
 

1. Introduction 

The study of mass and heat transmission with various physical 

factors has attracted more attention in recent years as it occurs 

in a wide range of industries, including food processing, lubri-

cant systems, hydrodynamic machinery, chemical processing 

equipment, and polymer processing. The impact of extrusion 

and squeezing factors on the rate of heat conduction of the com-

pressed viscous fluid between two parallel plates was reported 

by Duwairi et al. [1]. They found that increasing the squeezing 

parameter caused the local coefficient of friction to reduce and  

the rate of heat conduction to increase, whereas increasing the 

extrusion parameter caused the rate of heat transfer to decline 

and the skin friction coefficient to increase. 

In the study conducted by Kai-Long Hsiao [2], the focus was 

on the incompressible mixed convection 2D flow of a Maxwell 

fluid over an extending surface. The author specifically investi-

gated the physical properties of energy conversion, conjugate 

mass transfer and heat transfer, considering radiative thermal ef-

fects. Ahmadi et al. [3] studied the unsteady flow of nanofluids 

and the transfer of heat by a uniformly moving disc. Given that 

the unstable parameter is a key  component  of  the  velocity  pro- 
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Abstract 

This paper investigates the effects of an inclined magnetic field on heat and mass transfer in turbulent squeeze flow of a visco-
elastic fluid with an upper-convected Maxwell model. Squeezing flow is an important phenomenon in various industrial and 
mechanical processes related to flows between parallel surfaces. Mathematical modelling for the law of conservation of mass, 
momentum, heat and concentration of nanoparticles is executed. The study employs a system of partial differential equations 
to describe the flow issue. Governing nonlinear partial equations are reduced into nonlinear ordinary differential equations. 
The modelled equations are then solved numerically by utilizing the efficient Adams-Moulton method of the fourth order based 
on the shooting technique using the Fortran programming language. Numerical results are compared with another numerical 
approach and an excellent agreement is observed. The effects of various factors on the non-dimensional velocity, temperature, 
and concentration patterns are presented using graphs, while tables are used to assess the numerical values of the skin friction, 
Nusselt and Sherwood numbers. It is found that the temperature profile decreases as the compression parameter increases but 
increases with an increase in the Eckert number. The results of this study could be useful in designing heat and mass transfer 
equipment for applications in viscoelastic fluid flows under an inclined magnetic field. 
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Nomenclature 

Bm ‒ magnetic flux density, A/m 

C ‒ concentration, mol/m3 

Cf ‒ skin friction coefficient  

D ‒ diffusion coefficient, m2/s 

Ec ‒ Eckert number 

f, f’‒ dimensionless velocity components 

k – thermal conductivity, W/(m K) 

K1 ‒ rate of reaction, 1/s 

Nu ‒ Nusselt number 

p ‒ pressure, Pa 

Pr ‒ Prandtl number 

S ‒ squeezing number 

Sc ‒ Schmidt number 

Sh ‒ Sherwood number 

T ‒ temperature of the fluid, K 

TH ‒ temperature of the upper wall, K 

u ‒ velocity in x direction, m/s  

v ‒ velocity in y direction, m/s  

x, y ‒ Cartesian coordinates, m  

 

 

Greek symbols 

  – thermal diffusivity, m2/s 

  – chemical reaction parameter 

  dimensionless coordinate 

  – dimensionless temperature 

r  – viscoelastic parameter 

 – kinematic viscosity, m2/s 

  – dynamic viscosity, Pa s 

  – fluid density, kg/m3  

  – electrical conductivity, S/m 

  – dimensionless concentration 

  – inclination angle, rad 

 

Abbreviations and Acronyms 

ADM – Adomian decomposition method 

BCs – boundary conditions 

HAM – homotopy analysis method 

IVP – initial value problem 

MHD – magnetohydrodynamics 

ODEs– ordinary differential equations 

PDEs – partial differential equations 

UCM – upper-convected Maxwell

file, it has been suggested that raising this parameter will im-

prove the velocity profile. In addition to the magnetic effect and 

chemical reaction, Afify [4] addressed the mass transfer in a 

convective, incompressible and electrically conducting move-

ment of viscous fluid in the direction of expanding surfaces. Ac-

cording to this research, as the magnetic component is increased, 

the friction coefficient rises while the Nusselt and Sherwood 

numbers fall. 

A substance droplet's mobility can be explained by the sque-

eze-flow process. Squeezing flow has many uses in industry and 

sciences, including rheological testing, connecting composite 

materials, hot plate welding, etc. In the presence of slip impact, 

Bhatta et al. [5] noticed the unsteady compression of water-

based nanofluid flow between two plates held parallel to one an-

other. It was found that a rise in the Lewis number caused a fall 

in the proportion of nanoparticles. Adesanyao et al. [6] con-

ducted a study on the unsteady MHD compressing Eyring-Pow-

ell fluid flow over an infinite channel. Their findings indicated 

that with an increase in the chemical reaction parameter, the con-

centration profile decreases. The researchers came to the addi-

tional conclusion that while the rate of heat transmission de-

clines with heat absorption and compressed channel walls, it in-

creases with the expansion of thermal radiation, channel walls, 

and internal heat production parameters. Farooq et al. [7] de-

scribed the effect of melting heat transfer in the compressing 

flow of nanofluid over a Darcy porous medium. They discov-

ered that for the prevalent thermophoresis parameter values, the 

temperature distribution rises. 

Hayat et al. [8] conducted a study on the flow of an incom-

pressible micropolar fluid confined between two parallel plates, 

considering the magnetic effect. Mahmood et al. [9], on the other 

hand, investigated the heat transfer and flow characteristics over 

a sensor surface submerged in a squeezed channel. Their find-

ings revealed that increasing suction through the sensor surface 

leads to an increase in heat transfer and skin friction coefficient. 

Conversely, an increase in injection has the opposite effect, de-

creasing the skin friction and heat transfer coefficient. Mohyud-

Din et al. [10] examined the MHD flow of a squeezing fluid be-

tween two plates held parallel to one another, one of which is 

impervious and the other porous. Ojjela et al. [11] provided an 

explanation of the entropy production caused by the influence 

of a magnetic field on an unsteady incompressible 2D squeezing 

flow and the mass transfer of Casson fluid between two plates 

kept parallel to one another. They used the Prandtl and Hart-

mann numbers to evaluate whether the fluid's temperature was 

raised, and its content was reduced. 

Sheikholeslami et al. [12] utilized the Adomian decomposi-

tion technique (ADM) to determine the analytical solution for 

the unsteady flow of nanofluid compressed between two parallel 

sheets. It was determined that the Nusselt number and nanopar-

ticle volume fraction have a straight relationship; otherwise, 

when the two plates travel together, they have an opposite rela-

tionship with the squeezing number. Saltwater, liquid metals, 

electrolytes and plasmas are a few examples of electrically con-

ducting fluids that are studied in magnetohydrodynamics for 

their magnetic characteristics and activity. According to Gholi-

nia et al. [13], who examined the effects of various physical fac-

tors on Eyring-Powell fluid, including slip flow, magnetic fields, 

and homogeneous and heterogeneous processes brought on by 

spinning discs, the temperature profile decreases as the pressure 

increases. A 2D second-degree fluid flow between two parallel 

plates that was unsteady was noticed by Hayat et al. [14] to be 

affected by magnetism. 

Jha and Aina [15] computed an approximate solution for an 

incompressible, viscous, electrically conducting fluid in a verti-

cal microporous channel created by electrically non-conducting 

vertical slabs held parallel to one another in the presence of in-

duced magnetic effects. They observed that the suction or injec-

tion measure increases fluid velocity and slip velocity. Addition-

ally, it was found that as the magnetic component and Hartmann 



Investigating the effect of an inclined magnetic field on heat and mass transmission in turbulent squeeze flow … 
 

171 
 

number rise, the volume flow rate decreases. 

In addition to the magnetic effect, Khan et al. [16] looked at 

the heat transmission in the nanofluid flow between two plates 

that were kept parallel to one another. They observed that the 

form component has no impact on the fluid velocity. Addition-

ally, it was found that nanoparticles with a greater shape factor 

would raise temperatures and slow down heat transmission. 

With the aid of volume portions of nanoparticles, radiation, 

chemical processes and viscous dispersion, Mabood et al. [17] 

provided the computational solution of stagnation point flow of 

MHD nanofluid based on water (Cu and Al2O3) over a porous 

surface. The homotopy perturbation technique was used by Sid-

diqui et al. [18] to calculate the solution for an unsteady 2D 

squeezing fluid flow of MHD between two parallel plates. They 

observed that for both a constant value and for various values of 

the magnetic parameter, the velocity curve increases monoton-

ically. 

According to slip conditions at the boundaries, Abbasi et al. 

[19] showed the MHD flow of UCM fluid over a porous mate-

rial. They discovered a correlation between a decline in the ve-

locity curve and a rise in the Hartmann number. A two-dimen-

sional, incompressible, constant flow through a porous surface 

conduit was studied by Choi et al. [20] to determine how inertia 

and viscoelasticity interacted. The 2D boundary layer of UCM 

fluid over a porous conduit with chemical processes was studied 

by Hayat and Abbas [21]. They came to the conclusion that the 

motion behaves differently for rising Reynolds number values 

in viscoelastic fluid. The similarity solutions for the unstable 

boundary layer flow and heat transfer in a Maxwell fluid flowing 

over a permeable stretching sheet in the presence of a heat 

source or sink were examined by Mukhopadhyay and Vajravelu 

[22]. For the rising levels of the Maxwell fluid and magnetic 

field, they observed a decrease in the velocity field. 

Prasad et al. [23] conducted a study on the effects of thermal 

conductivity, internal heat source and heat sink on the MHD 

flow and heat transfer in the stretching surface of UCM fluid. 

The findings revealed that, when temperature-dependent ther-

mo-physical properties were considered, increasing the mag-

netic parameter and Maxwell parameter led to a reduction in the 

velocity profile within the boundary layer. Additionally, they 

observed that thermal conduction and the presence of a heat 

source/sink raised the temperature in the flow region. In another 

study, Sadeghy et al. [24] investigated the flow of upper convec-

tive Maxwell fluid past a rigid plate in continuous motion. Sev-

eral authors [25–33] have solved many problems under general-

ized thermal theories. Zeeshan et al. [34], Elgazery et al. [35] 

and Bhatti et al. [36] have presented the solutions to some prob-

lems under various boundary conditions in porous mediums. 

To the best of the Authors’ knowledge, no information is 

available on the effects of an inclined magnetic field on heat and 

mass transfer in the turbulent squeeze flow of a viscoelastic fluid 

with an upper-convected Maxwell model. The present work 

aims to fill the gap in the existing literature. Therefore, in the 

present paper, we consider an inclined magnetic field and UCM 

squeezing flow of viscous fluid between parallel plates. We shall 

apply the shooting technique along with the Adams-Moulton 

method of fourth order to solve the similarity equations obtained 

from the governing boundary layer equations with the help of 

similarity transformation. The structure of the present paper is 

as follows. The problem is formulated in Section Two. The nu-

merical solution for both fluid and temperature fields are pre-

sented in Section Three. Section Four contains results and dis-

cussions. The concluding remarks are eventually given in Sec-

tion Five. 

2. Materials and methods  

An incompressible, 2-D unsteady UCM fluid flow, which is 

squeezed between two plates held parallel to each other (Fig. 1), 

along with the inclined magnetic field effect, has been consid-

ered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spacing between the plates is y = l(1 – αt)1/2 = h(t). For 

α > 0, the two plates are squeezed until they touch t = 1/α and 

for α < 0, the two plates are separated. Due to the viscous dissi-

pation effect, the generation of heat due to friction caused by 

shear in the flow is retained. This effect is quite important in the 

case when the fluid is largely viscous or flowing at a high speed. 

This behaviour occurs at a high Eckert number. Mass transfer 

with a chemical reaction rate is accounted for. Moreover, the 

flow is considered symmetric. The continuity, momentum, en-

ergy and mass transfer in view of all these assumptions and ap-

proximations are given below [37]: 
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Fig. 1. Physical model of the problem. 
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The boundary conditions for the above modelled problem 

are [37]: 

 

𝑦 = ℎ(𝑡):   𝑢 = 0, 𝑣 = 𝑣𝑤 =
𝑑ℎ

𝑑𝑡
,

                𝑇 = 𝑇𝐻 ,   𝐶 = 𝐶𝐻 ,

𝑦 = 0:   𝑢 =
𝜕𝑢

𝜕𝑦
=

𝜕𝑇

𝜕𝑦
=

𝜕𝐶

𝜕𝑦
= 0. }

 

 
 (6) 

Here, ρ is the fluid density, u and v are the velocities in the  

x and y directions, respectively, T denotes the temperature,  

C represents the concentration, p denotes the pressure, ν repre-

sents the kinematic viscosity, Cp is the specific heat, D denotes 

the coefficient of diffusion, and 𝐵𝑚(𝑡) =
𝐵0

(1−𝛼𝑡)
, 𝐾1(𝑡) =

𝑘1

(1−𝛼𝑡)
 

(see [25]) define the magnetic field and rate of reaction, which 

depend both on time. 

A set of the following transformations is formed for the ve-

locity components u and v, temperature T, concentration C and 

similarity variable η as [37]: 

 

 

𝑢 =
𝛼𝑥

2(1−𝛼𝑡)
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−𝛼𝑙

[𝑙(1−𝛼𝑡)
1
2]

𝑓(𝜂),
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𝑇

𝑇𝐻
,      𝜙 =

𝐶

𝐶𝐻
,       𝜂 =

𝑦

[𝑙(1−𝛼𝑡)
1
2]

,

}
 
 

 
 

 (7) 

where the unknown function f(η) represents the axial velocity 

component, θ(η) represents the temperature function and ϕ(η) is 

the concentration distribution. The new variables in Eq. (7) are 

submitted to the governing PDEs (1)–(5), and we get the follow-

ing system of ODEs: 

 

𝑓(𝑖𝑣)(𝜂) −
𝑆(
3𝑓"(𝜂)+𝜂𝑓′"(𝜂)+𝑓′(𝜂)𝑓"(𝜂)

−𝑓(𝜂)𝑓′"(𝜂)
)

[1+𝑆𝜆𝑟(𝑓(𝜂))
2
]

+

−
𝑀2 sin(𝜔)(𝑓"(𝜂) sin(𝜔)+2𝛿 cos(𝜔))

[1+𝑆𝜆𝑟(𝑓(𝜂))
2
]

+

−
2𝑆𝜆𝑟[𝑓(𝜂)(𝑓

"(𝜂))
2
+(𝑓′(𝜂))

2
𝑓"(𝜂)]

[1+𝑆𝜆𝑟(𝑓(𝜂))
2
]

= 0
}
 
 
 

 
 
 

, (8) 

 𝜃"(𝜂) + Pr [𝑆(𝑓(𝜂)𝜃′(𝜂) − 𝜂𝜃′(𝜂)) +  

          +Ec(𝑓′(𝜂))
2
+ Ec(𝑥) (𝑓"(𝜂))

2

] = 0, (9) 

 𝜙"(𝜂) + Sc[(𝑓(𝜂)𝜙′(𝜂) − 𝜂𝜙′(𝜂)) − 𝛾𝜙(𝜂)] = 0. (10) 

The dimensionless boundary conditions are as follows: 

 
𝑓(0) = 0,      𝑓"(0) = 1,      𝜃′(0) = 0,      𝜙′(0) = 0,

𝑓(1) = 1,      𝑓′(1) = 0,      𝜃(1) = 𝜙(1) = 1,
} (11) 

where S is the squeeze number, Pr is the Prandtl number, Ec is 

the Eckert number, Sc is the Schmidt number, γ is the chemical 

reaction parameter, M is the magnetic parameter, λr is the visco-

elastic parameter, Ec(x) is the local Eckert number, The various 

parameters utilized in the aforementioned equations can be ex-

pressed as follows: 

 

𝑆 =
𝛼𝑙2

2𝜈
,     Pr =

𝜇𝐶𝑝

𝑘
,     Ec =

𝛼2𝑙2

𝑇𝐻𝐶𝑝(1−𝛼𝑡)
,     Sc =

𝜈

𝐷
,

𝛾 =
𝑘1𝑙

2

𝜈
,     𝑀2 =

𝜎𝐵0
2𝑙2

𝜌𝜈
,      𝜆𝑟 =

𝛼𝛽

2(1−𝛼𝑡)
,

Ec(𝑥) =
𝛼2𝑥2

4𝐶𝑝𝑇𝐻(1−𝛼𝑡)
2 . }

 
 

 
 

 (12) 

It is important to note that the squeeze number S describes 

the movement of the plate ( 0S   corresponds to the plates mov-

ing apart, while 0S   corresponds to the plates moving toge-

ther) and Ec = 0 corresponds to the case when the viscous dissi-

pation effect is absent, γ > 0 represents the destructive chemical 

reaction and γ < 0 represents the generative chemical reaction. 

Expressions for the skin friction coefficient, local Nusselt 

number and local Sherwood number are as below [26]: 

 

𝐶𝑓 =
𝜇(
𝜕𝑢

𝜕𝑦
)|
𝑦=ℎ(𝑡)

𝜌𝑣𝑤
2   ⇒   

𝑙2

𝑥2
(1 − 𝛼𝑡)Re𝑥𝐶𝑓 = 𝑓

"(1),

Nu =
−𝑙𝑘(

𝜕𝑇

𝜕𝑦
)|
𝑦=ℎ(𝑡)

𝑘𝑇𝐻
  ⇒   √(1 − 𝛼𝑡)Nu = −𝜃′(1),

Sh =
−𝑙𝐷(

𝜕𝐶

𝜕𝑦
)|
𝑦=ℎ(𝑡)

𝐷𝐶𝐻
  ⇒   √(1 − 𝛼𝑡)Sh = −𝜙′(1).}

 
 
 

 
 
 

 (13) 

3. Solution methodology  

The system of ODEs (8)–(10) along with BCs (11) is solved nu-

merically by utilizing the shooting technique with the Adams-

Moulton method. A system of first order ODEs is required for 

the implementation of the shooting technique. The nonlinear dif-

ferential equations are first decomposed into a system of first 

order differential equations. For this purpose, we introduce the 

new variables: 

 𝑓 = 𝑦1,     𝑓
′ = 𝑦1

′ = 𝑦2,    𝑓
" = 𝑦1

" = 𝑦2
′ = 𝑦3,    𝑓

"′ = 𝑦4.  

By using the above notations in Eq. (8), the following system 

of ODEs is obtained: 

 𝑦1
′ = 𝑦2,       𝑦1(0) = 0,  

 𝑦2
′ = 𝑦3,       𝑦2(0) = 𝑟,  

 𝑦3
′ = 𝑦4,       𝑦3(0) = 0,  

 𝑦4
′ =

[

𝑆(𝜂𝑦4+3𝑦3+𝑦2𝑦3−𝑦1𝑦4)

+𝑀2 sin(𝜔)(sin(𝜔)𝑦3+2𝛿 cos(𝜔)𝑦2)

+2𝑆𝜆𝑟(𝑦2
2𝑦3+𝑦1𝑦3

2)

]

1+𝑆𝜆𝑟𝑦1
2 ,    𝑦4(0) = 𝑠.  

To solve the above initial value problem arising in the shoot-

ing technique, the Adams-Moulton method of the fourth order is 

used. Here the missing conditions r and S are to be determined 

so that: 

 𝑦1(𝜂∞, 𝑟, 𝑠)𝜂=1 − 1 = 0,  

(14) 

 𝑦2(𝜂∞, 𝑟, 𝑠)𝜂=1 = 0.  

To solve the above system of algebraic Eqs. (14), we use 

Newton's method which has the following iterative scheme: 
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 (𝑟
(𝑘+1)

𝑠(𝑘+1)
) = (𝑟

(𝑘)

𝑠(𝑘)
) − (

𝜕𝑦1

𝜕𝑟

𝜕𝑦2

𝜕𝑟
𝜕𝑦1

𝜕𝑠

𝜕𝑦2

𝜕𝑠

)

𝜂=1

−1

(
𝑦1(𝜂, 𝑟

(𝑘), 𝑠(𝑘)) − 1

𝑦2(𝜂, 𝑟
(𝑘), 𝑠(𝑘))

)

𝜂=1

.  

Here, k is the number of iterations (k = 0, 1, 2, 3, …). The miss-

ing initial conditions r and S are updated by using Newton's 

scheme. The iterative procedure is stopped when the following 

criterion is met: 

 max{|𝑟(𝑘+1) − 𝑟(𝑘)|, |𝑠(𝑘+1) − 𝑠(𝑘)|} <∈, (15) 

where ∈ denotes a small positive number. 

The step size is taken as Δη = 0.01. The process is repeated 

until we obtain the result correct up to the desired accuracy of 

10-7, which fulfils the convergence criterion. 

Now Eq. (15) will be treated similarly by considering f as 

a known function. For this, let us denote θ by y13 and θ ' = y '13 

by y14. 

By using the above notations in Eq. (15), we get the system 

of equations: 

𝑦13
′ = 𝑦14, 𝑦13(0) = 𝑚,  

𝑦14
′ = Pr𝑆(𝜂𝑦14 − 𝑦1𝑦14) − PrEc𝑦2

2 − PrEc(𝑥),    𝑦(0) = 0. 

The above initial value problem will be numerically solved 

by the fourth order Adams-Moulton method. In the above initial 

value problem, the missing condition m is to be chosen such that:  

 𝑦13(𝜂,𝑚)𝜂=1 − 1 = 0. (16) 

To solve the above algebraic Eq. (16), we use Newton's 

method which has the following iterative scheme: 

 𝑚(𝑘+1) = 𝑚(𝑘) − (
𝜕𝑦13

𝜕𝑚
)
−1

(𝑦13(𝜂,𝑚
(𝑘))

𝜂=1
− 1).  

To incorporate Newton's method, we further use the follow-

ing notations: 

 
𝜕𝑦13

𝜕𝑚
= 𝑦15 ,       

𝜕𝑦14

𝜕𝑚
= 𝑦16.  

As a result of these new notations, the Newton's iterative 

scheme gets form: 

 𝑚(𝑘+1) = 𝑚(𝑘) − (𝑦15(𝜂,𝑚
(𝑘))

𝜂=1
)
−1

(𝑦13(𝜂,𝑚
(𝑘))

𝜂=1
− 1).  

  (17) 

Here, k is the number of iterations (k = 0, 1, 2, 3, …). Now dif-

ferentiating the above system of two first order ODEs with re-

spect to m, we get another system of four ODEs. Writing all 

these four ODEs together, we have the following initial value 

problem (IVP): 

 𝑦13
′ = 𝑦14,        𝑦13(0) = 𝑚,  

 𝑦14
′ = Pr 𝑆 (𝜂𝑦14 − 𝑦1𝑦14) − PrEc𝑦2

2 − PrEc(𝑥)𝑦3
2,  

 𝑦14(0) = 0,  

 𝑦15
′ = 𝑦16,       𝑦15(0) = 1,  

 𝑦16
′ = Pr 𝑆 (𝜂𝑦16 − 𝑦1𝑦14),        𝑦16(0) = 0.  

The Adams-Moulton method of the fourth order has been 

used to solve the IVP consisting of the above four ODEs for 

some suitable choices of m. The missing condition m is updated 

by using Newton’s scheme (17). The iterative procedure is 

stopped when the following condition is met: 

|𝑚(𝑘+1) −𝑚(𝑘)| <∈,  

for an arbitrarily small positive value of ∈. Throughout this ar-

ticle ∈ has been taken as 10-8. 

In a similar manner, Eq. (10) can be treated numerically by 

the shooting techniques by considering f as a known function. 

4. Results and discussion 

This section examines how different physical factors affect the 

ranges of velocity, temperature, and concentration. It has been 

given and examined how the dimensionless mathematical model 

can be solved numerically. Mustafa et al. [37] used the HAM 

method for the numerical solution of the discussed model. In the 

present survey, the shooting method along with the Adams-

Moulton method has been opted for reproducing the solution. 

The present results will be compared with those of [37] for ver-

ification of the code. The impact of different parameters, e.g. 

squeezing parameter S, Pr, Sc, γ and Ec is observed graphically.  

Figures 2 and 3 show the impact of S on the dimensionless 

velocity profile. It can be noted that the fluid velocity reduces 

with the increasing values of the squeezing parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Influence of S = −1.0, −0.5, 0.01, 1.0, 2.0 on f '(η) for  

Pr = M = Ec = Ec(x) = Sc = γ = 1, δ = λr = 0.2, ω = π/4. 

 

Fig. 3. Influence of S = −1.0, −0.5, 0.01, 1.0, 2.0 on f '(η) for  

Pr = M = Ec = Ec(x) = Sc = γ = 1, δ = λr = 0.2, ω = π/6. 
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Figures 4 and 5 present the impact of both the positive and 

negative squeezing parameters on the temperature distribution. 

Greater values of S give a noteworthy decrease in the tempera-

ture profile. Physically, an increase in S can be associated with 

a decrease in the kinematic viscosity, an increase in the distance 

between the plates and an increase in the speed at which the plate 

moves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6 and 7 show the impact of Pr on the field θ(η). The 

field θ(η) is rising due to the viscous dissipation effect. The 

Prandtl number Pr < 1 describes the liquid materials with a high 

thermal diffusivity but low viscosity, whereas the viscosity of 

liquid materials is high for the Prandtl number Pr > 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 8 and 9 are delineated to show the impact of Ec on 

the temperature field θ(η). These figures describe that on the ris-

ing estimations of Ec, the temperature profile is also increased. 

Thus, the compactness of the thermal layer at the boundary is 

reduced by the increasing estimations of Pr and Ec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 presents the temperature distribution for different 

values of the magnetic parameter M.  

Figure 11 shows the behaviour of the temperature profile for 

the increasing values of the inclination angle ω of the applied 

 

Fig. 4. Influence of S = −1.0, −0.5, 0.01, 1.0, 2.0 on θ(η) for  

Pr = M = Ec = Ec(x) = 0.2, Sc = γ = 1, δ = λr = 0.2, ω = π/4. 

 

Fig. 5. Influence of S = −1.0, −0.5, 0.01, 1.0, 2.0 on θ(η) for  

Pr = M = Ec = Ec(x) = 0.2, Sc = γ = 1, δ = λr = 0.2, ω = π/6. 

 

Fig. 6. Influence of Pr = 0,7, 0.9, 1.2, 1,5 on θ(η) for  

S = M = Ec = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, ω = π/4. 

 

Fig. 7. Influence of Pr = 0,7, 0.9, 1.2, 1,5 on θ(η) for  

S = M = Ec = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, M = 3, ω = π/6. 

 

Fig. 8. Influence of Ec = 1.0, 1.5, 2.0, 2,5 on θ(η) for  

S = Pr = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, M = 3, ω = π/4. 

 

Fig. 9. Influence of Ec = 1.0, 1.5, 2.0, 2,5 on θ(η) for  

S = Pr = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, M = 3, ω = π/6. 
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magnetic field. So, the influence of the magnetic inclination an-

gle on the temperature profile of a fluid is similar to that of the 

magnetic parameter. Thus, in practical applications related to 

controlling the momentum and heat transfer of fluid in squeez-

ing flow, the effects produced by changing the magnetic field 

strength can also be approximately achieved through adjusting 

the inclination angle of the magnetic field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 12 and 13 are to show the impact of S on the concen-

tration field ϕ. A similar trend is noticed for the concentration 

profile as for the case of temperature field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outcomes of Sc on the field ϕ are presented in Figs. 14 

and 15. It can be noted that the molecular diffusivity turns more 

fragile, and the boundary layer thickness ends up slenderer be-

cause of the gradual increase in Sc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 16 and 17 delineate the impact of concentration 

fields. For γ > 0, the concentration field ϕ declines significantly, 

whereas an increase in the concentration profile ϕ is very much 

visible for γ < 0. Steeper curves are observed when larger esti-

mations of the reaction are accompanied by severe conditions, 

as shown in Figs. 16 and 17.  

 

Fig. 11. Influence of ω = 0, π/8, π/6, π/4, π/2 on θ(η) for  

S = Pr = Ec = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, M = 3. 

 

Fig. 13. Influence of S = −1.5, −0.5, 0.01, 0.5, 1.5 on ϕ(η) for  

Pr = M = Ec = Ec(x) = 0.2, Sc = γ = 1, δ = λr = 0.2, ω = π/6. 

 

Fig. 14. Influence of Sc = 0.5, 0.7, 0.9, 1.2 on ϕ(η) for  

Pr = Ec = Ec(x) = γ = 1, δ = λr = 0.2, M = 3, ω = π/4. 

 

Fig. 10. Influence of M = 0, 1.0, 3.0, 5.0 on θ(η) for  

S = Pr = Ec = Ec(x) =  Sc = γ = 1, δ = λr = 0.2, M = 3, ω = π/4. 

 

Fig. 12. Influence of S = −1.5, −0.5, 0.01, 0.5, 1.5 on ϕ(η) for  

Pr = M = Ec = Ec(x) = 0.2, Sc = γ = 1, δ = λr = 0.2, ω = π/4. 

 

Fig. 15. Influence of Sc = 0.5, 0.7, 0.9, 1.2 on ϕ(η) for  

Pr = Ec = Ec(x) = γ = 1, δ = λr = 0.2, M = 3, ω = π/6. 
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The numerical results of the coefficient of skin friction, the 

Sherwood number and Nusselt number for the distinct values of 

squeezing parameter S with some fixed parameters are shown in 

Tables 1−3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

This article presents the simulation effects of heat and mass 

transfer on the UCM flow of a viscous fluid between parallel 

plates studied by considering the inclined magnetic field effect 

in the velocity equation. The set of nonlinear momentum, energy 

and concentration equations are transformed into the dimension-

less ODEs by an appropriate transformation. Numerical solu-

tions are obtained by using the shooting technique with the Ad-

ams-Moulton method. Our results are in excellent agreement 

with the existing numerical literature results. The influence of 

distinct physical parameters such as the Eckert number (Ec), 

Schmidt number (Sc), squeezing parameter (S), Prandtl number 

(Pr) and the chemical reaction parameter (γ) on the velocity pro-

file, temperature field and the concentration profile are elabo-

rated in the graphical and tabular form. The above-mentioned 

analysis of the UCM flow has led us to the following conclu-

sions: 

 A decrease in the temperature profile is noted with the in-

creasing values of the squeezing parameter; 

 It is observed that an increment in the temperature occurs 

with the increasing values of the Eckert number; 

 An increment in the Schmidt number is observed to de-

crease the concentration profile; 

 The temperature distribution decreases due to the boosting 

value of the magnetic parameter; 

 When the values of the chemical reaction parameter are in-

creased, the concentration profile decreases, whereas when 

the chemical reaction parameter is decreased, the concentra-

tion profile increases; 

 The problem can be extended by a stretching surface in dif-

ferent types of fluids for instance a Maxwell nanofluid; 

 The problem can be further extended for the cylindrical and 

rotating disk geometries. Some other parameters can also be 

included like porous media, yielding Soret and Dufour ef-

fects; 

 

Fig. 17. Influence of γ = −1.0, −0.5, 0.01, 1.0, 2.0 on ϕ(η) for  

Pr = Ec = Ec(x) = S = Sc = 1, δ = λr = 0.2, M = 3, ω = π/6. 

Table 2. Sherwood number for ω = π/4 rad, M = 3.0, λr = δ = 0.2.  

S Sc γ 

−ϕ'(1) 

Mustafa et al. 
[37] 

Present 

-1.0 1.0 1.0 0.800351 0.8002988 

-0.5   0.779759 0.7451639 

0.01   0.761250 0.7612504 

0.5   0.745138 0.7451639 

2.0   0.702388 0.7024820 

 

Table 1. Skin friction coefficient for different parameters.  

S M ω δ λr 

−f "(1) 

Mustafa et al. 
[37] 

Present 

-1.0 3.0 π/4 0.2 0.2 3.036639 3.037298 

-0.5     3.357444 3.357991 

0.01     3.612109 3.612580 

0.5     3.808987 3.809395 

2.0     4.232647 4.232942 

 

Table 3. Nusselt number for ω = π/4 rad, M = 3.0, λr = δ = 0.2. 

S Pr  Ec  Ec(x)  
−θ'(1) 

Mustafa et al. 
[37] 

Present 

-1.0 0.2 0.2 0.2 0.170218 0.1701446 

-0.5    0.168694 0.1686023 

0.01    0.168541 0.1684339 

0.5    0.169009 0.1688881 

2.0    0.171515 0.1713616 

2.0 0.4 0.2 0.2 0.339028 0.3387297 

 0.6   0.502699 0.5022627 

 0.8   0.662681 0.6621146 

2.0 0.2 0.4 0.2 0.215831 0.2156981 

  0.6  0.260147 0.2600345 

  0.8  0.304463 0.3043713 

0.2 0.2 0.2 0.4 0.298714 0.2983872 

   0.6 0.425913 0.4254117 

   0.8 0.553112 0.5524375 

 

 

Fig. 16. Influence of γ = −1.0, −0.5, 0.01, 1.0, 2.0 on ϕ(η) for  

Pr = Ec = Ec(x) = S = Sc = 1, δ = λr = 0.2, M = 3, ω = π/4. 
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 Different numerical techniques can be utilized to solve fluid 

flow problems. 
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