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1. INTRODUCTION 

When a fire occurs, the smoke produced by combustion 

releases a series of iconic gases, including carbon monoxide 

(CO), carbon dioxide (CO2), and nitrogen oxides (NxOy). Gas 

traceability technology can trace these signature gases, and 

the location of the fire point can be effectively deduced to 

achieve the accurate positioning of the fire scene. 

Gas traceability methods are mainly divided into traditional 

traceability and active traceability. Traditional traceability 

methods include sensor network[1] and biological detection 

methods[2]. Sensor networks require a certain amount of cost 

and resource investment to install, calibrate, and maintain 

sensor nodes; complex environments and large-scale 

monitoring may affect the positioning accuracy; and sensor 

networks also face specific challenges for long-term and 

large-scale monitoring, such as battery life, data storage, and 

transmission. Biological detection is a traceability method 

that uses organisms, such as insects and search and rescue 

dogs, to sniff the odor in the smoke and indicate the location 

of the fire point. Biological detection methods are limited by 

the quality of training and individual differences in 

organisms that can affect the method's reliability and 

environmental factors in practical applications. For example, 

insect activity is limited by weather conditions and seasonal  

changes, and sniffer dogs have difficulty searching for large-

scale and complex environments. In addition, training 

organisms takes time and effort and requires professional 

guidance and handling. 

Given the limitations of traditional traceability methods, 

active olfaction technology has become an important 

development direction in gas traceability in recent years. In 

1984, Larcombe et al. [3]proposed reducing the risk of 

personnel exposure to hazardous environments by using 

robots carrying various sensors to work in radiation fields and 

operating them remotely. In 1991, Rozas et al.[4] proposed 

developing a chemical gradient tracking algorithm for source 

localization of gas plumes. By analyzing the concentration 

and distribution pattern of the gas, the robot can determine 

the source and direction of specific gases. In 1992, Genovese 

et al.[5] achieved mutual communication and coordinated 

action between robots by using mobile micro-robot groups, 

sensors, and communication technologies, forming a self-

organizing behavior pattern for searching and tracking 

pollution sources. This method can effectively detect large-

scale pollution sources in complex environments and proves 

the advantages of self-organizing behavior and robot groups 

in traceability, which is better than applying a single robot. 

This early research work laid a good foundation for 

developing active olfaction technology. 
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With the continuous advancement of UAV technology, its 

compact and flexible characteristics show significant 

advantages in active olfaction[6]. Since the 1990s, researchers 

have gradually recognized and deepened gas traceability 

technology based on UAVs at home and abroad[7-9]. However, 

in complex situations, more than a single UAV traceability 

system is needed to fulfill the criteria for accuracy and 

efficiency. The collaborative traceability of multiple UAVs 

has become the key to solving this problem, which centers on 

using swarm intelligence algorithms. This algorithm 

originates from group behavior in the biological population 

and finds the optimal path to solve the problem through  

sharing experiences and cooperation between individuals. In 

the field of gas traceability, the commonly used swarm 

intelligence algorithms include particle swarm optimization 

algorithm (PSO)[10], ant colony optimization algorithm 

(ACO)[11], and genetic algorithm (GA)[12]. Van[13] designed 

an algorithm that fully uses the very compassionate 

characteristics of the fruit fly olfactory system. The algorithm 

designs corresponding decision strategies according to 

different search stages so fruit flies can explore the 

environment widely in the early stage and gradually turn to 

more likely areas for in-depth search. With the help of swarm 

intelligence algorithms and active olfaction, multi-UAVs can 

better collaborate traceability and optimize search paths to 

improve the accuracy and efficiency of traceability results. 

In this study, a swarm intelligence algorithm based on the 

basic Jaya algorithm is proposed to solve the collaborative 

traceability task of multiple UAVs. It innovatively combines 

psychological theories to apply human psychological states 

to the traceability tasks of UAVs. By utilizing a combination 

of various UAV and swarm intelligence optimization 

algorithms, gas sources can be searched more accurately. 

This method greatly enhances the information perception and 

environment recognition capabilities of UAVs, significantly 

reducding the search time and improving the overall 

traceability efficiency. 

2. DESIGN OF THE EIJaya GAS TRACEABILITY 
ALGORITHM 

Aiming at the problems in the basic Jaya algorithm, this 

paper proposes an improved one based on emotional 

intelligence, abbreviated as EIJaya. The improved 

algorithm mainly introduces self-evaluation and social 

evaluation based on the traditional algorithm to improve its 

convergence speed and optimization ability. It increases the 

attention to the individual's state of the UAV to achieve a 

more accurate and more efficient traceability effect. 

2.1. Basic Jaya algorithm. 

The basic Jaya algorithm is a meta-heuristic optimization 

algorithm proposed by scholar Rao[14] in 2016. The algorithm 

is known for its simple and efficient features without specific 

control parameters. The Jaya algorithm realizes cooperation 

and competition among individuals through a cooperation 

mechanism, which promotes the evolution of excellent 

individuals to better solutions and avoids the adverse effects 

of inferior individuals on the whole. Through this 

cooperation, individuals can communicate and learn from 

each other to obtain better solutions. At the same time, the 

competition mechanism between individuals also plays a role 

in screening excellent solutions and eliminating inferior 

solutions so that the population can gradually converge to the 

global optimal solution. The position update formula is 

shown in (1) : 

𝑋𝑖+1 = 𝑋𝑖 + 𝑟1(𝑋𝑏𝑒𝑠𝑡 − |𝑋𝑖|) − 𝑟2(𝑋𝑤𝑜𝑟𝑠𝑡 − |𝑋𝑖|) (1) 
Where Xi is the current search position of the UAV, Xi+1 is 

the updated search position of the UAV, Xbest is the location 

of the UAV with the highest gas concentration searched, 

Xworst is the location of the UAV with the lowest gas 

concentration searched, and r1, r2 are random numbers 

between [0,1]. 

As the algorithm converges faster, it may reduce the diversity 

of the population, trapping the population in a region of local 

optimality and affecting the global optimization capability[15]. 

At the same time, the Jaya algorithm is limited by the 

absolute value sign when dealing with optimization problems 

in positive search space, which will affect its efficiency. 

Therefore, in order to better apply the Jaya algorithm to solve 

different optimization problems, improve the convergence 

speed, increase the global search ability, and improve the 

stability and robustness of the algorithm, it needs to be 

improved to be more effective in dealing with the flue gas 

traceability problem. 

2.2. EIJaya algorithm design. 

2.2.1.  Self-evaluation and social evaluation 

Self-evaluation is an important psychological concept that 

reflects an individual's perception and assessment of his or 

her abilities and values. Psychology-related studies have 

shown that people with higher levels of self-evaluation are 

more confident in their abilities[16]. Similarly, self-

evaluation helps UAVs decide on their next course of action. 

In the two-dimensional self-evaluation model, the X-axis 

indicates the UAV's detected distance from its teammates. 

When the UAV is farther away from its teammates, it is 

more confident and decisively executes commands to 

complete the search task to the best of its ability.  

Conversely, when the UAV is closer to its teammates, it 

tends to reduce its stride length or back off to avoid a 

collision. The Y-axis indicates the UAV's electricity status. 

The UAV has the ability to execute the corresponding task 

when its electricity is high, while the UAV will be more 

easily exhausted when the battery is low and will have some 

difficulties in carrying out the following search task. In this 

self-evaluation two-dimensional model, the rules for 

determining each coordinate value are shown in Equations 

(2) and (3): 

𝑎𝑖 =
𝑛 − 𝑤𝑖

𝑛
(2) 

𝑏𝑖 =
𝑄𝑖
100

(3) 
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Where ai is the value of the X-axis of the self-evaluation 2D 

model, bi is the value of the Y-axis of the self-evaluation 2D 

model, n is the population size, that is, the number of UAVs, 

wi is the number of UAVs i spaced from other teammates 

beyond the safe distance dmin, and Qi is the percentage of 

UAVs' battery. 

Based on the values of the X-axis and Y-axis in the self-

evaluation model, the self-evaluation factor Pself,i, of the 

UAV can be calculated using Equation (4): 

𝑃𝑠𝑒𝑙𝑓，𝑖
= √

𝑎𝑖
2 + 𝑏𝑖

2

2
(4) 

At this time, the drone has preliminary anthropomorphic 

emotion, on this basis, to more accurately reflect the 

emotional condition of the drone by imitating the idea of 

social-evaluation in the social emotional optimization 

algorithm[17]. The UAV is divided into three categories, 

namely, clumsy, ordinary, and sensitive individuals, using 

the social-evaluation rules. The following evolutionary 

behavior is chosen based on the individual's emotional 

condition, which improves with higher social assessment. 

The following are the social evaluation guidelines. 

(5) 

𝑐𝑚𝑒𝑎𝑛 =
1

𝑛
∑𝑐𝑖

𝑛

𝑖=1

(6) 

Where ci is the value of gas concentration searched by UAV 

i at the current location, and the average gas concentration 

searched by the UAV swarm is cmean. Individuals with 

concentration values higher than the average concentration 

are categorized as high-quality individuals and the average 

concentration of the high-quality individuals is calculated 

and noted as cgmean. 

The social-evaluation factor Psocial,i of UAV is calculated as 

shown in Equation (7): 

𝑃𝑠𝑜𝑐𝑖𝑎𝑙，𝑖
=

𝑐𝑖
𝑐𝑚𝑎𝑥

(7) 

Where cmax is the highest gas concentration value searched 

in the UAV swarm. 

2.2.2.  Position update formula optimization 

In the basic Jaya algorithm, random numbers are used in the 

position-updating rules, and social evaluation factors and 

self-evaluation factors are introduced in the position-

updating rules. By judging the UAV's state, the next step of 

its behavior is more evidence-based, and the UAV should 

update its position according to the updated rules of 

different individuals. 

When the concentration detected by the UAV is lower than 

the overall average concentration, it proves that the clumsy 

individual is not very effective in searching at the current 

location, and it is necessary to expand the search space of 

the individual. The positional update equation is as follows: 

𝑋𝑖+1 = 𝑋𝑖 + (
𝑝𝑠𝑜𝑐𝑖𝑎𝑙，𝑖 + 𝑟1

2
) × (𝑋𝑏𝑒𝑠𝑡 − |𝑋𝑖|)

− (
𝑝𝑠𝑒𝑙𝑓，𝑖 + 𝑟2

2
) × (𝑋𝑤𝑜𝑟𝑠𝑡 − |𝑋𝑖|) (8)

 

When the concentration detected by the UAV is higher than 

the overall average concentration but lower than the average 

concentration of high-quality individuals, it indicates that 

the search of ordinary individuals at the current location is 

effective. However, it still needs to be improved. As the 

number of iterations increases, most individuals will gather 

around the current optimal individual for local search. In 

contrast, the other few lagging individuals will move away 

from the current optimal individual to perform the global 

exploration task. During this search process, the average 

position of the current population has been shifting. 

Therefore, the mean value of the current position is 

introduced into the position update rule of ordinary 

individuals so that the algorithm can escape from the local 

optimum, thus improving the search performance of the 

population. The positional update equation is as follows: 

𝑋𝑖+1 = 𝑋𝑖 + (
𝑝𝑠𝑜𝑐𝑖𝑎𝑙，𝑖 + 𝑟1

2
) × (𝑋𝑏𝑒𝑠𝑡 − |𝑋𝑖|) −

(
𝑝𝑠𝑒𝑙𝑓，𝑖 + 𝑟2

2
) × (𝑋𝑚𝑒𝑎𝑛 − |𝑋𝑖|) (9)

 

 

𝑋𝑚𝑒𝑎𝑛 =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

(10) 

 

Where Xmean is the average position of the UAV population. 

When the concentration detected by the UAV is higher than 

the average concentration of high-quality individuals, the 

search of the machine-sensitive individuals at the current 

position is very effective. The current optimal individual is  

the dominant one in the UAV swarm, which is oriented to 

the current optimal individual to accelerate the convergence 

of the Jaya algorithm. A random perturbation term is added 

to the position-updating rule of the machine-sensitive 

individuals, i.e., randomly selecting two UAVs to utilize 

their current position to avoid the situation that the second 

term of the formula is 0 and cannot update the position 

when the current individual is the optimal individual, and 

its position update formula: 

𝑋𝑖+1 = 𝑋𝑖 + (
𝑝𝑠𝑜𝑐𝑖𝑎𝑙，𝑖 + 𝑟1

2
) × (𝑋𝑏𝑒𝑠𝑡 − |𝑋𝑖|) +

(
𝑝𝑠𝑒𝑙𝑓，𝑖 + 𝑟2

2
) × (𝑋𝑙 −𝑋𝑚) (11)

 

Where l, m are random integers between [1,n] and l, m are 

not equal to i. 

2.2.3.  EIJaya algorithm flow 

The specific steps of the EIJaya algorithm for gas source 

localization are as follows: 

Step 1: Initialize settings, including the number of UAVs n, 

the initial position of each UAV, and the maximum number 

of iterations. 
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Step 2: Based on each UAV's internal state, establish a two-

dimensional self-assessment model and calculate the self-

assessment factor. 

Step 3: Classify the UAVs into three categories based on 

the social evaluation rules according to the gas 

concentrations detected by each UAV and calculate the 

social evaluation factor. 

Step 4: Incorporate the self-assessment factor and social 

evaluation factor into the position update rules and update 

the positions and the detected gas concentrations according 

to the corresponding rules for each individual. 

Step 5: Check if the maximum number of iterations has 

been reached. If it has, proceed to Step 6; if not, increase 

the iteration count by 1 and return to Step 2. 

Step 6: Output the position with the highest gas 

concentration, and the algorithm ends. 

The overall flow of the EIJaya algorithm for gas source 

localization is illustrated in Fig.1. 

 

Fig.1. Flowchart of the traceability of the EIJaya algorithm 

 

3. EXPERIMENTAL VALIDATION OF EIJaya GAS 
TRACEABILITY ALGORITHM IN SIMULATION 

 To evaluate the performance stability and adaptability of the 

algorithm, considering that it is impossible to control the 

changes of all factors in the natural environment, it is 

necessary to set different environmental parameters, such as 

wind speed and source strength, to simulate such changes. By 

changing the wind speed and source strength, multiple 

simulated concentration fields can be constructed to simulate 

the gas diffusion in different scenarios, which can effectively 

evaluate the robustness and reliability of the algorithm. In this 

paper, five different wind speeds are selected, which are 

0.5m/s, 2.0m/s, 4.0m/s, 6.0m/s, and 8.0m/s, and five different 

source strengths are set, which are 0.002kg/s, 0.004kg/s, 

0.006kg/s, 0.008kg/s, and 0.010kg/s. In order to make an 

objective and comprehensive algorithmic evaluation, this 

paper chooses success rate, iteration times, and distance ratio 

as performance evaluation indexes. The distance ratio is a 

measure of the energy efficiency of the algorithm by 

calculating the ratio of the total distance by the UAV to the 

straight-line distance from the starting point to the final point; 

the closer the ratio is to 1, the better the algorithm 

performance is. The Jaya algorithm, PSO algorithm, and 

EIJaya algorithm are run 200 times in each different turbulent 

concentration field, and the success rate is represented by a 

line graph. The iteration times and the distance ratio are 

shown using a half-violin plot. 

Finally, complete content and organizational editing before 

formatting. Please take note of the following items when 

proofreading spelling and grammar. 

3.1. Analysis of the effect of wind speed on algorithm 
performance. 

Based on Fig. 2, it can be seen that the EIJaya algorithm 

performs well in terms of success rate in the environment of 

changing wind speed, which is significantly better than the 

Jaya algorithm and PSO algorithm. In five different wind 

speed environments, the average success rate of the EIJaya 

algorithm reaches 92.9%, which is higher than that of the 

Jaya algorithm at 77.6% and that of the PSO algorithm at 

49.6%. 

 

Fig. 2. Effect of wind speed variations on success rates 

 

Based on Fig. 3, it can be seen that the change in wind speed 

affects the distance ratio and the iteration times of the three 

algorithms. Regarding the distance ratio, the average 

distance ratio of the PSO algorithm and the EIJaya 

algorithm basically stays below 3.0 under different wind 
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speeds, which outperforms the Jaya algorithm. The data of 

the Jaya algorithm is distributed in the interval of [2.0,4.0] 

as a whole; the overall distribution of the PSO algorithm 

fluctuates under different wind speeds and is roughly 

distributed in the range of [1.5,3.5]. Most of the data of the 

EIJaya algorithm is distributed in the range of [1.0,3.0], 

with only a tiny portion distributed between [3.0,6.0]. In 

contrast, with the change in wind speed, the distance ratio 

by the Jaya algorithm and the EIJaya algorithm is more 

stable than that of the PSO algorithm, showing better 

robustness. In terms of the iteration times, the average 

iteration number of the EIJaya algorithm for successful 

traceability under the five different wind speed 

environments is around 21, which is much less than that of 

the PSO algorithm and slightly higher than that of the Jaya 

algorithm. With the gradual increase of wind speed, the 

iteration number of the PSO algorithm shows a fluctuating 

upward trend, and most of the data are distributed above 80 

times. In contrast, the distribution state of the iteration 

number of the Jaya algorithm and EIJaya algorithm remains 

unchanged. The average iteration number of the Jaya 

algorithm slightly increases, exceeding 40, whereas the 

EIJaya algorithm exhibits a more centralized distribution, 

mainly within the range of 13 to 30, with better performance. 

 

(a) Impact on the distance ratio of the  Jaya algorithm 

 

 

(b) Impact on the iteration times of the Jaya algorithm 

 

 

(c) Impact on the distance ratio of the  PSO algorithm 

 

 

(d) Impact on the iteration times of the the  PSO algorithm 
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(e) Impact on the distance ratio of the  EIJaya algorithm 

 

 

(f) Impact on the iteration times of the EIJaya algorithm 

Fig. 3. Effect of wind speed variation on distance ratio and 

iteration times 

3.2. Analysis of the impact of source strength on 
algorithm performance. 

As shown in Fig. 4, the success rates of the three algorithms 

fluctuate slightly in different source strength environments, 

with the EIJaya algorithm having a significantly higher 

success rate than the Jaya algorithm and the PSO algorithm. 

In the five simulation environments with different source 

strengths, the average success rate of the EIJaya algorithm 

reaches 91.7%, while that of the Jaya algorithm is 82.3%, and 

that of the PSO algorithm is only 47%. 

 

Fig. 4. Effect of release rate variation  on success rate 

 

Under different release rate environments, the changing 

trend of the distance ratio and the iteration times of the three 

algorithms is shown in Fig. 5. The PSO algorithm performs 

well in the average distance ratio. With the release rate 

increase, the average distance ratio decreases slightly from 

about 2.5 to about 2.3, and the data are mainly distributed 

in the interval of [1.5,3.5]. The distance ratio of the Jaya 

algorithm shows a slight upward trend with the increase in 

release rate, and the average distance ratio reaches 3.5 when 

the release rate is 0.01 kg/s and the data greater than 6.0 

increases. The average distance ratio of the EIJaya 

algorithm is about 2.7, which is more stable than that of the 

PSO algorithm and the Jaya algorithm. The data are mainly 

distributed in the interval of [1.0,3.0]. A small portion of the 

data is distributed in the interval of [3.0,6.0]. In terms of the 

iteration times, the EIJaya algorithm performs well; the 

average number of iterations is about 33 times without 

obvious fluctuations, and the data distribution is more 

concentrated, basically below 60 times. The average 

number of iterations of the Jaya algorithm shows an upward 

trend; the data above 50 times gradually increases, and the 

data is slightly dispersed. The average number of iterations 

of the PSO algorithm fluctuates slightly. As the source 

strength increases, the data below 75 times gradually 

increases, but the average number of iterations remains 

above 80 times. 
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(a)Impact on the distance ratio of  the  Jaya algorithm 

 

 

(b)Impact on the iteration times of the Jaya algorithm 

 

 

(c) Impact on the distance ratio of the  PSO algorithm 

 

(d)Impact on the iteration times of the  PSO algorithm 

 

 

(e)Impact on the distance ratio of the  EIJaya algorithm 

 

 

(f) Impact on the iteration times of the EIJaya algorithm 

Fig. 5. Effect of release rate variation on distance ratio and 
iteration times 
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3.3. Analysis of the effect of the number of UAVs on 
the performance of the algorithm. 

The change in the success rate of the three algorithms when 

the number of UAVs is gradually increased from 3 to 8 is 

shown in Fig. 6. The EIJaya algorithm performs slightly 

worse than the PSO algorithm and the Jaya algorithm when 

the number of drones is 3 and 4. However, when the number 

of drones increases to 5, the success rate of the EIJaya 

algorithm shows a significant increase and reaches 90.5% at 

the number of 6 drones. In contrast, the Jaya algorithm, 

despite some degree of improvement, has a maximum 

success rate of only 81%, while the PSO algorithm has an 

optimal success rate of only 66%. 

 

Fig. 6. Impact of changes in the number of UAVs on success rates 

 

According to the results shown in Fig. 7, it can be seen that 

the change in the number of UAVs has an impact on the 

distance ratio and the iteration times of the three algorithms. 

As far as the distance ratio is concerned, all three algorithms 

show an increasing trend. The PSO algorithm performs the 

best, the data distribution is more centralized, and when the 

number of drones reaches 5, the average distance ratio stays 

around 2.9. The average distance ratio of the Jaya algorithm 

shows a fluctuating growth overall, staying above 3.0 when 

there are 6 to 8 drones and reaching 3.5 when there are 7 

drones, and the main data distribution area also shows an 

upward trend; the data below 2.5 will increase first and then 

decrease with the increase of the number of drones. The 

average distance ratio of the EIJaya algorithm is more 

concentrated, and the overall average distance ratio performs 

better, with an average distance ratio of about 2.4 for 3 and 4 

drones and an average distance ratio of about 2.7 for 5 to 8 

drones. Regarding the number of iterations, as the number of 

UAVs increases, the number of iterations required for 

successful localization of all three algorithms shows a 

decreasing trend. Although all of them have improved their 

performance, the Jaya algorithm still has more data over 60 

times, and the PSO algorithm still occupies the majority of 

data over 80 times. In contrast, the EIJaya algorithm has a 

gradual increase in the number of data under 40 times and a 

gradual decrease in the number of data over 80 times. 

Regarding the average number of iterations, the EIJaya 

algorithm performs the best, much less than the PSO 

algorithm and slightly less than the Jaya algorithm. Still, the 

performance improvement is not apparent when the number 

of drones increases from 7 to 8. Therefore, it is sufficient to 

use 6 UAVs, and there is no need to allocate more UAVs to 

increase the cost. 

 

(a) Impact on the distance ratio of the  Jaya algorithm 

 

 

(b) Impact on the iteration times of the Jaya algorithm 
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(c) Impact on the distance ratio of the  PSO algorithm 

 

(d) Impact on the iteration times of the PSO algorithm 

 

 

(e) Impact on the distance ratio of the  EIJaya algorithm 

 

 

(f) Impact on the iteration times of the EIJaya algorithm 

Fig. 7. Effect of number of UAVs on distance ratio and iteration 

times 

By comprehensively analyzing the performance of the three 

algorithms under different wind speeds, release rates, and 

numbers of UAVs, it can be seen that the EIJaya algorithm 

is better than the other algorithms in terms of success rate 

and iteration times. It is slightly inferior to the PSO 

algorithm regarding the average distance ratio but still 

better than the Jaya algorithm. Wind speed and release rate 

do no significantly effect on the EIJaya algorithm, 

indicating that it is robust. The change in the number of 

drones has a more significant impact on the EIJaya 

algorithm, and the increase in the number of drones later 

will cause an increase in the distance ratio, probably 

because the contractual collaborative traceability between 

the drones will increase the distance traveled. 

4. EXPERIMENTAL VALIDATION OF THE EIJaya GAS 
TRACEABILITY ALGORITHM 

4.1. Construction of experimental hardware system.   

The DJI RoboMaster Tello Talent (TT) UAV was chosen for 

this experiment, and the TT UAV consists of two parts: the 

flight vehicle and the expansion accessories. The vehicle 

contains components such as flight control, communication 

system, visual positioning system, power system, and flight 

battery, which provide functions such as stable flight, 

positioning, and power output. Expansion accessories can be 

added to the aircraft to realize a broader function expansion 

and programming environment, promote multi-aircraft 

cooperative control, and write diverse formation control 

programs. 

Specifically, the visual localization system of the TT UAV, 

which consists of a camera and an infrared sensor, is located 

at the bottom. This visual positioning system uses a 

combination of images and infrared sensors to obtain the 

position information of the vehicle using the camera and 

determine the current altitude through the infrared sensors in 

order to realize the precise positioning of the vehicle and to 

provide a reference of the vehicle's altitude to the ground. The 
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extension module part of the TT UAV is an open-source 

controller built-in with an ESP32 chip, which integrates a 

dual-frequency WiFi module and a Bluetooth module. It 

supports graphical programming, Python and other 

programming languages to write multi-copter cooperative 

flight programs. Serial communication is realized through the 

UAV's onboard Micro USB interface, providing power to the 

TT expansion modules. This enables multiple RoboMaster 

TT UAVs to be connected to a WiFi router simultaneously to 

achieve multi-machine state synchronization and cooperative 

control, and its specific control mode is shown in Fig. 8. 

 

Fig.8 TT Combination Control Mode 

 

The expansion board used in this study provides interfaces 

to connect the signal pins of the ESP32 and the GND, 5V, 

and 3.3V power supplies to the ESP32 expansion module, 

which facilitates the integration of other open-source 

hardware and third-party sensors into the system for gas 

traceability. Fig. 9. Shows the specific control of the UAV . 

 

Fig. 9. UAV Control Mode 

4.2. Experimental scenario construction.   

In order to simulate a relatively stable gas diffusion scenario 

and better control the experimental conditions, this 

experiment used a metal steel frame and plastic film to 

construct a transparent closed three-dimensional space, as 

shown in Fig. 10. The specific dimensions of this 

experimental space are 3m in length, 3m in width, and 1.8m 

in height. CO2 in the fire signature gas is a non-toxic gas, and 

to ensure the safety of the experiment, food-grade CO2 

cylinders with a purity of ≥99.9% were selected as the gas 

source for this indoor traceability experiment. In order to 

accurately control the amount of CO2 released, the flow rate 

of the gas was controlled by installing a pressure reducer, as 

shown in Fig. 11. In addition, an air inlet with a specification 

of 20cm×20cm was opened at the rear side film 100cm from 

the ground, and a fan was used to provide a constant wind 

speed for the experiment to ensure that the CO2 was fully 

diffused in the experimental space, as shown in Fig. 12. 

 

Fig. 10. Indoor lab space map 

 

 

Fig. 11. CO2 Pressure Reducing Valve 
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Fig. 12. Fans and Emission Sources 

In this study, CO2 was detected using the SGP30 sensor, as 

shown in Fig. 13. The SGP30 is an electrochemical-based 

sensor with an internal metal oxide sensing element that is 

heated and reacts with chemicals in the air, resulting in a 

change in the conductance of the aspect, generating an 

electrical signal to measure and quantitatively analyze the 

concentration of CO2 in the air. The SGP30 is easily 

integrated into a mobile device with 12 ×12 ×1.6mm 

dimensions and is suitable for TT drones. The sensor-

equipped UAV utilizes a flight map for localization, where 

the position is determined by recognizing signs and patterns 

on the map with a vision sensor. The flight map shown in Fig. 

14 is a 3m×3m area containing the DJI Logo, decorative 

pattern, and a small planet. The DJI Logo represents the 

positive direction of the X-axis, and the center is the origin of 

the coordinate system. The small planet pattern identifies the 

map and obtains the coordinates. The map should be placed 

horizontally, and the logo should be oriented so the UAV can 

recognize the logo and record its position with Mind+ 

programming. Fig. 15 shows a schematic of the coordinates 

corresponding to the flight map, where the CO2 emission 

source is set at (0,140), and the unit is cm. 

 

Fig. 13. SGP30 sensor 

 

 

Fig.14. Flight map 

 

Fig. 15. Map coordinates of indoor experiment 

4.3. Results showcase.   

For indoor traceability experiments, the CO2 cylinder needs 

to be opened and the pressure-reducing valve adjusted to 

5MPa, 3.5kgf/cm2, to ensure that the CO2 is released at a 
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constant flow rate. At the same time, the fan was turned on to 

promote the complete diffusion of CO2 throughout the 

experimental area. After five minutes, three UAVs were 

randomly placed in the experimental area with initial position 

coordinates of (46,-18), (-39,-95), and (-116,77), respectively, 

and the UAVs were kept at the same altitude during flight, as 

shown in Fig.16(a). Fig.16(b) shows the flight trajectories of 

the three UAVs in the traceability experiment, and each UAV 

works together to complete the traceability task by 

cooperating with each other. In the initial stage of the 

experiment, UAV No. 3 is a resourceful individual, so UAVs 

No. 1 and No. 2 tend to be closer to UAV No. 3 for a better 

traceability task. After exchanging information with each 

other and being conditioned by the emotionally intelligent 

Jaya algorithm, the three drones gradually converged to 

search in the same direction. Eventually, they are located at 

(0,133), (-4,118), and (7,122), respectively. The straight line 

distance between the UAV closest to the emission source and 

the source was 7cm, and the whole process of the traceability 

experiment took a total of 47 seconds. 

The experimental results show that the emotionally 

intelligent Jaya algorithm proposed in this paper is feasible in 

indoor traceability experiments and can successfully locate 

the source of CO2 emissions. 

 

(a) UAV flight process 
 

 

(b) UAV flight trajectory 

Fig. 16. Indoor traceability experiment 

5. CONCLUSIONS 

Aiming at the defect that the basic Jaya algorithm easily falls 

into the local optimum in the multi-UAV cooperative 

traceability task, this study innovatively combines the 

psychological theory and applies the human psychological 

state to the traceability task of the UAV, and proposes the 

EIJaya algorithm. The EIJaya algorithm assigns self-

evaluation and social evaluation to the UAV so that it can 

make more intelligent decisions according to its state and 

surrounding environment, increases the population diversity, 

improves the position update formula, avoids the local 

optimal problem caused by a single strategy, and improves 

the convergence speed and optimization ability of the 

algorithm. In the constructed concentration field, several 

different simulated concentration fields were generated by 

changing the wind speed and source strength of the 

environmental conditions, and experimental validation was 

carried out using different numbers of UAVs. The evaluation 

was carried out by selecting three indexes. Namely, success 

rate, iteration number, and distance traveled ratio, as well as 

comparing and evaluating the using the basic Jaya and 

particle swarm algorithms. The results show that the EIJaya 

algorithm performs better in the multi-UAV cooperative 

traceability task. When improving the Emotionally 

Intelligent Jaya algorithm in the future, it is necessary to 

consider the three-dimensional characteristics of smoke 

diffusion and include the obstacle avoidance function when 

the UAV is flying. This will enable the algorithm to better 

cope with the challenges in real-life scenarios, improve the 

accuracy and applicability of gas identification, and apply it 

to a broader range of scenarios. 
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