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Abstract: Understanding changes in land use and land cover (LULC) is crucial for effective
land management, environmental planning, and decision-making. It helps identify areas of
environmental concern, assess the impacts of human activities on ecosystems, and develop
strategies for conservation efforts and sustainable land use. In this study, remote sensing and
geographic information systems (GIS) were used to monitor LULC changes in Binh Duong
province, Vietnam from 1988 to 2023. The supervised classification method in ArcGIS
10.8 software was applied to Landsat satellite data (Landsat 5-TM for 1988 and 2004, and
Landsat 9-OLI/TIRS for 2023) to detect and classify five main LULC types: arable land,
barren land, built-up areas, forests and waterbodies. The classification accuracy was evaluated
using kappa coefficients, which were 0.877, 0.894 and 0.908 for 1988, 2004, and 2023,
respectively. During the period of 1988–2023, the forest, barren land, and waterbodies class
areas decreased by 560.55 km2, 200.04 km2, and 19.68 km2, respectively. Meanwhile, the
arable land and built-up areas classes increased by 343.80 km2 and 436.47 km2, respectively.
Furthermore, the Normalized Difference Vegetation Index (NDVI) and the Normalized
Difference Built-up Index (NDBI) were used to quickly assess changes in LULC, and their
trends were found to be consistent with the supervised classification results. These changes
in LULC pose significant threats to the environment and the findings of this study can serve
as valuable resources for future land management and planning in the region.

Keywords: Landsat, land management, vegetation index, remote sensing, maximum
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1. Introduction

Land use refers to the purposeful utilization of land resources as indicated by the land
surface cover, under the influence of human activities or land managers, pertaining to the
issue of exploiting land surface cover (Msofe et al., 2019; Angessa et al., 2021; Thien et al.,
2022). This reflects human activities such as creation of industrial zones, residential areas,
farmlands, grasslands, timber extraction, mineral extraction, and other various endeavors
(Rajkhowa et al., 2021). Moreover, land cover is defined as an essential element of the
Earth’s ecosystem, playing a key role in many areas, including shaping climate, hydrology,
biogeochemical cycles, maintaining biodiversity and resources, as well as playing a key
role in integrated interactions between human activities and the environment (Prăvălie,
2018; Kumari et al., 2019; Fisher and Koven, 2020). Changes in land surface cover involve
alterations to Earth’s surface due to human activities, although natural factors can also
contribute to these changes (Awotwi et al., 2018). These alterations signify significant
surface transitions and are pivotal factors driving environmental degradation within any
landscape. Land use and land cover (LULC) changes have evolved into a fundamental
and central component of present strategies aimed at natural resource management and
addressing environmental transformations (Heredia-R et al., 2021; Regasa et al., 2021).

Currently, the study of LULC dynamics has become more convenient with the support
of remote sensing and geographic information systems (GIS) (Aboelnour and Engel, 2018;
Zadbagher et al., 2018; Thien et al., 2023b). Remote sensing data is characterized by its
multi-temporal nature, fast processing and wide coverage, which serves as an effective tool
for accurate and rapid monitoring of LULC changes (Adegboyega, 2021). The utilization
of remote sensing imagery and GIS also allows for adjustments and supplementation of
necessary data that cannot be feasibly acquired through on-site investigation, surveying,
and measurement during the local land use planning and adjustment process. For LULC
planners, Landsat sensors play a pivotal role by providing a wealth of satellite data,
particularly in detecting changes in the Normalized Difference Built-up Index (NDBI),
Normalized Difference Vegetation Index (NDVI), and LULC categories (Slamet et al.,
2021; Waiyasusri, 2021; Thien and Phuong, 2023). Detection of changes related to the
utilization of remote sensing information enables the quantification of previous impacts
resulting from a single occurrence, thus supporting the tracking of LULC attribute changes
with reference to various satellite data sources. Supervised classification demands prior
knowledge about scene categories and regions containing relevant materials, training
locations, storage, and outlining for use within the supervised classification algorithm
(Moharram and Sundaram, 2023; Thien et al., 2023b).

The dynamics of LULC changes on a global scale, as well as in Vietnam, are becoming
significant and challenging issues in the current era (Hanh et al., 2017; Rimal et al., 2018;
Niu et al., 2022). Throughout the processes of economic development, and population
growth, the intricate interaction between humans and the environment has contributed to
notable alterations in the structure of land use and land cover. Globally, the expansion of
urban areas, the development of industrial zones, and the expansion of agricultural regions
have led to a transformation of land area from arable to urban and industrial uses (Rustiadi
et al., 2021). This often coincides with a reduction in forested and wildland areas, resulting
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in issues related to ecological decline, habitat loss for wildlife and wild plants, and
increased susceptibility to natural disasters such as floods and landslides. In Vietnam, with
rapid economic and population growth, changes in land use are also occurring swiftly (Fox
and Vogler, 2005; Vadrevu et al., 2019). The urbanization trend, increased agricultural and
industrial production, along with shifts from traditional land use patterns, have significantly
altered the structure of LULC. However, challenges such as sustainable land resource
management, environmental protection, and maintaining a balance between economic
development and nature conservation are also emerging. Recognizing the importance
of maintaining sustainable LULC, careful management strategies and monitoring are
necessary to ensure that economic development does not irreversibly harm land resources
and the natural environment (Motlagh et al., 2020; Wu et al., 2022).

Many previous studies have been performed worldwide on LULC, primarily aiming
to grasp the intricate dynamics of land and its transformations concerning build-up areas,
forests, water bodies, arable land, and the broader environmental terrain over time and space
(Aboelnour and Engel, 2018; Zadbagher et al., 2018; Slamet et al., 2021; Waiyasusri, 2021;
Thien and Phuong, 2023; Thien et al., 2023a). In recent years, the widespread adoption of
advanced remote sensing and GIS has emerged as an invaluable asset for comprehensively
assessing the spatial and temporal aspects of landscape dynamics, thereby aiding in the
evaluation of global-scale changes across diverse terrains (Zadbagher et al., 2018; Slamet
et al., 2021; Thien et al., 2023b). Despite the extensive body of research, crucial aspects
such as the trends, extent, and magnitude of LULC modifications within specific research
frameworks have often been overlooked. Consequently, a comprehensive understanding of
the degree of change, the underlying driving forces, and their ramifications remains elusive.
This study seeks to address these gaps by employing an integrated approach utilizing
the NDVI and NDBI to analyze and elucidate the driving factors and consequences
contributing to LULC dynamics. Studying LULC dynamics in Binh Duong province
provides valuable insights for local stakeholders and global researchers and policymakers,
especially in Europe, where similar urbanization, industrialization, and agricultural
expansion occur (Malinowski et al., 2020; Gozdowski et al., 2022; Mingarro and Lobo,
2023; Gadal and Gloaguen, 2023). By comparing our findings with studies in Europe, we
can identify common challenges and strategies for sustainable land management. This
research contributes to both local understanding and global efforts to address landscape
transformation. Moreover, this research endeavors to contribute to filling the existing
scientific void in the realm of land management in Vietnam, thereby offering valuable
insights to aid in informed decision-making processes.

In the present work, the changing pattern of LULC in Binh Duong province, Vietnam
from 1988 to 2023 has been mapped using multitemporal satellite images from Landsat
5-TM and Landsat 9-OLI/TIRS imagery. The main objective of this study was to assess
the trend of LULC change in the study area. Tasks of research: (1) identify and classify
LULC types and to quantitatively analyze LULC changes from 1988 to 2023; (2) then
conduct NDVI and NDBI change detection, mapping and analysis using satellite data;
and (3) identify and describe impact of the factors affecting the changes of LULC in the
study area in the period 1988–2023.
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2. Material and methods

2.1. Study area

Binh Duong province, located in the South of Vietnam, is located in geographical
coordinates with latitude 10◦35′N–11◦15′N and longitude 106◦24′E–107◦10′E, with
a total area of 2,694.64 km2 (Fig. 1) (Binh Duong Statistics Office, 2022). This province
borders with Dong Nai province, Tay Ninh province, Binh Phuoc province and Ho Chi
Minh city, about 30 km north of Ho Chi Minh city. The region’s landscape is diverse,
featuring plains, hills, and riverside areas. Around 40% of the province’s land area consists
of plains, while the remaining 60% encompasses hilly terrain and rivers. The province’s
climate is characterized as tropical monsoon, with distinct wet and dry seasons. The
average annual temperature hovers around 27◦C, and the region experiences approximately
2,500 to 2,700 hours of sunlight annually. As of the latest data available, the province’s
population, as reported in the Binh Duong statistical yearbook, was approximately
2,685,513 people in 2021 (Binh Duong Statistics Office, 2022). Urban population accounts
for about 83.42% of this population, residing in cities, towns and industrial zones, the
rest of the rural population accounts for 16.58%. Binh Duong province is a key industrial
hub in Vietnam, known for its robust economic growth and rapid urbanization. The gross
domestic product (GDP) per capita in 2020 was $4,573, with the economy primarily driven
by the manufacturing and construction sectors. Agriculture and services sectors also play
significant roles in the province’s economy. The province is home to numerous industrial
parks and export processing zones, attracting both domestic and foreign investments.

Fig. 1. Map of study area, Binh Duong province, Vietnam
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2.2. Data collection

Satellite images were used to map LULC in Binh Duong province from 1988 to 2023
and assess changes in LULC. Landsat 5-TM images were used for the years 1988 and
2004 and Landsat 9-OLI/TIRS images were used for 2023 in this study. The Landsat
images with a path/row of 125/052 were downloaded from the USGS Glovis websites
(https://glovis.usgs.gov). A detailed data summary is given in Table 1. In addition, point
data with 300 points per year were collected to evaluate the accuracy of the LULC
classification map. For 1988 and 2004, these points data were collected using Google
Earth Pro software. For 2023, field surveys used GPS to record precise coordinates of
different land cover types. To ensure robust validation, the collected field data were cross-
referenced with other available geospatial datasets, such as high-resolution aerial imagery,
cadastral maps, and land use inventories if applicable. By comparing and correlating field
measurements with these supplementary geodata sources, researchers could verify the
consistency and reliability of the LULC classification results derived from satellite imagery.
Throughout the study, ArcGIS 10.8 and Microsoft Excel 2016 software were used.

Table 1. Detailed data summary of satellite imagery used in the study

Satellite image Sensor Acquisition data Cloud cover land Landsat scene ID

Landsat 5 TM 14/01/1988 0.00 LT51250521988014BKT00

Landsat 5 TM 11/02/2004 3.00 LT51250522004042BKT00

Landsat 9 OLI/TIRS 23/02/2023 0.73 LC91250522023054LGN01

2.3. Image pre-processing and supervised classification

To acquire a comprehensive image of the study area, distinct bands from Landsat 5-TM and
Landsat 9-OLI/TIRS were combined using layer stacking (Mehdi et al., 2016; Thien et al.,
2023b). The desired study area was delineated using extract by mask tools within ArcGIS
10.8 during the subset setup process (Wahla et al., 2023). Referring to the scheme proposed
byAnderson et al. (1976) and confirmed through field surveys in the study area, five primary
LULC categories were identified, encompassing arable land, barren land, built-up areas,
forests, and waterbodies (Table 2). From the predetermined LULC categories, polygons
were drawn around pixels with common reflectance values for each category, creating
a training sample within ArcGIS 10.8 software (Thien and Phuong, 2023). Pixels enclosed
by these polygons in each Landsat image were marked to generate spectral signatures for
different LULC classes. Subsequently, a maximum likelihood classification algorithm
was applied to classify LULC based on these spectral signatures (Verma et al., 2020).
Figure 2 provides a detailed illustration of the methodology employed in this research.
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Table 2. Classes delineated from field survey

Class Description

Arable land Cropland and paddy field

Barren land Fallow land, sands and earth dumps

Built-up areas Residential areas, industrial, roads and other manmade structures

Forests Natural forest, plantations and mixed forest lands

Waterbodies Reservoirs, rivers and lakes

Fig. 2. Flow chart for methodology

2.4. Classification accuracy assessment

In the process of LULC classification, it is possible to have misclassifications between
pixels, so it is necessary to evaluate the accuracy after classification (Theres and Selvaku-
mar, 2022; Dash et al., 2023). The accuracy of the classification results is assessed using
an error matrix, which compares the results with 150 reference data points collected for
each year. User’s accuracy, producer’s accuracy, overall accuracy, and kappa coefficient
are computed based on the error matrix for each respective year (Foody, 2020; Islami et
al., 2022). The kappa coefficient serves as a measure of reliability for the classification,
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indicating the agreement between the predicted and actual classification results. User’s
accuracy, producer’s accuracy, overall accuracy, and kappa coefficient are calculated using
formulas (1), (2), (3), and (4), respectively:

User′s accuracy = Number of correctly classified pixels in each category
Total number of reference pixels in each category (row total) × 100, (1)

Producer′s accuracy = Number of correctly classified pixels in each category
Total number of reference pixels in each category (column total) × 100, (2)

Overall accuracy = Number of sampling classes classified correctly
Number of reference sampling classes × 100, (3)

Kappa =
Po − Pe

1 − Pe
, (4)

where Po is the agreement ratio between the predicted classification results and the actual
classification results. Pe is the random agreement ratio between the predicted classification
results and the actual classification results.

2.5. Estimation and correlation between NDVI and NDBI

The estimation of NDVI and NDBI from satellite imagery provides valuable information
for monitoring the health of vegetation and urbanization processes (Rouse et al., 1973;
Slamet et al., 2021; Waiyasusri, 2021; Singh et al., 2022). NDVI serves as a vegetation
index, utilizing the distinction between the near-infrared (NIR) and red (RED) bands of
satellite images. The NDVI value increases as vegetation cover expands and decreases as
vegetation cover diminishes (Rouse et al., 1973; Dutta et al., 2021). On the other hand,
NDBI serves as an urban index, utilizing the difference between the shortwave infrared
(SWIR) and near-infrared (NIR) bands of satellite images. The NDBI value increases with
the expansion of built-up areas and decreases as the built-up area decreases (Chatterjee
and Majumdar, 2022). The calculation of the NDVI and NDBI indices are performed
using formulas (5) and (6) respectively.

NDVI =
NIR − RED
NIR + RED

, (5)

NDBI =
SWIR − NIR
SWIR + NIR

. (6)

Regression analysis was used to measure the correlation between NDVI and NDBI
in Binh Duong province for the years 1988, 2004 and 2023. The correlation coefficient
values generated by the regression analysis range from -1 to +1 (Pal and Ziaul, 2017). To
perform the regression analysis, 200 random point data were generated within the study
area boundaries using the random point generator in ArcGIS 10.8 software. The extract
multi values to points tool was used to extract a value for each point data from the NDVI
and NDBI pixels. These values were exported to Excel 2016 software (Microsoft, USA)
to estimate the regression equation between NDVI and NDBI.
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3. Results and discussio

3.1. Land use/land cover classification

The map of LULC status in Binh Duong province in the three years 1988, 2004 and
2023 is shown in Figure 3. Table 3 shows the area and proportions of each LULC type
respectively. From Figure 3 and the data in Table 3, it can be seen that significant changes
have occurred in arable land and built-up classes over the 35 years in the study area.

Fig. 3. Land use/land cover maps for Binh Duong province in 1988 (a), 2004 (b), and 2023 (c)

Based on the LULC classification results in Table 3, in the year 1988, arable
land class accounted for the largest area in Binh Duong province, constituting 64.48%
(1737.43 km2) of the total area. Forests area accounted for 23.40% (630.60 km2), barren
land area accounted for 9.09% (244.94 km2), waterbodies class area accounted for 2.02%
(54.36 km2), and built-up class area had the smallest coverage at only 1.01% (27.31 km2)
(Table 3). By 2004, the areas of arable land, forests, and waterbodies classes had decreased
to 55.45% (1494.07 km2), 17.06% (459.62 km2), and 1.32% (35.67 km2), respectively
(Table 3). In contrast, the areas of barren land and built-up classes had increased to
16.75% (451.26 km2) and 9.43% (254.02 km2), respectively (Table 3). By 2023, the
area of arable land class had further increased and accounted for 77.24% (2081.23 km2).
Additionally, the area of built-up class had continued to rise and accounted for 17.21%
(463.78 km2) in 2023. Meanwhile, the areas of barren land, forests, and waterbodies
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classes had decreased to 1.67% (44.90 km2), 2.60% (70.05 km2), and 1.29% (34.68 km2),
respectively (Table 3). From the classification results, it can be observed that in 1988, the
majority of the forests class was distributed in the northwest and southeast directions. The
arable land class was distributed adjacent to the forests class. By 2004, a concentrated
built-up area appeared in the southern region of Binh Duong province, with the forests
class surrounding it. By 2023, the built-up area had expanded, leading to the loss of the
forests class. These changes reflect the ongoing urbanization and agricultural expansion
processes taking place in the province, a pattern akin to what has been observed in many
European countries. Urbanization and industrialization there have similarly led to the
expansion of built-up areas at the expense of natural habitats such as forests and wetlands
(Malinowski et al., 2020; Mingarro and Lobo, 2023). This trend is often driven by similar
factors, including population growth, economic development, and infrastructure projects.
Studies in Europe may also highlight the importance of policy interventions and land use
planning in shaping LULC dynamics, as well as the challenges associated with balancing
economic growth with environmental conservation. Furthermore, in the Baltic States
and Poland, agricultural expansion and intensification have historically been significant
drivers of LULC change, leading to the conversion of forests and grasslands into arable
land (Wiatkowska et al., 2021; Kovyazin et al., 2023). However, in recent years, there has
been an increasing recognition of the need for sustainable land management practices to
mitigate the environmental impacts of agriculture and preserve biodiversity (Gozdowski
et al., 2022; Balawejder et al., 2023; Gadal and Gloaguen, 2023).

Table 3. The land use/land cover area distribution from 1988 to 2023 in Binh Duong province

Class
1988 2004 2023

Area (km2) (%) Area (km2) (%) Area (km2) (%)

Arable land 1737.43 64.48 1494.07 55.45 2081.23 77.24

Barren land 244.94 9.09 451.26 16.75 44.90 1.67

Built-up 27.31 1.01 254.02 9.43 463.78 17.21

Forest 630.60 23.40 459.62 17.06 70.05 2.60

Waterbodies 54.36 2.02 35.67 1.32 34.68 1.29

Total 2694.64 100.00 2694.64 100.00 2694.64 100.00

The assessment of the post-classification accuracy in this study was performed by
comparing the classified LULC classes with the reference data (Singh et al., 2014;
Chughtai et al., 2021). The results of the classification evaluation showed that the overall
accuracy of the years 1988, 2004 and 2023 was 90.67%, 92.00% and 93.33%, respectively
(Table 4). Overall, the producer’s accuracy and the user’s accuracy for each soil layer in
all 3 years were above 80% (Table 4). The kappa coefficient values in 1988, 2004 and
2023 in the study area were recorded as 0.877, 0.894 and 0.908, respectively (Table 4).
Kappa coefficients ranging from 0.81 to 1.00 are considered almost perfect in LULC
classification (Rivière et al., 2018). These results show reliable land cover classification
and good consistency between referenced and classified maps.
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Table 4. Accuracy assessments for classified maps

LULC classes

1988 2004 2023
Producer’s
accuracy
(%)

User’s
accuracy
(%)

Producer’s
accuracy
(%)

User’s
accuracy
(%)

Producer’s
accuracy
(%)

User’s
accuracy
(%)

Arable land 90.74 92.45 92.98 94.64 93.10 94.74

Barren land 91.67 89.19 91.43 94.12 84.62 91.67

Built-up areas 86.67 86.67 86.96 95.24 97.87 95.83

Forests 92.59 89.29 95.00 86.36 84.62 84.62

Waterbodies 88.89 94.12 93.33 82.35 94.74 90.00

Overall accuracy (%) 90.67 92.00 93.33

Kappa Coefficient 0.877 0.894 0.908

3.2. Land use/land cover change

Figure 4 illustrates the specific changes in each LULC class during three periods
(1988–2004, 2004–2023, and 1988–2023) in Binh Duong province. The analysis of the
area changes for each LULC class during these periods is also presented in Table 5. During
the period 1988–2004, the arable land area showed the highest decrease, accounting
for 9.03% (243.36 km2) compared to the initial area. The forest and waterbodies
areas also decreased by 6.35% (170.98 km2) and 0.69% (18.69 km2), respectively.
Conversely, the built-up and barren land areas showed significant increases, with 8.41%
(226.71 km2) and 7.66% (206.32 km2), respectively. Examining the LULC change
pattern during the period 2004–2023, it can be observed that the arable land area
increased by 21.79% (587.16 km2). Along with that, the built-up area continued to
expand by 7.78% (209.76 km2). Meanwhile, the forest and waterbodies areas experienced
further decreases during the period 2004–2023, with 14.46% (389.57 km2) and 0.04%
(0.99 km2), respectively (Table 5). Additionally, during the period 2004–2023, the barren
land area decreased significantly compared to the increasing trend observed in the period
1988–2004, with a total reduction of 15.08% (406.36 km2) (Table 5).

Table 5. The land use/land cover change analysis from 1988 to 2023 in Binh Duong province

Class
1988–2004 2004–2023 1988–2023

Area (km2) (%) Area (km2) (%) Area (km2) (%)

Arable land –243.36 –9.03 587.16 21.79 343.80 12.76

Barren land 206.32 7.66 –406.36 –15.08 –200.04 –7.42

Built-up areas 226.71 8.41 209.76 7.78 436.47 16.20

Forests –170.98 –6.35 –389.57 –14.46 –560.55 –20.80

Waterbodies –18.69 –0.69 –0.99 –0.04 –19.68 –0.73
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Fig. 4. Land use/land cover changes maps for Binh Duong province in 1988, 2004, and 2023

In general, in the past 35 years (1988–2023) in the study area, there have been notable
changes in LULC. From Figure 4 and Table 5, it is shown that the built-up area has steadily
increased by 16.20% (436.47 km2) and became prominent in Binh Duong province in
the period 1988–2023. The main reason for this expansion is the successful development
of industrial zones and clusters, which has created a demand for labor and led to an
increase in the influx of migrant workers. The growing population, both from migration
and local residents, has resulted in an increased demand for residential land and housing
construction (Sokolov et al., 2019; Surya et al., 2021). By 2023, additional residential
areas have been established to accommodate the resettlement needs of households affected
by provincial development projects. These residential areas also cater to the housing
needs of industrial workers, production clusters, and the demand for separate households
(Lenzen et al., 2006). In contrast, most of the forests area was converted to other LULC
with 20.80% (560.55 km2) (Table 5). Meanwhile, the area of arable land and barren
land has increased and decreased differently between the two periods (1988–2004 and
2004–2023). Overall over the past 35 years, the area of arable land has increased by
12.76% (343.80 km2), and the area of barren land has decreased by 7.42% (200.04 km2)
(Table 5). The main reason for the significant reduction in unused land is the conversion of
barren land for arable land. Additionally, the arable land class also started encroaching on
the forested areas. The development of irrigation systems in the Dong Nai river basin has
provided proactive water resources for irrigation, enabling people to exploit previously
unused land for agricultural purposes (Bo et al., 2019). The area of water bodies in the
period 1988–2023 decreased by 0.73% (19.68 km2) (Table 5).

3.3. The NDVI and NDBI

The high NDVI index values indicate denser and healthier vegetation, while lower values
correspond to sparse or no vegetation (Rouse et al., 1973; Rousta et al., 2020; Lemenkova
and Debeir, 2023). In 1988, the NDVI value ranged from –0.46 to +0.69 (Fig. 5a); in 2004,
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NDVI values ranged from –0.51 to +0.74 (Fig. 5b); and in 2023, NDVI values ranged from
–0.36 to+0.62 (Fig. 5c). Significant spatial changes in vegetation cover and green area were
observed between the lowest and highest NDVI values recorded in 2004, along with im-
proved agricultural productivity in areas such as forests and vegetation cover (Figs. 5a,b,c).
The NDBI index is used to assess the level of urban development in the study area, the
NDBI values increase as the built-up area increases and decreases when the built-up area
decreases (Zheng et al., 2021; Chatterjee and Majumdar, 2022). In 1988, the NDBI value
ranged from –0.57 to +0.74 (Fig. 5d); in 2004, NDBI values ranged from –0.83 to +0.65
(Fig. 5e); and in 2023, the NDBI values ranged from –0.47 to +0.65 (Fig. 5f) The red areas
in Figures 5d,e and 5f show minimal vegetation cover, such as built-up and barren land.

Fig. 5. NDVI and NDBI maps for Binh Duong province in 1988, 2004, and 2023

A linear regression analysis was conducted to demonstrate the relationship between
two indices (NDVI and NDBI) (Florim et al., 2021). The changes in NDBI values related to
land use were assessed by evaluating the variations in land use intensity within the LULC
units through regression analysis (R2) (Majeed et al., 2021). Furthermore, a negative
correlation between NDVI and NDBI was identified. Specifically, correlation coefficients
of R2 = 0.7249 for 1988, R2 = 0.8001 for 2004, and R2 = 0.7799 for 2023 were depicted
in Figure 6. As observed in Figure 6, this illustrates the relationship between the vegetation
index (NDVI) and the integrated component derived from NDBI. The regression analysis
also revealed that the highest NDBI values corresponded to areas with the lowest NDVI
values, and vice versa. This clearly indicates that the increase in built-up areas and barren
land leads to a decrease in vegetation coverage.
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Fig. 6. Regression analyses between NDVI and NDBI in Binh Duong province

4. Conclusion

Our research used remote sensing and GIS to map LULC, thus detecting and evaluating
the level of change in LULC in Binh Duong province, Vietnam, from 1988 to 2023, to
better understand the LULC change process. Over the 35-year period, the study area has
experienced a decline in forests, barren land, and waterbodies classes, with area decreases
of 20.80%, 7.42%, and 0.73%, respectively. Additionally, there has been a substantial
increase in the extent of arable land and built-up class areas from 1988 to 2023, with a total
increase of 12.76% and 16.20%, respectively. The NDVI and NDBI indices were also
employed to evaluate changes in land cover characteristics, revealing a strong correlation
between impervious surfaces and vegetation cover. Forested land may continue to decrease
due to population growth, human settlement, poverty, and the demand for arable land to
meet the needs of the local population in the study area. The results show that the reduction
of forested areas and the expansion of arable land and built-up areas over the past 35 years
reflect human activities influenced by national and local policies, leading to deforestation,
loss of forest biodiversity, and decreased ecosystem services in the study area. Addressing
deforestation, forest degradation, urban expansion, construction, arable land conversion,
and the loss of wetlands and water bodies in the study area requires urgent intervention
from forest managers, environmentalists, decision-makers, and other stakeholders.
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