝑠I−H𝑜)−1 (
ℎ
𝑒
𝑠𝐷 (𝑠)

)
, (27)

thus

𝑒
𝑜
(∞) = lim

𝑠→0
𝑠𝐸𝑜 (𝑠) = −H−1

𝑜 lim
𝑠→0

(
ℎ
𝑒
𝑠2𝐷 (𝑠)

)
. (28)

Substituting the control law Eq. (10) (with biased extended state
estimates) in the system model Eq. (4) leads to

¤𝑥 =
(
A− 𝑏𝑘T

)
︸      ︷︷      ︸

HADRC
CL

𝑥 + 𝑏𝑘T𝑒
𝑜,1:𝑛 + ℎ (𝑑 − 𝑑)︸  ︷︷  ︸

𝑒𝑜,𝑛+1

+𝑏𝑘1𝑟. (29)

The limit value of state 𝑥 can be easily obtained as in (28)

𝑥(∞) = lim
𝑠→0

𝑠𝑋 (𝑠) = −(HADRC
CL )−1

(
𝑏𝑘T𝑠𝐸𝑜,1:𝑛 (𝑠)

+ ℎ𝑠𝐸𝑜,𝑛+1 (𝑠) + 𝑏𝑘1𝑠𝑅(𝑠)
)
. (30)

Example 1. Taking advantage of (28), the final estimation error
for the disturbance equation (25) can be derived

𝑒
𝑜
(∞) = 𝜀

[
1

𝜔𝑛+1
𝑜

(
𝑛+1
1

)
1
𝜔𝑛
𝑜

(
𝑛+1
2

)
1

𝜔𝑛−1
𝑜

· · ·
(
𝑛+1
𝑛

)
1
𝜔𝑜

]T
.

(31)
This result indicates that in the limit, components of 𝑒

𝑜
are

constant. Next, substituting the Laplace transform of 𝑒
𝑜

in (30)

one obtains

𝑥(∞) =



𝑦(∞)
¤𝑦(∞)
¥𝑦(∞)
...

𝑦 (𝑛−1) (∞)


=



𝑟 + 𝜀

𝜔𝑛+1
𝑐

𝑛+1∑︁
𝑖=1

(
𝑛

𝑖−1

) (
𝑛+1
𝑖

) (
𝜔𝑐

𝜔𝑜

) 𝑖
0
...

0


,

(32)
which shows a non-zero control error in steady state.

IDRC

In the IDRC approach, the dynamics of estimation error 𝑒
𝑜
=

𝑥− 𝑧 is described by

¤𝑒
𝑜
=

(
A− 𝜄𝑐T

)
𝑒
𝑜
+ ℎ𝑑. (33)

Since the observer state matrix H𝑜 =
(
A− 𝜄𝑐T) is Hurwitz, the

norm of state estimation error 𝑒
𝑜

converges to a constant for any
constant 𝑑. It can be derived from (33), that the derivative of
estimation error yields

¤𝑒
𝑜
(∞) = lim

𝑠→0
𝑠2𝐸𝑜 (𝑠) = −H−1

𝑜 lim
𝑠→0

(
ℎ
𝑒
𝑠2𝐷 (𝑠)

)
. (34)

Applying the control law (17) with biased state estimates 𝑧 to
dynamics of the model (4) gives the following

¤𝑥 = A𝑥− 𝑏𝑘T𝑥 + 𝑏𝜅int

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏))d𝜏 + 𝑏𝜅T𝑒
𝑜
+ ℎ𝑑, (35)

and describing the dynamics (35) by extension of system state
vector as in (19) leads to the form[

¤𝑥
¤𝑞

]
=

[
A− 𝑏𝜅T 𝑏𝜅int

−𝑐T 0

]
︸                ︷︷                ︸

HIDRC
CL

[
𝑥

𝑞

]

+
[
𝑏𝜅T 0
0 0

] [
𝑒
𝑜

0

]
+

[
ℎ

0

]
𝑑 +

[
0
1

]
𝑟. (36)

Based on the state vector configuration in (36), the 𝑞 variable
represents the integral of the control error 𝑟 − 𝑦. There is a need
to differentiate that equation to calculate the final value of the
state vector possible, which consists of the control error.[

¥𝑥
¥𝑞

]
︸︷︷︸

¤𝑥∗

= HIDRC
CL

[
¤𝑥
¤𝑞

]
︸︷︷︸

𝑥∗

+
[
𝑏𝜅T 0
0T 0

] [
¤𝑒
𝑜

0

]
+

[
ℎ

0

]
¤𝑑 +

[
0
1

]
¤𝑟. (37)
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Thus, applying the final value theorem in (37) leads to

𝑥∗ (∞) = lim
𝑠→0

𝑠𝑋∗ (𝑠)

= −(HIDRC
CL )−1 lim

𝑠→0

([
𝑏𝑘T 0
0 0

] [
𝑠2𝐸𝑜 (𝑠)

0

]
+

[
ℎ

0

]
𝑠2𝐷 (𝑠) +

[
0
1

]
𝑠2𝑅(𝑠)

)
. (38)

Example 2. Similarly to ADRC, the estimation error for the
disturbance equation (25) in the IDRC can be considered. Us-
ing (34) one obtains

¤𝑒
𝑜
(∞) = 𝜀

[
1
𝜔𝑛
𝑜

(
𝑛

1

)
1

𝜔𝑛−1
𝑜

(
𝑛

2

)
1

𝜔𝑛−2
𝑜

· · ·
(
𝑛

𝑛−1

)
1
𝜔𝑜

]T
. (39)

It can be seen that the derivative vector of estimation error ¤𝑒
𝑜

is constant. Substituting the Laplace transform of (39) into (38)
leads to the final value of the assumed state vector

𝑥∗ (∞) =



¤𝑦(∞)
¥𝑦(∞)
...

𝑦 (𝑛)

𝑒𝑐 (∞)


=



0
0
...

0

− 𝜀

𝜔𝑛+1
𝑐

𝑛+1∑
𝑖=1

( 𝑛
𝑖−1

) ( 𝑛+1
𝑛+2−𝑖

) (𝜔𝑐

𝜔𝑜

) 𝑖−1


. (40)

The most important conclusion is that despite the conflicting
convergence conditions of state estimation, the convergence of
the control error to zero in both methods requires that 𝑑 be a
constant value. In ADRC, the convergence of the control error
is conditioned by the quality (consistency) of estimation. It can
also be concluded that the ESO bandwidth 𝜔𝑜 has a crucial
impact in attenuation of steady-state control error, while in IDRC
approach this role is more divided into observer and controller,
which can be noted by comparing the exponents of observer
and controller bandwidth 𝜔𝑜, 𝜔𝑐 in equations (32), (40). For
assumed 𝜔𝑜 =𝜔𝑐 as the result of Proof 1, it can be seen that the
steady-state convergence conditions will be equivalent for both
the ADRC and IDRC approaches. Convergence conditions for
estimation and control error are summarized in Table 1.

Table 1
Convergence conditions for estimation and control error

Requirement Condition for ADRC Condition for IDRC

𝑒𝑜 = 0 𝑑 = const 𝑑 = 0

𝑒𝑜 = const ¤𝑑 = const 𝑑 = const

𝑒𝑐 (∞) = 0 𝑒𝑜 = 0 𝑒𝑜 = const

3.2. Transfer function analysis

Transfer function analysis can be performed for the linear (or
linearized) part of the model of the system. According to the

general system introduced in Section 2.1, under the assumption
that 𝑑 = 0, 𝑔(·) = 0 and �̂� = 𝑏, the following transfer function that
describes linear dynamics of equation (1) can be investigated

𝐺 𝑝 (𝑠) =
𝑌 (𝑠)
𝑈 (𝑠)

����
𝑑=0,𝑔 ( ·)=0

=
𝑏

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + . . .+ 𝑎0
. (41)

To provide the transfer analysis for general model of the sys-
tem (41), there is a need to determine the model of the linear
part of the system dynamics,

A∗ =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−𝑎0 −𝑎1 −𝑎2 · · · −𝑎𝑛−1


,

which will be used in further theoretical derivations and consid-
erations (to determine the plant transfer function 𝐺 𝑝 (𝑠)).

In the description from (4), according to ADRC methodology,
it is assumed that the model of the system is highly uncertain.
So, even its linear part is treated as a part of the total disturbance
𝑓 (·), thus the state matrix contains only zeros in last row.

However, closed-loop transfer function analysis requires
knowledge about the system model, and for further derivations,
A∗ will be used as a state matrix of the system.

The analysis began with a comparison of the transfer function
equivalents of the controller in the ADRC and IDRC approaches.
For this purpose, the 𝐺PF (𝑠) and 𝐺FB (𝑠) (its interpretation can
be found in Fig. 3) transfer functions were calculated below in
both approaches for the most commonly assumed order of the
plant dynamics 𝑛 in the synthesis of the algorithm.

Fig. 3. Block diagram of considered control loop

Transfer function derivations in ADRC

Rewriting the state-space equations of the ESO dynamics equa-
tion (8) and combining it with the control law (10) (constant
value control) 

¤𝑧
𝑒
=

(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒

)
𝑧
𝑒
+ 𝑏

𝑒
�̂�𝑢 + 𝑙

𝑒
𝑦,

𝑢 =
1
�̂�

(
𝑘1𝑟 − 𝑘T

𝑒
𝑧
𝑒

)
,

(42)

where 𝑘
𝑒
= [𝑘T,1]T is the extended vector of the controller

gains which makes it possible to combine the state feedback and
disturbance rejection loop. Then, substituting the control law
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into the ESO equations (42) leads to the expression

¤𝑧
𝑒
=

(
A𝑒 − 𝑙

𝑒
𝑐T
𝑒
− 𝑏

𝑒
𝑘T
𝑒

)
︸                  ︷︷                  ︸

AADRC
CL

𝑧+ 𝜄𝑦 + 𝑘1𝑏𝑒𝑟. (43)

Applying the Laplace transform to both equations (42)
and (43) leads to the form


𝑍𝑒 (𝑠) =

(
𝑠I−AADRC

CL

)−1 (
𝜄𝑌 (𝑠) + 𝑘1𝑏𝑒𝑅(𝑠)

)
,

𝑈 (𝑠) = 1
�̂�

(
−𝑘T

𝑒
𝑍𝑒 (𝑠) + 𝑘1𝑅(𝑠)

)
,

(44)

and substituting the state estimate vector 𝑍 (𝑠) to control law in
𝑠 domain gives its final form

𝑈 (𝑠) = 1
�̂�

𝐺PF (𝑠)︷                                                         ︸︸                                                         ︷
𝑘1

(
det

(
𝑠I−AADRC

CL

)
− 𝑘T

𝑒
adj

(
𝑠I−AADRC

CL

)
𝑏
𝑒

)
det

(
𝑠I−AADRC

CL

) 𝑅(𝑠)

− 1
�̂�

𝑘T
𝑒
adj

(
𝑠I−AADRC

CL

)
𝜄

det
(
𝑠I−AADRC

CL

)
︸                     ︷︷                     ︸

𝐺FB (𝑠)

𝑌 (𝑠). (45)

Transfer function derivations in IDRC

Rewriting the state-space equations (16) of the SO dynamics
and assumed formula for constant value control (17)


¤𝑧 =

(
A− 𝜄𝑐T

)
𝑧+ 𝑏�̂�𝑢 + 𝜄𝑦,

𝑢 =
1
�̂�

©«−𝜅T𝑧+ 𝜅int

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏))d𝜏ª®¬ ,
(46)

then substituting the control law 𝑢 into the system of equa-
tions (46) results in the following

¤𝑧 =
(
A− 𝜄𝑐T − 𝑏𝜅T

)
︸             ︷︷             ︸

AIDRC
CL

𝑧+ 𝑏𝜅int

𝑡∫
0

(𝑟 (𝜏) − 𝑦(𝜏))d𝜏 + 𝜄𝑦. (47)

Applying the Laplace transform for both equations (46) and (47)
leads to the form


𝑍 (𝑠) =

(
𝑠I−AIDRC

CL

)−1 ((
𝜄− 𝑏

𝜅int
𝑠

)
𝑌 (𝑠) + 𝑏 𝜅int

𝑠
𝑅(𝑠)

)
,

𝑈 (𝑠) = 1
�̂�

(
−𝜅𝑍 (𝑠) + 𝜅int

𝑠
𝑅(𝑠) − 𝜅int

𝑠
𝑌 (𝑠)

)
,

(48)

and substituting the state estimate vector 𝑍 (𝑠) to control law in
𝑠 domain ensures its final form

𝑈 (𝑠) = 1
�̂�

𝐺PF (𝑠)︷                                                         ︸︸                                                         ︷
𝜅int

(
𝑠 det

(
𝑠I−AIDRC

CL

)
− 𝜅Tadj

(
𝑠I−AIDRC

CL

)
𝑏

)
𝑠 det

(
𝑠I−AIDRC

CL

) 𝑅(𝑠)

− 1
�̂�

𝜅Tadj
(
𝑠I−AIDRC

CL

) (
𝑠𝜄+ 𝑏𝜅int

)
+ 𝜅int (det

(
𝑠I−AIDRC

CL

)
𝑠 det

(
𝑠I−AIDRC

CL

)
︸                                                                 ︷︷                                                                 ︸

𝐺FB (𝑠)

𝑌 (𝑠).

(49)

Comparison conditions of the presented approaches

Based on equations (45) and (49), in general case (for assumed
𝑛-th order of system dynamics) it can be derived that

𝜑ADRC (𝑠) = det
(
𝑠I−AADRC

CL

)
= 𝑠𝑛+1 +

𝑛∑︁
𝑖=1

©«𝑘𝑛−𝑖+1 + 𝑙𝑖 +
𝑖−1∑︁
𝑗=1

𝑘𝑛− 𝑗+1𝑙𝑖− 𝑗
ª®¬ 𝑠𝑛−𝑖+1, (50)

𝜑IDRC (𝑠) = 𝑠 det
(
𝑠I−AIDRC

CL

)
= 𝑠𝑛+1 +

𝑛∑︁
𝑖=1

©«𝜅𝑛−𝑖+1 + 𝜄𝑖 +
𝑖−1∑︁
𝑗=1

𝜅𝑛− 𝑗+1𝜄𝑖− 𝑗
ª®¬ 𝑠𝑛−𝑖+1. (51)

Moreover, prefilter (PF) and feedback (FB) transfer functions
satisfy:

𝐺ADRC
PF (𝑠) =

𝑘1

(
𝑠𝑛+1 +

𝑛∑
𝑖=0

𝑙𝑛+1−𝑖𝑠𝑖
)

𝜑ADRC (𝑠)
= 𝑘1

𝜑ADRC
𝑜 (𝑠)

𝜑ADRC (𝑠)
, (52)

𝐺IDRC
PF (𝑠) =

𝜅int

(
𝑠𝑛 +

𝑛−1∑
𝑖=0

𝜄𝑛−𝑖𝑠𝑖
)

𝜑IDRC (𝑠)
= 𝜅int

𝜑IDRC
𝑜 (𝑠)

𝜑IDRC (𝑠)
, (53)

𝐺ADRC
FB (𝑠) =

𝑙𝑛+1𝑠
𝑛 +

𝑛−1∑
𝑖=0

(
𝑛−𝑖∑
𝑗=1

𝑘 𝑗 𝑙𝑖+ 𝑗

)
𝑠𝑛−𝑖

𝜑ADRC (𝑠)

+

𝑛∑
𝑗=1

𝑘𝑛− 𝑗+1𝑙𝑛+1𝑠
𝑛− 𝑗

𝜑ADRC (𝑠)
, (54)

𝐺IDRC
FB (𝑠) =

𝜅int𝑠
𝑛 +

𝑛−1∑
𝑖=0

(
𝑛−𝑖∑
𝑗=1

𝜅 𝑗 𝜄𝑖+ 𝑗

)
𝑠𝑛−𝑖 +

𝑛∑
𝑗=1

𝜅int𝜄 𝑗 𝑠
𝑛− 𝑗

𝜑IDRC (𝑠)
. (55)

To make these formulas clearer and more intuitive, the prefilter
transfer functions for both approaches, assuming the most com-
mon order of system dynamics, are presented in Table 2. The
feedback transfer functions are listed in Table 3.

According to these transfer functions, it can be noted that the
denominators have a similar form for both ADRC and IDRC
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Table 2
Comparison between𝐺PF (𝑠) in both ADRC and IDRC approach for different order 𝑛 of the algorithm; coefficients responded for system robustness

are marked by red

𝑛 ADRC IDRC

1
𝑘1

(
𝑠2 + 𝑙1𝑠+ 𝑙2

)
𝑠2 + (𝑘1 + 𝑙1)𝑠

𝜅int (𝑠+ 𝜄1)
𝑠2 + (𝜅1 + 𝜄1) 𝑠

2
𝑘1

(
𝑠3 + 𝑙1𝑠2 + 𝑙2𝑠+ 𝑙3

)
𝑠3 + (𝑘2 + 𝑙1)𝑠2 + (𝑘1 + 𝑙2 + 𝑘2𝑙1)𝑠

𝜅int
(
𝑠2 + 𝜄1𝑠+ 𝜄2

)
𝑠3 + (𝜅2 + 𝜄1) 𝑠2 + (𝜅1 + 𝜄2 + 𝜅2𝜄1) 𝑠

3
𝑘1

(
𝑠4 + 𝑙1𝑠3 + 𝑙2𝑠2 + 𝑙3𝑠+ 𝑙4

)
𝑠4 + (𝑘3 + 𝑙1) 𝑠3 + (𝑘2 + 𝑙2 + 𝑘3𝑙1) 𝑠2 + (𝑘1 + 𝑙3 + 𝑘2𝑙1 + 𝑘3𝑙2) 𝑠

𝜅int
(
𝑠3 + 𝜄1𝑠2 + 𝜄2𝑠+ 𝜄3

)
𝑠4 + (𝜅3 + 𝜄1) 𝑠3 + (𝜅2 + 𝜄2 + 𝜅3𝜄1) 𝑠2 + (𝜅1 + 𝜄3 + 𝜅2𝜄1 + 𝜅3𝜄2) 𝑠

Table 3
Comparison between 𝐺FB (𝑠) in both ADRC and IDRC approach for different order 𝑛 of the algorithm; coefficients responded for system

robustness are marked by red

𝑛 ADRC IDRC

1
(𝑙2 + 𝑘1𝑙1)𝑠+ 𝑘1𝑙2
𝑠2 + (𝑘1 + 𝑙1)𝑠

(𝜅int + 𝜅1𝜄1) 𝑠+ 𝜅int𝜄1
𝑠2 + (𝜅1 + 𝜄1) 𝑠

2
(𝑙3 + 𝑘1𝑙1 + 𝑘2𝑙2)𝑠2 + (𝑘1𝑙2 + 𝑘2𝑙3)𝑠+ 𝑘1𝑙3

𝑠3 + (𝑘2 + 𝑙1)𝑠2 + (𝑘1 + 𝑙2 + 𝑘2𝑙1)𝑠
(𝜅int + 𝜅1𝜄1 + 𝜅2𝜄2) 𝑠2 + (𝜅1𝜄2 + 𝜅int𝜄1) 𝑠+ 𝜅int𝜄2

𝑠3 + (𝜅2 + 𝜄1) 𝑠2 + (𝜅1 + 𝜄2 + 𝜅2𝜄1) 𝑠

3
(𝑙4+𝑘1𝑙1+𝑘2𝑙2+𝑘3𝑙3)𝑠3+(𝑘1𝑙2+𝑘2𝑙3+𝑘3𝑙4)𝑠2+(𝑘1𝑙3+𝑘2𝑙4)𝑠+𝑘1𝑙4

𝑠4+(𝑘3+𝑙1)𝑠3+(𝑘2+𝑙2+𝑘3𝑙1)𝑠2+(𝑘1+𝑙3+𝑘2𝑙1+𝑘3𝑙2)𝑠
(𝜅int+𝜅1𝜄1+𝜅2𝜄2+𝜅3𝜄3)𝑠3+(𝜅1𝜄2+𝜅2𝜄3+𝜅int𝜄1)𝑠2+(𝜅1𝜄3+𝜅int𝜄2)𝑠+𝜅int𝜄3

𝑠4+(𝜅3+𝜄1)𝑠3+(𝜅2+𝜄2+𝜅3𝜄1)𝑠2+(𝜅1+𝜄3+𝜅2𝜄1+𝜅3𝜄2)𝑠

approaches. This similarity pertains only to the distribution of
controller and observer gains. However, for arbitrary gains se-
lection, including the parameterizations given by equations (15)
and (24), they are not equal.

The numerators of the prefilter transfer functions represent
the characteristic polynomials of the ESO and SO state matrices,
equations (11) and (20), respectively, for any assumed order of
system dynamics 𝑛. These polynomials are scaled by the 𝑘1
factor in ADRC and 𝜅int factor in IDRC. These are the controller
gains responsible for ensuring the unit static gains of the closed-
loop system.

In the numerator of feedback transfer functions, the coeffi-
cients responsible for system robustness (𝑙𝑛+1 gain in the ADRC
approach and 𝜅int in the IDRC approach) are distributed analo-
gously with respect to the powers of complex variable 𝑠.

We will now consider a particular case of parameterization
that ensures a certain equivalence of the transfer functions of
both analyzed structures, while generalizing the study reported
in [23]. This case is described by the following lemma.

Lemma 1. Assuming that gains are selected according to pa-
rameterizations (15) and (24) with

𝜔𝑐 = 𝜔𝑜 = 𝜔, (56)

where 𝜔 > 0 is a positive parameter, transfer functions 𝐺FB (𝑠)
and 𝐺PF (𝑠) for ADRC and IDRC control schemes satisfy

𝐺IDRC
PF (𝑠) = 𝜔

(𝑠+𝜔)𝐺
ADRC
PF (𝑠), (57)

and
𝐺ADRC

FB (𝑠) = 𝐺IDRC
FB (𝑠). (58)

Proof. In order to guarantee that 𝜑IDRC (𝑠) = 𝜑ADRC (𝑠) the fol-
lowing should be satisfied ∀𝑖 = 1,2, . . . , 𝑛

𝜅𝑛−𝑖+1 + 𝜄𝑖 +
𝑖−1∑︁
𝑗=1

𝜅𝑛− 𝑗+1𝜄𝑖− 𝑗 = 𝑘𝑛−𝑖+1 + 𝑙𝑖 +
𝑖−1∑︁
𝑗=1

𝑘𝑛− 𝑗+1𝑙𝑖− 𝑗 . (59)

The solution to (59) is

𝜅𝑛−𝑖+1 = 𝑙𝑖 and 𝜄𝑖 = 𝑘𝑛−𝑖+1. (60)

Since the numerators of 𝐺ADRC
PF (𝑠) and 𝐺IDRC

PF (𝑠) denoted by
𝜑ADRC
𝑜 and 𝜑IDRC

𝑜 are polynomials of 𝑛 + 1 and 𝑛 degrees, re-
spectively, one can conclude that

𝜑ADRC
𝑜 (𝑠) = (𝑠+𝛾) 𝜑IDRC

𝑜 (𝑠), (61)

where 𝛾 ∈ R. As a result, assuming that (60) holds, one can state

𝐺ADRC
PF (𝑠) = 𝑘1

𝜅int
(𝑠+𝛾)𝐺IDRC

PF (𝑠). (62)

Recalling that 𝜅int = 𝑙𝑛+1, it can be easily shown that𝐺ADRC
FB (𝑠) =

𝐺IDRC
FB (𝑠), which corresponds to (58).
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Now, taking into account the standard parameterization of
gains scaled by the parameters 𝜔𝑐 and 𝜔𝑜 according to for-
mulas (15) and (24) and recalling (56) one has 𝛾 = 𝜔 and
𝑘1
𝜅int

=
𝑘1
𝑙𝑛+1

𝜔−1. Thus, based on (62) one concludes that (57)
holds. □

Remark 4. It is worth emphasizing that the presented analysis
is theoretical in nature and demonstrates the conditions under
which the transfer functions of the ADRC and IDRC struc-
tures are similar employing the parameterizations defined by
equations (15) and (24). However, this occurs under the strong
assumption (56), which states that the state feedback and the ob-
server are tuned analogously. As a result, this significantly limits
the degree of freedom in tuning the entire algorithm, which is
typically based on increasing the observer gains independently
of the chosen feedback. Thus, in practice, the equivalence de-
scribed by (57) and (58) is not required, and a more advanced
tuning approach should be proposed.

Proposed IDRC parameterization

Here, we will make a more general comparison of both control
structures. In order to obtain clear results, we adopt simplifying
assumptions regarding the control process, i.e., we assume the
control plant is an ideal integral chain with the known input
gain coefficient, namely in equation (41) 𝑎𝑖 = 0 and �̂� = 𝑏. To
facilitate the computations, we replace equations (52)–(55) by

more general forms: 𝐺PF = 𝜈
𝜑𝑜 (𝑠)
𝜑(𝑠) and 𝐺FB =

𝜇(𝑠)
𝜑(𝑠) , where

𝜈 ∈ R. For the process defined by 𝐺 𝑝 (𝑠) = 𝑏𝑠−𝑛, one can find
𝐺CL (𝑠) = 𝑌 (𝑠)

𝑅 (𝑠) as

𝐺CL (𝑠) = 𝜈
𝜑𝑜 (𝑠)
𝜑(𝑠)

𝜑(𝑠)
𝑠𝑛𝜑(𝑠) + 𝜇(𝑠)

=
𝜈𝜑𝑜 (𝑠)

𝑠𝑛𝜑(𝑠) + 𝜇(𝑠) =
𝜈𝜑𝑜 (𝑠)

𝜑𝑐 (𝑠)𝜑𝑜 (𝑠)
. (63)

Recalling the particular parameterization for ADRC and IDRC
given by (12) and (21) and taking into account that 𝜈 = 𝑘1 =

𝜔𝑛
𝑐 for ADRC and 𝜈 = 𝜅int = 𝜔𝑛+1

𝑐 for IDRC, one can find the
following

𝐺ADRC
CL (𝑠) = 𝜔𝑛

𝑐 (𝑠+𝜔𝑜)𝑛+1

(𝑠+𝜔𝑜)𝑛+1 (𝑠+𝜔𝑐)𝑛
, (64)

and

𝐺IDRC
CL (𝑠) = 𝜔𝑛+1

𝑐 (𝑠+𝜔𝑜)𝑛

(𝑠+𝜔𝑜)𝑛 (𝑠+𝜔𝑐)𝑛+1 , (65)

where 𝜔𝑐 and 𝜔𝑜 are parameters that can be selected inde-
pendently for both transfer functions, that is, one can choose
different values of these parameters in (64) and (65).
Remark 5. It is worth noting that the dynamics of the closed
control loop in the IDRC approach is always characterized by an
order one higher compared to the ADRC. This has consequences
in the properties of both systems, for example, enforcing the
same speed for 𝑛-th order system as in an (𝑛+1)-th order system
will imply differences in stability margins of the control loop.

Attempting to match the dynamics (64) and (65), we assume
that the nominal case is represented by (64) with fixed values
of 𝜔𝑜 and 𝜔𝑐. The task considered here is to find a tuning
method for IDRC to obtain characteristics similar to those in
the case of ADRC. For this purpose, we propose the following
parametrizations of IDRC:
1. 𝛼-parameterization

𝐺IDRC
CL (𝑠) =

(𝜔𝛼
𝑐 )𝑛+1 (

𝑠+𝜔𝛼
𝑜

)𝑛
(𝑠+𝜔𝛼

𝑜 )𝑛 (𝑠+𝜔𝛼
𝑐 )𝑛+1 , (66)

with 𝜔𝛼
𝑜 = 𝛼𝜔𝑜 and 𝜔𝛼

𝑐 = 𝛼𝜔𝑐, which simply means that
the observer and closed-loop bandwidth (from ADRC) in
the IDRC approach are scaled by the 𝛼 > 0 coefficient. Both
bandwidths are scaled to maintain their ratio (modifying the
relation between 𝜔𝑜 and 𝜔𝑐 will affect the stability of the
closed-loop system). To obtain the algorithm gains, one can
use the formula (24) assuming the observer and closed-loop
system bandwidth values as 𝜔𝛼

𝑜 and 𝜔𝛼
𝑐 , respectively.

2. 𝛽-parameterization

𝐺IDRC
CL (𝑠) = 𝛽𝜔𝑛+1

𝑐 (𝑠+𝜔𝑜)𝑛

(𝑠+𝜔𝑜)𝑛 (𝑠+𝜔𝑐)𝑛 (𝑠+ 𝛽𝜔𝑐)
, (67)

in which we are forcing the one pole of the closed-loop
system to be non-dominant, by using the 𝛽 > 1 parameter.
In general, increasing 𝛽 implies that the (𝑛+1)-th pole has a
decreasing impact on the IDRC closed-loop dynamics.
Note that for the 𝛽-parameterization with 𝛽 ≠ 1, the con-
troller gains cannot be selected using the formula from (24)
due to the different desired poles of the closed-loop system.
Instead, we want to obtain these gains satisfying the second
condition from (20) with redefined desired polynomial of
the closed-loop system

det
(
𝑠I−HIDRC

CL

)
= (𝑠+ 𝛽𝜔𝑐) (𝑠+𝜔𝑐)𝑛. (68)

Consequently, the tuning rule for the controller introduced
in (24) needs to be replaced by

𝜅 𝑗 =


𝛽𝜔𝑛+1

c for 𝑗 = 1,[
𝛽

(
𝑛

𝑗−1

)
+

(
𝑛

𝑗−2

)]
𝜔
𝑛− 𝑗+2
c for 𝑗 ∈ {2, . . . , 𝑛},

(69)

with the integral gain 𝜅int = 𝜅1.

Sensitivity analysis

This analysis is performed to present the relationship between
signals from a closed-loop system (comparison of the sensitivity
in different pathways) in the frequency domain.

Such description is known as the “gang of six” presented
in [24] and used with ADRC controller analysis in [25].
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According to Fig. 3, the following control system model [25]
can be investigated

[
𝑌 (𝑠)
𝑈 (𝑠)

]
=

[
𝐺YR 𝐺YD 𝐺YDM

𝐺UR 𝐺UD 𝐺UDM

]
︸                       ︷︷                       ︸

G(𝑠)


𝑅(𝑠)
𝐷 (𝑠)
𝐷M (𝑠)

 , (70)

where relations from the transforms of signals: reference 𝑅(𝑠),
external disturbance 𝐷 (𝑠) and measurement noise 𝐷𝑀 (𝑠), to
the system output 𝑌 (𝑠) and control signal 𝑈 (𝑠), are presented.

The transfer function matrix G(𝑠) satisfies

G(𝑠)=


�̂�−1𝐺𝑝 (𝑠)𝐺PF (𝑠)
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

𝐺𝑝 (𝑠)
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

1
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

�̂�−1 (𝑠)𝐺PF (𝑠)
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

−�̂�−1𝐺FB (𝑠)𝐺PF (𝑠)
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

−�̂�−1𝐺FB (𝑠)
1+�̂�−1𝐺𝑝 (𝑠)𝐺FB (𝑠)

 ,
(71)

where 𝐺 𝑝 (𝑠) is the transfer function of the control plant (4),
containing its real parameters.

4. SIMULATION AND EXPERIMENTAL VALIDATION

This section presents the description of the control plant (mathe-
matical model and system operation principles) and experimen-
tal results performed to confirm the theoretical considerations
presented earlier. In particular, time responses for the proposed
tuning methods and frequency characteristics of the control sys-
tem components are presented.

4.1. Mathematical model of the experimental system

The experimental results have been carried out on the real con-
trol plant – the ball balancing table (BBT), where the control
objective is to obtain the reference ball position on the plate
(Fig. 4a). The measurement signal is read by a touch-resisting
panel. The control signal is considered as the desired rotation
of the servomotor arm. The internal control loop is realized in
hardware, and then there is the dynamics between servomotor
rotation and ball position. Exemplary equations of movement for
the considered system can be found in [26], whereas application
using ADRC in [27]. Assuming the movement in two axes (𝑥

and 𝑦 positions), the nonlinear BBT model is given by
¥𝑥 = −

𝑚𝑟2
𝑏

𝑚𝑟2
𝑏
+ 𝐽

(
¤𝜃𝑥 ¤𝜃𝑦𝑦 + ¤𝜃2

𝑥𝑥−𝑔 sin𝜃𝑥
)
,

¥𝑦 = −
𝑚𝑟2

𝑏

𝑚𝑟2
𝑏
+ 𝐽

(
¤𝜃𝑥 ¤𝜃𝑦𝑥 + ¤𝜃2

𝑦𝑦−𝑔 sin𝜃𝑦
)
,

(72)

where 𝜃𝑥/𝑦 is the angle of the platform (input signal), 𝑥 and 𝑦

are the ball position coordinates (output signals), 𝑚 is the ball
mass, 𝐽 is the moment of inertia of the ball, 𝑟𝑏 is the ball radius,
𝑔 is the gravitational acceleration.

The mentioned model (after linearization) presents the
second-order integrator, assumed as the nominal plant for ADRC
and IDRC control. Note that (72) does not show the whole plant
model. The differential equations after including the actuator
dynamics are derived below.

In this work, one degree of freedom – 𝑦 axis – is considered
(Fig. 4b) to show the proposed tuning rules without introducing
additional disturbances from cross-coupling. Therefore, the 𝑦

signal is the system output, and the input signal 𝑢 is the desired
servo rotation angle for the 𝑦 axis. One can assume that the inter-
nal control loop of the servomotor arm position is approximated
by the first-order inertia system

¤𝜐 = −𝜏−1𝜐 + 𝜏−1𝑢, (73)

where 𝜐 and 𝑢 are the actual and desired motor arm angles, 𝜏 is
the control loop time constant.

The dependency between the plate and servo angles is

𝜃𝑦 = 𝑟𝑚𝐿
−1𝜐, (74)

where 𝑟𝑚 is the motor arm length and 𝐿 is the plate length in
the 𝑦 axis.

After combining equations (74) and (73) and the second equa-
tion from (72), and under the assumption of small angles values
𝑢 → 0, a simplified linear model for the considered control ob-
ject is described by a third-order differential equation with a
structure corresponding to (1)

𝑦 (3) = 𝑏𝑢

𝑓 ( ·)︷            ︸︸            ︷
−𝑎2 ¥𝑦 + 𝑑 +𝑔(·), (75)

(a) Photo of the used control plant

Servo

(b) Diagram of simplified system operation

Fig. 4. The considered BBT system with its laboratory testbed (left) and schematic diagram for the 𝑦 axis (right)
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where 𝑦 is the measured output (ball position) 𝑢 is the desired
servomotor angle (input signal), 𝑑 is the disturbance signal (ad-
ditional displacement of the servo), 𝑔(·) is the unmodeled dy-
namics part and linearization errors relative to structure (75).

The real values of plant parameters are 𝑎2 =
1
𝜏
= 66.67 and

𝑏 =
𝑚𝑔𝑟2

𝑏
𝑟𝑚

𝜏(𝑚𝑟2
𝑏
+ 𝐽)𝐿

= 114.6.

The transfer function representation of the system Eq. (72)
linear part (where 𝑑 = 0 and 𝑔(·) = 0) is expressed as

𝐺 𝑝 (𝑠) =
𝑏

𝑠3 + 𝑎2𝑠2 , (76)

and is introduced for theoretical considerations, to be used for
closed-loop system model calculations in the following sections
(parameter 𝑎2 was not used in the control synthesis).

The derivation of the third-order BBT model is presented
in [28]. Generally, the model is nonlinear with strong cross-
coupling disturbances. The linear approximation of this model
represents the second-order integrator connected to an inertial
system with a small time constant. The influence of plant pa-
rameters on the ADRC operation quality and stability has been
presented in more detail in [29].

The physical constraints of the system are given as follows{
0.00m ≤ 𝑦 ≤ 0.30m,

−0.785 rad ≤ 𝑢 ≤ 0.785 rad.
(77)

In addition, it is noteworthy that the same experimental setup
was also used in [30,31]. However, these papers address different
problems, focusing on the ADRC methodology for state and

disturbance estimation in the presence of measurement noise as
well as the issue of input gain parameter selection and order
reduction of the model in the ADRC algorithm, respectively. In
the current work, the setup is used to conduct experiments that
verify the theoretical comparison and tuning methods proposed
for the ADRC and IDRC structures.

4.2. Comparison of both methods using proposed
parameterizations for IDRC

Sensitivity analysis

The magnitude Bode plots are presented for the “gang of six”
considered in (71) using the BBT model (76) as the plant transfer
function. The simulation results for 𝛼- and 𝛽-parameterization
can be found in Figs. 5 and 6.

Based on the results, it can be concluded that for both 𝛼-
and 𝛽-parameterizations in the IDRC approach, the character
of relations between signals in a closed-loop system is similar
to ADRC. The main difference between ADRC and IDRC ap-
proaches can be observed in relative order of 𝐺YR, 𝐺UR and
𝐺UD transfer functions, whose numerator includes the prefilter
transfer function (71). The relative order of 𝐺PF is different in
both approaches due to the extension of the state in ADRC.

In general, a slight change in the 𝛼 parameter implies
greater changes in closed-loop sensitivity, because we are scal-
ing both the observer and the controller bandwidth. Using 𝛽-
parameterization, we only force the (𝑛+1)-th pole to be non-
dominant, leading to less pronounced changes in characteristics,
which are more noticeable at higher frequencies.

According to detailed relationships in the closed-loop system
for the assumed case, the external disturbance-to-output (𝐺YD)
transfer function characteristics show that the IDRC tuned using
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Fig. 5. Results from the simulation – magnitude characteristics for “gang of six” components assuming BBT model for different 𝛼 values where
𝑛 = 3, 𝜔𝑜 = 28, 𝜔𝑐 = 2.8, �̂� = 28.65. Characteristics collected for normalized frequency Ω = 𝜔/𝜔𝑐 . The 𝜔𝑜/𝜔𝑐 ratio is marked by a red line
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Fig. 6. Results from the simulation – magnitude characteristics for “gang of six” components assuming BBT model for different 𝛽 values where
𝑛 = 3, 𝜔𝑜 = 28, 𝜔𝑐 = 2.8, �̂� = 28.65. Characteristics collected for normalized frequency Ω = 𝜔/𝜔𝑐 . The 𝜔𝑜/𝜔𝑐 ratio is marked by a red line

𝛼-parameterizations can offer both better and worse attenuation
of constant disturbances (Ω→ 0) than the ADRC approach, de-
pending on the value 𝛼. From Fig. 5 it can be seen that 𝛼 = 1.45
corresponds to the same attenuation of constant disturbances in
both ADRC and IDRC approaches. In 𝛽-parameterization it can
be concluded that for 𝛽 > 5 the characteristics of the 𝐺YD trans-
fer function are similar in both approaches. The attenuation of
high-frequency disturbances (e.g., unmodeled part of system dy-
namics) is equal for both approaches with any parameterization
of IDRC.

The 𝐺YDM and 𝐺UDM represent the sensitivity of the out-
put and control signal sensitivity to measurement noise, whose
magnitude plots are similar (taking into account the whole band-
width) for any IDRC parameterization, so the differences within
the changes𝛼 or 𝛽 are almost unnoticeable in closed-loop system
performance.

Results from experiments
The considered control objective is to bring the ball to the ref-
erence position in the middle of the table 𝑟 = 0.15 m, starting
from the edge of the table for 𝑦(0) = 0 m. The control algorithm
gains (for both ADRC and IDRC) �̂� = 28.65, 𝜔𝑐 = 2.8, 𝜔𝑜 = 28
were assumed. The system order for experimental purposes was
assumed as a real one 𝑛 = 3. To check the robustness of the
external disturbance, an additional signal was introduced in the
input path 𝑑 (𝑡) = 0.26 ·1(𝑡−20) rad. This means forcing the servo
motor arm to move 15 degrees halfway through the experiment
time. The experimental results using 𝛼- and 𝛽-parameterization
are shown in Figs. 7a and 7b. The numerical values of the ob-
server and state feedback gains for the considered experiment
scenarios can be found in Table 4.

Based on the experimental results, it can be observed that
the proposed IDRC parameterizations ensure closed-loop sys-

Table 4
Observer and controller gains values for the parameterizations used in the experiments

Gains
ADRC

Gains
IDRC

𝜔𝑜 = 28, 𝜔𝑐 = 2.8
𝛼 𝛽

1.33 1.50 1.75 5 10 15

O
bs

er
ve

r 𝑙1 112 𝜄1 112 126 147 84 84 84
𝑙2 4704 𝜄2 4160 5292 7203 2352 2352 2352
𝑙3 87808 𝜄3 51645 74088 117649 21952 21952 21952
𝑙4 614656 𝜄4 – – – – – –

C
on

tro
lle

r 𝑘1 22.95 𝜅1 206.58 293.35 470.60 351.23 680.51 1009.80
𝑘2 23.52 𝜅2 83.21 105.84 144.06 141.12 258.72 376.32
𝑘3 8.40 𝜅3 14.90 16.80 19.60 22.40 36.40 50.40
𝑘4 — 𝜅int 192.32 311.17 576.48 307.33 614.66 921.98
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Fig. 7. Results from the experiments on BBT system for different 𝛼 and 𝛽 values in IDRC approach where 𝑛 = 3, 𝜔𝑜 = 28, 𝜔𝑐 = 2.8, �̂� = 28.65.
System output and control signal. Control signal limits are marked by the dashed lines

tem performance consistent with theoretical considerations. For
higher values of the 𝛼 parameter, a less aggressive response
of the closed-loop system is observed to the reference and dis-
turbance signals. Specifically, for 𝛼 = 1.5, the disturbance re-
sponses for both the ADRC and IDRC approaches are very
similar. This is consistent with the theoretical considerations for
𝛼 = 1.45, as shown in the Bode plots.

In the case of 𝛽-parameterization, the response character
within the considered gain range is more similar to each other
compared to the previous case. This is confirmed by the rel-
atively small scope of the changes in the modulus plots. In
terms of measurement noise dependency, the same frequency
components of the control signal for both parameterizations are
visible. These results confirm the relationships presented by the
“gang of six”.

5. CONCLUSIONS
In this work, we have shown that an approach combining a
standard, textbook state-feedback control with an integral com-
pensator (denoted here as IDRC) can be derived in the form
of an active disturbance rejection scheme. This means that the
observer part no longer has to be equipped with a plant model
as accurately as possible since for ADRC-like schemes, one
deliberately makes the (erroneous) assumption of an integra-
tor chain model, regardless of the actual plant behavior. Such a
methodology greatly simplifies plant modeling and represents
a departure from the established school of control based on ac-
curate plant modeling. In other words, it was shown that the
disturbance-centric methodology of ADRC can work like an
enabler that can lead to the robustification of classic controllers.
The found equivalence also means that a linear ADRC can be

traced back to a “classical” observer-based state-feedback con-
trol with disturbance compensation and that an equivalence can
be established (assuming certain parameterization). The sig-
nificance behind being structurally equivalent to a well-known
approach from linear control systems theory means that typical
methods to analyze stability and performance criteria can, fortu-
nately, be applied to ADRC as well, thus showing its backward
compatibility.

As for future work, there is a need to study the influence
of design parameters on the control system performance for
ADRC and IDRC approaches. Various plant types can be used,
including the BBT. How this affects the claims made in this
work remains an open point.
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