
1. INTRODUCTION

In the theory of linear control systems the notions of con-
trollability, and observability introduced by Kalman [9, 10]
play fundamental role [11, 12, 13]. Some recent develop-
ments on this crucial notions have been presented in the papers
[6, 7, 8, 13] and the references therin. On the other hand the de-
scriptor (aka singular or implicit) systems have been subject to
intensive investigations in recent years (see eg. [1, 2, 5] for de-
tails). In this paper we shall concentrate on controllability, and
its dual concept observability of descriptor continuous-time
and discrete-time linear systems. Moreover, as direct conse-
quences of these notions, in the paper necessary and sufficient
conditions for the zeroing of the transfer matrices of descrip-
tor continuous-time and discrete-time linear systems are intro-
duced and proved. Zeroing problem has some direct conse-
quences when considering the decoupling of coupled systems,
one of the most interesting problems in system theory and con-
trol. The decoupling control strategies allow us to simplify the
control itself and also the identification procedure of the pa-
rameters of complex control systems in the context of nonin-
teracting control (see e.g. [14] for details). Zeroing problem
for the transfer matrix of Roesser model of 2-D linear systems
was discussed in the paper [4].

The paper is organized as follows: in Section 2 the controlla-
bility and in Section 3 the observability of the descriptor linear
systems are analyzed. Necessary and sufficient conditions for
zeroing of the transfer matrices of the descriptor continuous-
time and discrete-time linear systems have been established
and illustrated by simple numerical examples in Sections 4 and
6 respectively. In Section 7 zeroing of transfer function for lin-
ear, continuous-time, descriptor systems with delays in control
are considered. Concluding remarks are given in Section 8.
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2. CONTROLLABILITY OF DESCRIPTOR CONTINUOUS-
TIME LINEAR SYSTEMS

Let us consider the descriptor, finite-dimensional, linear
continuous-time system:

Eẋ = Ax+Bu (1a)
y = Cx, (1b)

where t ∈ [0, t f ], and x = x(t) ∈ Rn, u = u(t) ∈ Rm, y = y(t) ∈
Rp are the state, input and output vectors respectively, and
E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are constant matrices. It
is assumed that:

det[Es−A] 6= 0. (2)

In this case the equation (1a) has a unique solution, given in
[5].

Remark 1 Note that, if

y = Cx+Du, D ∈ Rp×m (3)

then defining
ȳ = y−Du = Cx (4)

we may reduce the case (3) to (1b).

Definition 1 ([3]) The system (1a) is called completely con-
trollable if for any initial state x(0) ∈ Rn and every finite state
x f ∈Rn there exists an input u(t) ∈Rm, for t ∈ [0, t f ] such that
x(t f ) = x f .

Theorem 1 The system (1a) is completely controllable if and
only if:

rank[Es−A,B] = n for all s ∈ (5a)C
rank[E,B] = n, (5b)

where C is the field of complex numbers.

Proof of this theorem is given in [3]. �
The transfer matrix of the system (1) has the form:

T(s) = C[Es−A]−1B (6)

The transfer matrix (6) represents the controllable part of the
system (1) [3].
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3. OBSERVABILITY OF DESCRIPTOR CONTINUOUS-TIME
LINEAR SYSTEMS

Let us consider the descriptor continuous-time linear system
(1) satisfying the condition (2)

Definition 2 ([3]) The system (1) is called completely observ-
able if there exists t f > 0 such that knowing the input u(t), and
the output y(t) for t ∈ [0, t f ] it is possible to find (compute) the
initial state vector x0 of the system.

Theorem 2 The system (1a) and (1b) is observable if and only
if

rank

[
Es−A

C

]
= n for all s ∈ C (7a)

rank

[
E
C

]
= n. (7b)

Proof of this theorem is given in [3].�
Therefore, the transfer matrix (6) represents only the con-

trollable and observable part of the system (1) [3].

Example 1 Let us consider the descriptor system (1a,1b) with
the matrices:

E=

0 1 0
0 0 1
0 0 0

 ,

A=

1 1 2
0 2 −1
0 0 1

 , B=

1 0
0 −1
0 0

 , C=
[
0 1 0

]
(8)

This system satisfies the condition (2) since

det[Es−A] =

∣∣∣∣∣∣∣
−1 s−1 −2
0 −2 s+1
0 0 −1

∣∣∣∣∣∣∣=−2 6= 0. (9)

The system with matrices (8) satisfies the condition (5a)

rank[Es−A,B] = rank

−1 s−1 −2 1 0
0 −2 s+1 0 −1
0 0 −1 0 0

= 3= n.

(10)
but the condition (5b) is not satisfied

rank[E,B] = rank

0 1 0 1 0
0 0 1 0 −1
0 0 0 0 0

= 2 < n = 3. (11)

Therefore the system is not controllable. The system is also not
observable. It satisfies the condition

rank

[
Es−A

C

]
= rank


−1 s−1 −2
0 −2 s+1
0 0 −1
0 1 0

= 3 = n. (12)

but the condition (7b) is not satisfied

rank

[
E
C

]
= rank


0 1 0
0 0 1
0 0 0
0 1 0

= 2 < n = 3. (13)

The transfer matrix of the system has the form

T(s) = C[Es−A]−1B =
[
0 1 0

]

×

−1 s−1 −2
0 −2 s+1
0 0 −1


−11 0

0 1
0 0

 =
[
0 0.5

]
. (14)

Let us note that in this case

CB=
[
0 1 0

]1 0
0 −1
0 0

=
[
0 −1

]
(15)

4. DESCRIPTOR CONTINUOUS-TIME LINEAR SYSTEMS
WITH ZERO TRANSFER MATRICES

In this section the necessary and sufficient conditions for the
zeroing of the transfer matrices will be established.

Theorem 3 The transfer matrix (6) of the descriptor linear
continuous-time system (1) is zero matrix if and only if the fol-
lowing conditions are satisfied:

1. the system (1) is uncontrollable

∃s ∈ C : rank
[
Es−A B

]
< n or/and rank[E,B]< n

(16)
2. the system (1) is unobservable

∃s ∈ C : rank

[
Es−A

C

]
< n or/and rank

[
E
C

]
< n (17)

3. the product of the matrices C, and B is zero matrix

CB= 0. (18)

Proof: The proof is based on Kalman decomposition of the de-
scriptor linear system [3]. If the system is uncotrollable and/or
unobservable then in the transfer matrix (6) the cancellations
of the poles and zeros occurs (for example in (14). The trans-
fer matrix (6) is zero matrix if and only if the condition (18) is
satisfied. �

Example 2 Let us consider the system (1) with the matrices E,
A, and B as given in Example 1, and the matrix as follows

C=
[
0 0 1

]
. (19)

In this case the condition (18) is satisfied since

CB=
[
0 0 1

]1 0
0 −1
0 0

=
[
0 0

]
, (20)
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and the transfer matrix is zero matrix

T(s) = C[Es−A]−1B =
[
0 0 1

]

×

−1 s−1 −2
0 −2 s+1
0 0 −1


−11 0

0 −1
0 0

 =
[
0 0

]
. (21)

This confirms the importance of the condition (18)

5. CONTROLLABILITY AND OBSERVABILITY OF THE DE-
SCRIPTOR DISCRETE-TIME LINEAR SYSTEMS

Let us consider the descriptor, discrete-time, linear system

Exi+1 = Axi +Bui, i = 0,1, . . . (22a)
yi = Cxi, (22b)

where xi ∈ Rn is the state vector, ui ∈ Rm is the input vector,
and yi ∈ Rp is the output vector.

It is assumed that

det[Ez−A] 6= 0 (23)

where z ∈ C, and C is the set of complex numbers.

Definition 3 The system (22a) is called completely control-
lable if for any initial conditions x0 ∈ Rn and every final state
x f ∈Rn there exists an input ui ∈Rm for i= 0,1, . . . ,q−1 such
that xq = x f .

Theorem 4 The system (22a) is controllable if and only if

rank
[
Ez B

]
= n for all z ∈ C (24)

and
rank

[
E B

]
= n. (25)

Proof of this theorem is given in [3].�

Definition 4 The system (22a), (22b) is called completely ob-
servable if there exists an integer q > 0 such that knowing ui
and yi for i = 0,1, . . . ,q it is possible to find (compute) its ini-
tial state x0.

Theorem 5 The system (22a), (22b) is observable if and only
if

rank

[
Ez−A

C

]
= n for all z ∈ C (26)

and

rank

[
E
C

]
= n. (27)

Proof of this theorem is given in [3].�
The transfer matrix of the system (22) has the form

T(z) = C[Ez−A]−1B. (28)

The transfer matrix (28) represents only the controllable and
observable part of the system (22) [3].

6. DESCRIPTOR, DISCRETE-TIME, LINEAR SYSTEMS
WITH ZERO TRANSFER MATRICES

In this section the necessary and suffcient conditions for the ze-
roing of the transfer matrices will be extended to the descriptor,
discrete-time linear systems.

Theorem 6 The transfer matrix (28) of the descriptor, linear
system (22) is zero matrix if and only if the following conditions
are satisfied:

1. the system (22) is uncontrollable

∃z ∈ C : rank
[
Ez−A B

]
< n or/and rank

[
E B

]
< n
(29)

2. the system (22) is unobservable

∃z ∈ C : rank

[
Ez−A

C

]
< n or/and rank

[
E
C

]
< n (30)

3. the product of the matrices C, and B is zero matrix

CB= 0. (31)

Proof of the theorem is similar (dual) to the proof of Theorem
3. �

Example 3 Let us consider the descriptor system (22) with the
matrices:

E=

0 1 0
0 0 2
0 0 0

 ,

A=

1 0 −2
0 1 0
0 0 1

 , B=

−1
1
0

 , C=

[
0 0 1
0 0 −2

]
(32)

This system (22) with matrices (32) satisfies the condition (23)
since

det[Es−A] =

∣∣∣∣∣∣∣
−1 z 2
0 −1 2z
0 0 −1

∣∣∣∣∣∣∣=−1 6= 0. (33)

The system with matrices (32) is uncontrollable, since it does
not satisfy the condition (25)

rank[E,B] = rank

0 1 0 −1
0 0 2 −1
0 0 0 0

= 2 < n = 3. (34)

The system is also not observable since it does not satisfy but
the condition (27)

rank

[
E
C

]
= rank


0 1 0
0 0 2
0 0 0
0 0 1
0 0 −2

= 2 < n = 3. (35)
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Note also that the condition (31) is satisfied since

CB=

[
0 0 1
0 0 −2

]−1
1
0

=

[
0
0

]
(36)

The transfer matrix of the system with matrices (32) has the
form

T(s) = C[Ez−A]−1B =

[
0 0 1
0 0 −2

]

×

−1 z 2
0 −1 2z
0 0 −1


−1

)

−1
1
0

 =

[
0
0

]
. (37)

This confirms Theorem 6.

7. CONTINUOUS-TIME LINEAR SYSTEMS WITH DELAYS
IN CONTROL

Dynamical systems with different delays in state variables
and/or in the control are important class of control systems
(see eg. [11],[12]). For delayed systems there exist many dif-
ferent kinds of controllability, e.g. relative controllability or
functional controllability. In the sequel we shall concentrate
on relative controllability. In this section, at first, we shall con-
sider regular (nonsingular) linear continuous-time systems Sh
with delay h > 0 in control, and with constant coefficients, de-
scribed by the set of following equations:

ẋ(t) = Ax(t)+B0u(t)+Bhu(t−h) 0 < t ≤ t f < ∞

y(t) = Cx(t), (38)

where t ∈ [0, t f ], x(t) ∈ Rn, u(t) ∈ Rm, and h > 0 is a constant
delay. We assume that system is regular, i.e. E = I (identity
matrix). For the above system the following relative control-
lability concept can be defined (see [11], and [12] for more
details).

Definition 5 The system Sh is called relatively controllable on
time inteval [0, t f ] if for any initial relative state x(0) ∈ Rn,
and every finite state x f ∈ Rn there exists an admissible input
u(t) ∈ Rm, for t ∈ [0, t f ] such that x(t f ) = t f

Since the delayed system Sh is linear, and time invariant the
solution x(t,x(0),u(t)) exists, and can be computed using the
Laplace transformation, and for x(0) = 0 it has the form

Y (s) = C[sI−A]−1(B0 + exp(−sh)Bh)U(s) = T(s)U(s),
(39)

where T(s) is the transfer matrix for system Sh.

Remark 2 Since for t ∈ [0,h], and u(t) = 0 for t < 0 system is
behaving like the one without delays, then it can be considered
similarly as the system presented in Section 2 for detE = 0.
Therefore the transfer matrix T(s) = 0 if matrix CB0 = 0.

Remark 3 However, in general for t > h, the above statement
is not true (see e.g. [15])

Extension of the system (38) has the following form:

ẋ(t) = Ax(t)+
M

∑
i=0

Biu(t−hi) 0 < t ≤ t f < ∞

y(t) = Cx(t), (40)

where 0 ≤ hi < hi+1 < ∞ for i = 0,1,2, . . .M are constant de-
lays. Quite similar remarks as above can be formulated for
dynamical system with many constant delays in the control.

Now, let us consider linear, continuous-time, descriptor sys-
tem with constant delay in control described by the following
equations:

Eẋ(t) = Ax(t)+B0u(t)+Bhu(t−h) 0 < t ≤ t f < ∞

y(t) = Cx(t), (41)

where t ∈ [0, t f ], x(t) ∈ Rn, u(t) ∈ Rm, and h > 0 is a constant
delay. This system is a direct generalization of system (38).
For delayed system (41) controllability depends on the length
of time interval [0, t f ]. In general, it is necessery to consider
two cases, namely: t f ≤ h, and t f > h.

Following [12], we obtain the following Theorem:

Theorem 7 System (41) is completely, relatively controllable
on interval [0, t f ], where t f ≤ h if and only if

rank
[
Es B0

]
= n for all s ∈ C (42)

and
rank

[
E B0

]
= n. (43)

Moreover, this result can be also extended to the second case,
i.e. the following theorem is also true.

Theorem 8 The system (41) is relatively controllable on inter-
val [0, t f ], where t f > h, if and only if

rank
[
Es B0 ABh

]
= n for all s ∈ C (44)

and
rank

[
E B0 ABh

]
= n. (45)

Remark 4 Since for t ∈ [0,h], and u(t) = 0 for t < 0 system
(41) is also behaving like the one without delays, then it can
be considered similarly as the system presented in Section 2.
Therefore the transfer matrix T(s) = 0 if matrix CB0 = 0.

Remark 5 However, in general for t > h, the above statement
is not true (see e.g. [15]).

8. CONCLUSIONS

In this paper controllability and observability of descriptor lin-
ear, continuous-time and discrete-time, finite dimensional sys-
tems with constant coefficients have been discussed. Using
pure algebraic methods taken directly from the theory of ma-
trices is was proved, that controllability and observability of
descriptor systems yields as a direct consequence the results
for zeroing the transfer matrices of the systems considered. It
should be pointed out, that in the proofs previous results known
in the literature are used.
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