
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 73(2), 2025, Article number: e153228
DOI: 10.24425/bpasts.2025.153228

MECHANICAL AND AERONAUTICAL ENGINEERING, THERMODYNAMICS

Equilibrated residual method for estimation
of modelling and approximation errors

in complex piezoelectric models
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Abstract. The article presents the equilibrated residual method (ERM) of error estimation in coupled problems in the case of complex
piezoelectric models. These models include hierarchical, first-order, and transition models within the mechanical field of displacements, as well
as hierarchical models within the electric field of potential. Three (classical, modified and enhanced) transition models are considered. The
paper presents a variational formulation of the model problem of general piezoelectricity in the case of complex piezoelectric models and the
finite element approximation of this problem. Next, the equilibration residual method for coupled problems of piezoelectricity and complex
piezoelectric models is presented. The mechanical, electric and coupled parts of the modelling, approximation and total error estimators, and
true errors are given. Effectivity indices (the ratio of estimated error to true error) are used to assess the quality of error estimation in the case of
three error parts and three types of error for the complex models of piezoelectric plates. The effectivity results for simple piezoelectric models
and uncoupled problems of elasticity and dielectricity are applied as references.
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1. INTRODUCTION

The main objective of the paper is to propose and verify the
equilibrated residual method (ERM) of error estimation in the
case of piezoelectrics. The ERM estimated error values can
be potentially used for the adaptive analysis of simple (one
model applied) and complex (multiple models applied) mod-
els of piezoelectrics. The simple and complex models are used
to model piezoelectric transducers (actuators and sensors). The
complex piezoelectric description requires the application of
the transition models between the basic (hierarchical and first-
order) models. The first (classical) transition model guarantees
continuity of displacements on the boundaries between the tran-
sition and basic (hierarchical and first-order) models. The sec-
ond (modified) one allows an additional smooth transition of the
stress state between the basic models, while the third (enhanced)
one additionally ensures a smooth transition of the strain state
between the basic models.

1.1. State of the art

The equilibrated residual method applied to the finite element
method (FEM) was developed in [1–3]. Its final version is pre-
sented in [4]. The application of ERM to error estimation for el-
liptic problems was performed in [5] and [6]. Elasticity problems
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were considered in this context in [7]. ERM error estimation
for conventional (mid-surfaces dofs) and 3D-based (through-
thickness dofs) models of thin-walled structures were presented
in [8] and [9], respectively. Application of the method to 3D-
based models of dielectric and piezoelectric structures can be
found respectively in [10] and [11].

1.2. Novelty of the paper

Our previous work on the theory and application of the residual
equilibrated method considered uncoupled 3D-based problems
of elasticity [9] and dielectricity [12,13]. Next, the method was
proposed [13] and applied [10] to coupled 3D-based problems of
piezoelectricity. Simple, homogeneous, hierarchical piezoelec-
tric models were used within the latter work. We also suggested
the use of ERM for complex piezoelectric models, taking into
account the simplest (classical) transition model [14]. Here, we
apply the method to the complex piezoelectric models with the
use of three different (classical, modified and enhanced) transi-
tion models. Also, the homogeneous (basic) piezoelectric model
of the first order is applied in the present work.

1.3. The methodology used

The applied ERM error estimation is assigned to the control of
model and discretization adaptation within complex 3D-based
piezoelectric hpq-approximated finite element models. The ℎ, 𝑝
and 𝑞 denote element size, and longitudinal and transverse
orders of approximation within piezoelectric finite elements.
These two orders are defined independently for the mechanical
field of displacements and the electric field of potential, while
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the size of the element is common for both fields. The applied
approach uses hierarchical modelling and hierarchical approx-
imations described in [13]. The starting point for hierarchical
modelling and hierarchical approximations was the papers [15]
and [16]. Hierarchical models and approximations of piezoelec-
tric basic (hierarchical and first-order) and transition elements
were proposed in [10, 13] and [17], respectively. The starting
point was the work [18] and [19].

The mentioned hierarchical piezoelectric models are 3D mod-
els polynomially constrained through the thickness and applied
to thin-walled domains. The order of these polynomial con-
straints determines the model order. In the case of the first-
order model, the hierarchical model must be modified due to the
plane-stress assumption and kinematic assumptions within the
mechanical field of the piezoelectric.

2. MODEL PROBLEM

2.1. Variational formulation

The variational formulation holds in volume 𝑉 of the piezo-
electric. This volume can be any bounded three-dimensional
domain. In this paper, however, we choose the geometry typ-
ical for piezoelectric transducers (actuators or sensors), i.e.,
symmetric-thickness, thin- or thick-walled domains. These do-
mains are defined with the use of the mid-surface and the
thickness vector. For such domains elasticities, dielectric con-
stants, anisotropic piezoelectric constants, strains and electric
field are defined in two longitudinal and one transverse direc-
tions 𝛼, 𝛽, 𝛾, 𝛿 = 1,2,3, while displacements and forces are
defined globally 𝑖, 𝑗 , 𝑘, 𝑙 = 1,2,3. In the definition of the piezo-
electric constants, the third local direction is the polarization
direction. The relation between the global Cartesian and local
Cartesian directions reads 𝑥𝛼 = 𝜃𝛼𝑖𝑥𝑖 , where 𝜃𝛼𝑖 denotes cosines
between the directions of two types. These cosines are consistent
with the parametric geometry representation presented in [20]
and [21].

The stationarity condition of the electromechanical potential
energy functional 𝛱 (v,𝜓) reads:

𝛱 (v,𝜓) = −𝐵(v,u) +𝐶 (v, 𝜙) +𝐶 (𝜓,u)

+ 𝑏(𝜓,𝜙) + 𝐿 (v) − 𝑙 (𝜓) = 0, (1)

where u and 𝜙 represent solution quantities while v and 𝜓 rep-
resent admissible quantities. Above, the first term represents the
strain energy, the next two terms denote electro-mechanical cou-
pling energy, the fourth stands for the electric field energy, and
the last two terms define the work of external forces and the work
of external electric charges. The coupled solution belongs to the
following space: (u, 𝜙) ∈ 𝑈 ×𝛷. The spaces for displacements
and electric potential are 𝑈 =

{
v ∈

(
𝐻1 (𝑉)

)3 : v = 0 on𝑊
}

and
𝛷 =

{
𝜓 ∈ 𝐻1 (𝑉) : 𝜓 = 0 on 𝐹

}
with 𝑊 and 𝐹 being the sup-

ported and grounded parts of the boundary 𝜕𝑉 ≡ 𝑆 of the vol-
ume 𝑉 .

In the bilinear form:

𝐵(v,u) =
∫
𝑉

𝐷𝛼𝛽𝛾𝛿𝜀𝛾𝛿 (u)𝜀𝛼𝛽 (v) d𝑉

=

∫
𝑉

𝐷𝛼𝛽𝛾𝛿𝑢𝛾, 𝛿𝑣𝛼,𝛽 d𝑉. (2)

𝐷𝛼𝛽𝛾𝛿 and 𝜀𝛾𝛿 (u) (𝛼, 𝛽, 𝛾, 𝛿 = 1,2,3), where u = {𝑢𝑖} and
𝑢𝛼 = 𝜃𝛼𝑖𝑢𝑖 and 𝑢𝛾, 𝛿 = 𝜃𝛾𝑖𝑢𝑖, 𝑗𝜃 𝑗 𝛿 , stand for the tensors of elastic
constants and local strains, while 𝑢𝑖 denotes the global compo-
nents of the displacement vector u. The vector v represents
kinematically admissible displacements.

In the mixed forms:

𝐶 (v, 𝜙) =
∫
𝑉

𝐶𝛼𝛽𝛾𝐸𝛾 (𝜙)𝜀𝛼𝛽 (v) d𝑉

=

∫
𝑉

𝐶𝛼𝛽𝛾𝜙,𝛾𝑣𝛼,𝛽 d𝑉, (3)

𝐶 (𝜓,u) =
∫
𝑉

𝐶𝛼𝛾𝛿𝜀𝛾𝛿 (u)𝐸𝛼 (𝜓) d𝑉

=

∫
𝑉

𝐶𝛼𝛾𝛿𝑢𝛾, 𝛿𝜓,𝛼 d𝑉, (4)

𝐶𝛼𝛽𝛾 and 𝐸𝛾 (𝜙) (𝛼, 𝛽, 𝛾 = 1,2,3) stand for the tensor of piezo-
electric constants at constant strain [22] and the electric field
vector expressed by the potential 𝜙. The function 𝜓 represents
electrostatically admissible values of this potential.

In the second bilinear form:

𝑏(𝜓,𝜙) =
∫
𝑉

𝛾𝛼𝛽𝐸𝛽 (𝜙)𝐸𝛼 (𝜓) d𝑉

=

∫
𝑉

𝛾𝛼𝛽𝜙,𝛽𝜓,𝛼 d𝑉, (5)

𝛾𝛼𝛽 stands for the tensor of dielectric constants at constant
strain [22].

In the linear forms:

𝐿 (v) =
∫
𝑉

𝑓 𝑖𝑣𝑖 d𝑉 +
∫
𝑃

𝑝𝑖𝑣𝑖 d𝑆, (6)

𝑙 (𝜓) =
∫
𝑄

𝑐𝜓d𝑆. (7)

𝑓 𝑖 and 𝑝𝑖 (𝑖 = 1,2,3) define external volume and surface forces
and 𝑐 is the external surface electric charge. The symbols 𝑃 and
𝑄 denote the loaded and charged parts of the surface 𝑆 of the
volume 𝑉 of the piezoelectric, respectively.

2.2. The applied hierarchical, first-order and transition
piezoelectric models

In this paper, the complex description of the mechanical
field [20] allows for the use of the hierarchical shell model M𝐼,
𝐼 ≥ 2, with 𝐼 standing for the order of the model. Also, the
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first-order Reissner-Mindlin (RM) model is applied. Both mod-
els are connected by the transition model TR ≡ M𝐼/RM. In the
complex description of the electric field [21], the symmetric-
thickness hierarchical model E𝐽, 𝐽 ≥ 1 is applied, with 𝐽 be-
ing the order of the model. As a result, the following division
𝑉 =𝑉M𝐼,E𝐽 ∪𝑉TR,E𝐽 ∪𝑉RM,E𝐽 holds. In the special case of sim-
ple homogeneous models, we will limit ourselves to 𝑉 =𝑉M𝐼,E𝐽
or 𝑉 =𝑉RM,E𝐽 .

In all the above-mentioned models, 3D-based approach is
applied. This means that the constitutive relations for the hierar-
chical shell models [20] and hierarchical symmetric-thickness
dielectric models [21] are the same as for the 3D elasticity
and 3D dielectricity. The displacement and electric potential
fields are defined as three-dimensional and are polynomially
constrained through the thickness. For the other models, the fol-
lowing modifications presented below must be introduced into
hierarchical piezoelectric models.

In the case of the first-order shell model, the following rela-
tion of plain stress assumption for the local stress components
𝜎𝛼𝛽 , 𝛼, 𝛽 = 1,2,3 must be introduced into the piezoelectric
constitutive relations:

𝜎33 = 𝐷 [𝜈𝜀11 + 𝜈𝜀22 + (1− 𝜈)𝜀33] −𝐶33𝐸3 = 0. (8)

Above, 𝐷 = 𝐸/[(1+ 𝜈) (1−2𝜈)] with 𝐸 and 𝜈 denoting Young’s
modulus and Poisson’s ratio, 𝐶33 stands for a non-zero term of
the matrix representation of the piezoelectric constants 𝐶𝛼𝛽𝛾 ,
𝛼, 𝛽, 𝛾 = 1,2,3 under constant strain.

Also, the Reissner-Mindlin kinematic assumption of deforma-
tion of the lines normal to the mid-surface and oriented along
the third local (transverse) direction 𝑥𝛿 , 𝛿 = 3, onto straight lines
holds for all three local directions 𝛼 = 1,2,3:

𝑢𝛼 =
1
2

(
𝑢𝑏𝛼 +𝑢𝑡𝛼

)
+ 𝑥𝛿
𝑡

(
𝑢𝑡𝛼 −𝑢𝑏𝛼

)
. (9)

Above, the quantity 𝑡 in the denominator is the structure thick-
ness. Additionally, the assumption of no elongation of these
normal holds:

𝑢𝑡𝛿 −𝑢
𝑏
𝛿 = 0 (10)

with 𝛿 = 3 denoting the third (transverse) local displacement
component. The indices 𝑡 and 𝑏 correspond to the top and bottom
surfaces of the thin-walled piezoelectric domain.

In the case of the classical transition element, the constitutive
relations are three-dimensional and are taken from the hierar-
chical piezoelectric models.

In the case of the modified and enhanced transition models,
the transition from the plane stress to the three-dimensional
stress state is assumed for the stress components 𝜎𝛼𝛽 in the
local directions (𝛼, 𝛽 = 1,2,3) and described with the relation:

𝜎33 = −𝐶33𝐸3 +𝐷
{
𝜈𝜀11 + 𝜈𝜀22 + (1− 𝜈)

[
𝜁𝜀33

+ (1− 𝜁)
(
−𝜈

1− 𝜈 (𝜀11 + 𝜀22) +
𝐶33

𝐷 (1− 𝜈) 𝐸3

) ]}
, (11)

where 𝜁 represents the linear blending function equal to 1 at
the boundary with the three-dimensional model and 0 at the
boundary with the first-order model.

In the case of the enhanced transition model, the transverse
displacement field changes from no elongation of the normals
to the mid-surface (at the boundary of the first-order model)
to free elongation of these normals (at the boundary with the
hierarchical shell model). Now, the function 𝜁 plays the role of a
gradually switching function. By this assumption, one can write:

𝑢𝛼 =
1
2

(
𝑢0
𝛼 +𝑢𝐼𝛼

)
+ 𝛿𝛼𝛽

𝑥𝛿

𝑡

(
𝑢0
𝛽 −𝑢

𝐼
𝛽

)
+ 𝛿𝛼𝛿𝜁

𝑥𝛿

𝑡

(
𝑢0
𝛿 −𝑢

𝐼
𝛿

)
+ 𝜁

𝐼−1∑︁
𝑙=1

𝑓𝑙 (𝑥𝛿) 𝑢𝑙𝛼 , (12)

where 𝛼 = 1,2,3, 𝛽 = 1,2, 𝛿 = 3 and 𝛿𝛼𝛽 , 𝛿𝛼𝛿 represent Kro-
necker deltas, 𝑓𝑙 denotes linear (𝑙 = 0 or 𝑙 = 𝐼) or higher-order
(𝑙 = 1,2, . . . , 𝐼 − 1) polynomials defined in accordance with
the displacement field of the hierarchical shell model M𝐼 of
order 𝐼 [17].

2.3. Finite element formulation

Equation (1) can be converted into two coupled equations:{
𝐵(v,u) −𝐶 (v, 𝜙) = 𝐿 (v),

−𝐶 (𝜓,u) − 𝑏(𝜓,𝜙) = −𝑙 (𝜓).
(13)

The problem (13), after its finite element approximation, can be
described by:{

𝐵(vℎ𝑝𝑞 ,uℎ𝑝𝑞) −𝐶 (vℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) = 𝐿 (vℎ𝑝𝑞),
−𝐶 (𝜓ℎ𝜋𝜌,uℎ𝑝𝑞) − 𝑏(𝜓ℎ𝜋𝜌, 𝜙ℎ𝜋𝜌) = −𝑙 (𝜓ℎ𝜋𝜌).

(14)

Above, (uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) are the FEM approximation of the so-
lution (u, 𝜙), and vℎ𝑝𝑞 and 𝜓ℎ𝜋𝜌 stand for the kinematically
admissible displacements and the electrostatically admissible
potential. The independent longitudinal and transverse orders
of approximation of displacements and electric potential are de-
noted 𝑝, 𝑞 and 𝜋, 𝜌. The error of

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
with respect to

(u, 𝜙) is of interest in this work. The numerical solution belongs
to the approximated space, i.e.,

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
∈ 𝑈ℎ𝑝𝑞 ×𝛷ℎ𝜋𝜌,

where𝑈ℎ𝑝𝑞 =
{
vℎ𝑝𝑞 ∈

(
𝐻1 (𝑉)

)3 : vℎ𝑝𝑞 = 0 on𝑊
}

and𝛷ℎ𝜋𝜌 ={
𝜓ℎ𝜋𝜌 ∈ 𝐻1 (𝑉) : 𝜓ℎ𝜋𝜌 = 0 on 𝐹

}
.

The way the assumptions on constitutive relations, displace-
ment field, and electric field are introduced into the finite ele-
ment formulation of the hierarchical, first-order and three tran-
sition elements is presented in [17].

3. ERROR ESTIMATION IN BASIC AND TRANSITION
ELEMENTS

In this section, we will apply the equilibrated residual method [4]
for error estimation in the basic (hierarchical and first-order) and
transition finite elements within complex piezoelectric domains.
Following this method, we will investigate the global estimate
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and element estimators as well. All estimators will be defined
as differences in the potential energies 𝛱 corresponding to the
ERM estimate

(
𝑢̂, 𝜙

)
of the exact solution (u, 𝜙) and the numer-

ical solution
(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
.

3.1. Error estimation

The global estimator 𝜂 is defined as a sum of elemental estima-
tors

𝑒
𝜂 in the following way:

𝜂 = −𝛱
(
û, 𝜙

)
+𝛱

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
=
∑︁
𝑒

𝑒
𝜂 . (15)

For any element 𝑒, the estimator is equal to

𝑒
𝜂 = −

𝑒

𝛱
(
û, 𝜙

)
−
∫

𝑒

𝑆 \𝑆

û𝑇
〈
𝑒r(uℎ𝑝𝑞)

〉
d
𝑒

𝑆

+
∫

𝑒

𝑆 \𝑆

𝜙

〈𝑒
ℎ(𝜙ℎ𝜋𝜌)

〉
d
𝑒

𝑆+
𝑒

𝛱

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
, (16)

where the first three terms denote the potential energy of the
estimate of the exact solution of the element 𝑒. The first term
consists of the element energies (strain, electric field and cou-
pling ones) and the work of the external forces and electric
charges defined with equations (2)–(7) after the division of the
domain 𝑉 into element subdomains

𝑒

𝑉 , 𝑒 = 1,2, . . . , 𝐸 with 𝐸
being the total number of elements in the domain. The next
two terms represent the work of inter-element reaction stresses
𝑒r(uℎ𝑝𝑞) and equivalent charges

𝑒

ℎ
(
𝜙ℎ𝜋𝜌

)
acting on the internal

surfaces
𝑒

𝑆 \𝑆. These stresses and charges are defined in [11]
in the way typical for the equilibrated residual method. The
fourth term of equation (16) stands for the potential energy of
the known numerical solution

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
and it is defined as

in [11], i.e.,

𝑒

𝛱

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
= −1

2
𝑒

𝐵

(
uℎ𝑝𝑞 ,uℎ𝑝𝑞

)
+ 1

2
𝑒

𝐶

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
+ 1

2
𝑒

𝐶

(
𝜙ℎ𝜋𝜌,uℎ𝑝𝑞

)
+ 1

2
𝑒

𝑏

(
𝜙ℎ𝜋𝜌, 𝜙ℎ𝜋𝜌

)
. (17)

The above equations (16) and (17) are valid for hierarchical,
first-order, and transition piezoelectric elements.

3.2. Local problems of elements

In the case of the total error estimation, the condition of sta-
tionarity of the functional from equation (15) (completed with
equations (16) and (17)) can be replaced by the element station-
arity conditions of the form:

0 = −
𝑒

𝛱

(
v𝐻𝑃𝑄,𝜓𝐻ΠP

)
−
∫

𝑒

𝑆 \𝑆

(
v𝐻𝑃𝑄

)𝑇 〈𝑒r(uℎ𝑝𝑞)〉 d
𝑒

𝑆

+
∫

𝑒

𝑆 \𝑆

𝜓𝐻ΠP
〈𝑒
ℎ(𝜙ℎ𝜋𝜌)

〉
d
𝑒

𝑆, (18)

where the global estimate
(
û, 𝜙

)
of the exact solution (u, 𝜙) was

replaced by a collection of its local finite element approxima-
tions

(
u𝐻𝑃𝑄, 𝜙𝐻ΠP) ∈ 𝑈𝐻𝑃𝑄 ×𝛷𝐻ΠP. The exact result of the

estimation corresponds to 1/𝐻,𝑃,𝑄→∞ and 1/𝐻,Π,P →∞.
In practice, we use lower values, i.e., 𝐻 = ℎ, 𝑃 = 𝑝+1,𝑄 = 𝑞+1
and Π = 𝜋 +1, P = 𝜌 +1, where ℎ, 𝑝, 𝑞, 𝜋, 𝜌 stand for discretiza-
tion parameters in the assessed global problem and 𝐻,𝑃,𝑄,Π,P
are their counterparts in the local problems.

In turn, in the case of the approximation error (𝑄 ≡ 𝑞 and
P ≡ 𝜌), the element component of the stationarity condition of
the functional from equations (15)–(17) must be defined in the
following way:

0 = −
𝑒

𝛱

(
v𝐻𝑃𝑞 ,𝜓𝐻Π𝜌

)
−
∫

𝑒

𝑆 \𝑆

(
v𝐻𝑃𝑞

)𝑇 〈𝑒r(uℎ𝑝𝑞)〉 d
𝑒

𝑆

+
∫

𝑒

𝑆 \𝑆

𝜓𝐻Π𝜌
〈𝑒
ℎ(𝜙ℎ𝜋𝜌)

〉
d
𝑒

𝑆, (19)

In this case, the exact solution (u𝑞 , 𝜙𝜌) replaces (u, 𝜙) in equa-
tions (15)–(17). Vectors u𝑞 and 𝜙𝜌 correspond to the element
models M𝐼 and E𝐽 of assumed orders 𝐼 = 𝑞 and 𝐽 = 𝜌 (see [13]
for details). The infinite values of 𝐻,𝑃,Π are replaced with
𝐻 = ℎ, 𝑃 = 𝑝 +1, and Π = 𝜋 +1. Additionally, the local coupled
solution belongs to:

(
u𝐻𝑃𝑞 , 𝜙𝐻Π𝜌

)
∈𝑈𝐻𝑃𝑞 ×𝛷𝐻Π𝜌.

In the case of the Dirichlet-type local problems (elements
adjacent to the boundary parts 𝑊 and 𝐹 of the global domain),
the local (element) spaces 𝑈𝐻𝑃𝑄 (or 𝑈𝐻𝑃𝑞) and 𝛷𝐻ΠP (or
𝛷𝐻Π𝜌) are defined analogously to the global spaces 𝑈ℎ𝑝𝑞 and
𝛷ℎ𝜋𝜌 presented below equation (14), with element volume

𝑒

𝑉

and element surface parts
𝑒

𝑊 ,
𝑒

𝐹,
𝑒

𝑆 replacing the global domain
quantities 𝑉 and 𝑊 , 𝐹, 𝑆. In the case of the Neumann-type
local problems (elements non-adjacent to the boundary parts
𝑊 and 𝐹), these spaces must exclude rigid body motions in
the displacement field and underdetermination of the poten-
tial field.

With the use of the potential energy definition of equation (1)
(completed with equations (2)–(7)), the stationarity equations
(18) and (19) can be converted to:



𝑒

𝐵

(
v𝐻𝑃𝑄,u𝐻𝑃𝑄

)
−
𝑒

𝐶

(
v𝐻𝑃𝑄, 𝜙𝐻ΠP

)
=
𝑒

𝐿

(
v𝐻𝑃𝑄

)
+
∫

𝑒

𝑆 \𝑆

(
v𝐻𝑃𝑄

)𝑇 〈𝑒r(uℎ𝑝𝑞)〉 d
𝑒

𝑆,

𝑒

𝐶

(
𝜓𝐻ΠP,u𝐻𝑃𝑄

)
+
𝑒

𝑏

(
𝜓𝐻ΠP, 𝜙𝐻ΠP

)
=
𝑒

𝑙

(
𝜓𝐻ΠP

)
+
∫

𝑒

𝑆 \𝑆

𝜓𝐻ΠP
〈𝑒
ℎ(𝜙ℎ𝜋𝜌)

〉
d
𝑒

𝑆

(20)

and
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

𝑒

𝐵

(
v𝐻𝑃𝑞 ,u𝐻𝑃𝑞

)
−
𝑒

𝐶

(
v𝐻𝑃𝑞 , 𝜙𝐻Π𝜌

)
=
𝑒

𝐿

(
v𝐻𝑃𝑞

)
+
∫

𝑒

𝑆 \𝑆

(
v𝐻𝑃𝑞

)𝑇 〈𝑒r(uℎ𝑝𝑞)〉 d
𝑒

𝑆,

𝑒

𝐶

(
𝜓𝐻Π𝜌,u𝐻𝑃𝑞

)
+
𝑒

𝑏

(
𝜓𝐻Π𝜌, 𝜙𝐻Π𝜌

)
=
𝑒

𝑙

(
𝜓𝐻Π𝜌

)
+
∫

𝑒

𝑆 \𝑆

𝜓𝐻Π𝜌
〈𝑒
ℎ(𝜙ℎ𝜋𝜌)

〉
d
𝑒

𝑆

(21)

The above relations can be used for the determination of the
approximated local solutions corresponding to the total error
estimation and the approximated local solutions corresponding
to the approximation error estimation, respectively.

3.3. Determination of the equilibrated inter-element
stresses and charges

The vector of the equilibrated inter-element stresses is defined
in the following way:〈

𝑒r(uℎ𝑝𝑞)
〉
=
𝑓 𝑒
𝜶
𝑒r
(
uℎ𝑝𝑞

)
+
𝑒 𝑓
𝜶

𝑓
r
(
uℎ𝑝𝑞

)
, (22)

where
𝑒r and

𝑓
r are the surface stress vector of element 𝑒 and its

neighbour 𝑓 , while
𝑓 𝑒
𝜶 and

𝑒 𝑓
𝜶 = 1−

𝑓 𝑒
𝜶 are the so-called splitting

functions (see [4] for the explanation). By analogy, inter-element
equivalent charges can be defined as:〈𝑒

ℎ(𝜙ℎ𝜋𝜌)
〉
=
𝑓 𝑒

𝛽
𝑒

ℎ

(
𝜙ℎ𝜋𝜌

)
+
𝑒 𝑓

𝛽
𝑓

ℎ

(
𝜙ℎ𝜋𝜌

)
, (23)

where
𝑒

ℎ and
𝑓

ℎ are equivalent surface charges of the elements 𝑒

and 𝑓 . Subsequently,
𝑓 𝑒

𝛽 and
𝑒 𝑓

𝛽 = 1−
𝑓 𝑒

𝛽 are the corresponding
splitting functions.

To determine the nodal splitting factors
𝑓 𝑒
𝜶 𝑘 and

𝑓 𝑒

𝛽 𝑘 of the

linear splitting functions
𝑓 𝑒
𝜶 and

𝑓 𝑒

𝛽 the following definitions are
applied:

𝑓 𝑒
𝜶 =

∑︁
𝑘

𝑓 𝑒
𝜶 𝑘 𝜒𝑘 ,

𝑓 𝑒

𝛽 =
∑︁
𝑘

𝑓 𝑒

𝛽 𝑘 𝜒𝑘 , (24)

where 𝑘 = 1,2, . . . , 𝐾 and 𝐾 is the total number of the vertex
nodes in the element, while 𝜒𝑘 are vertex node shape functions.

The starting point for the determination procedure is the load
compatibility condition [6] extended for the case of piezoelec-
tricity [11]. The nodal contribution to this condition reads:

0 = −
𝑒

𝐵

(
uℎ𝑝𝑞 , 𝝌𝑘

)
+
𝑒

𝐶

(
𝜙ℎ𝜋𝜌, 𝝌𝑘

)
+
𝑒

𝐿
(
𝝌𝑘

)
+
∫

𝑒

𝑆 \𝑆

𝝌𝑘
𝑇
〈
𝑒r
(
uℎ𝑝𝑞

)〉
d
𝑒

𝑆 . (25)

In the case of an electric field, the external and equivalent charge
compatibility condition holds (see [11]). Its nodal contribu-
tion is:

0 =
𝑒

𝑏

(
𝜙ℎ𝜋𝜌, 𝜒𝑘

)
+
𝑒

𝐶

(
uℎ𝑝𝑞 , 𝜒𝑘

)
−
𝑒

𝑙 (𝜒𝑘)

+
∫

𝑒

𝑆 \𝑆

𝜒𝑘

〈𝑒
ℎ

(
𝜙ℎ𝜋𝜌

)〉
d
𝑒

𝑆 . (26)

Equations (25) and (26) are valid for the vertex nodes of the hi-
erarchical shell models M𝐼, 𝐼 ≡ 𝑞 ≥ 2 and symmetric-thickness
electric models E𝐽, 𝐽 ≡ 𝜌 ≥ 1. We will call such nodes hierarchi-
cal vertex nodes and the corresponding vertex shape functions
hierarchical vertex shape functions. These two relations are also
valid for hierarchical vertex nodes of the transition elements
(TR,E𝐽), where TR ≡ M𝐼/RM.

In the case of the first-order model RM (𝑞 = 1), equation (25)
must be modified. Firstly, the hierarchical vertex shape func-
tions must be replaced by the first-order vertex shape func-
tions defined as 𝜆𝑘 = 0.5

(
𝜒𝑘 + 𝜒𝑘+𝐾/2

)
for 𝑘 = 1,2, . . . , 𝐾/2 and

𝜆𝑘 = 0.5
(
𝜒𝑘−𝐾/2 + 𝜒𝑘

)
for 𝑘 = 𝐾/2+1, 𝐾/2+2, . . . ,𝐾 to satisfy

equation (10) of no elongation of the lines perpendicular to the
shell mid-surface (see [9]). Additionally, equation (25) must be
written using the nodal direction consistent with the Reissner-
Mindlin no-elongation condition, i.e.,

0 = −
𝑒

𝐵

(
uℎ𝑝𝑞 ,𝜽𝑘𝝀𝑘

)
+
𝑒

𝐶

(
𝜙ℎ𝜋𝜌,𝜽𝑘𝝀𝑘

)
+
𝑒

𝐿 (𝜽𝑘𝝀𝑘)

+
∫

𝑒

𝑆 \𝑆

𝝀𝑘
𝑇𝜽𝑇𝑘

〈
𝑒r
(
uℎ𝑝𝑞

)〉
d
𝑒

𝑆 (27)

where 𝜽𝑘 represents the nodal transformation matrix of the
global directions (𝑖 = 1,2,3) to the local directions 𝛼 = 1,2,3 at
the node 𝑘 . This matrix is consistent with the matrix 𝜽 = {𝜃𝛼𝑖}
introduced for the parametric geometry representation (see Sec-
tion 2.1).

After substitution of equations (22), (23), and (24), respec-
tively into equations (25) and (26) one can obtain the following
directional conditions for the hierarchical vertex nodes corre-
sponding to the mechanical field:

0 = −
𝑒

𝐵

(
uℎ𝑝𝑞 , 𝝌𝑘

)
+
𝑒

𝐶

(
𝜙ℎ𝜋𝜌, 𝝌𝑘

)
+
𝑒

𝐿
(
𝝌𝑘

)
+
∑︁
𝑓


𝑓 𝑒
𝜶 𝑘

∫
𝑒 𝑓

𝑆

𝝌𝑘
𝑇 𝑒r

(
uℎ𝑝𝑞

)
d
𝑒

𝑆+
𝑒 𝑓
𝜶 𝑘

∫
𝑒 𝑓

𝑆

𝝌𝑘
𝑇 𝑒r

(
uℎ𝑝𝑞

)
d
𝑒

𝑆

 (28)

with
𝑒 𝑓
𝜶 𝑘 = {𝛼𝑖}, 𝑖 = 1,2,3. The scalar condition for the hierar-

chical vertex nodes of the electric field reads:

0 =
𝑒

𝑏

(
𝜙ℎ𝜋𝜌, 𝜒𝑘

)
+
𝑒

𝐶

(
uℎ𝑝𝑞 , 𝜒𝑘

)
−
𝑒

𝑙 (𝜒𝑘)

+
∑︁
𝑓


𝑓 𝑒

𝛽 𝑘

∫
𝑒 𝑓

𝑆

𝜒𝑘

(
𝜙ℎ𝜋𝜌

)
d
𝑒

𝑆+
𝑒 𝑓

𝛽 𝑘

∫
𝑒 𝑓

𝑆

𝜒𝑘

(
𝜙ℎ𝜋𝜌

)
d
𝑒

𝑆

 , (29)

where
𝑒 𝑓

𝑆 is a part of
𝑒

𝑆 \𝑆, neighbouring the element 𝑓 .
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In the case of the first-order nodes, the local splitting factors
𝑓 𝑒
𝜶 𝑘 = {𝛼𝛼}, 𝛼 = 1,2,3 are in use and equation (28) reads:

0 = −
𝑒

𝐵

(
uℎ𝑝𝑞 ,𝜽𝑘𝝀𝑘

)
+
𝑒

𝐶

(
𝜙ℎ𝜋𝜌,𝜽𝑘𝝀𝑘

)
+
𝑒

𝐿 (𝜽𝑘𝝀𝑘)

+
∑︁
𝑓


𝑓 𝑒
𝜶 𝑘

∫
𝑒 𝑓

𝑆

𝝀𝑘
𝑇𝜽𝑇𝑘

𝑒r
(
uℎ𝑝𝑞

)
d
𝑒

𝑆

+
𝑒 𝑓
𝜶 𝑘

∫
𝑒 𝑓

𝑆

𝝀𝑘
𝑇𝜽𝑇𝑘

𝑒r
(
uℎ𝑝𝑞

)
d
𝑒

𝑆

 . (30)

The nodal splitting factors
𝑓 𝑒
𝜶 𝑘 and

𝑒 𝑓

𝛽 𝑘 can be calculated from
the equilibration conditions, i.e., equation (28) (or equation (30))
and equation (29) written for the element patches including
elements surrounding the hierarchical or first-order vertex nodes
of the domain 𝑉 (see [6, 7] and [11]).

Note that in this and our previous implementations of ERM,
we use averaging when the equilibration conditions become
underdetermined. Then, the splitting factors are equal to 1/2.

4. NUMERICAL EXAMPLES

In our calculations, we will be interested in the effectivity of
error estimation using the equilibrated residual method in the
case of piezoelectric structures with a complex description of the
electro-mechanical field. We will define such effectivity as the
ratio of the estimated error value to its exact (or true) value, i.e.,

𝜃 =
𝜂

𝑒
. (31)

4.1. Errors and their estimators

The estimated error (or error estimate) of the potential energy
will be defined as follows:

−𝛱
(
û, 𝜙

)
+𝛱

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
≡ 𝛱

(
û−uℎ𝑝𝑞 , 𝜙−𝜙ℎ𝜋𝜌

)
=

1
2
𝐵

(
û−uℎ𝑝𝑞 , 𝜙−𝜙ℎ𝜋𝜌

)
− 1

2
𝐶

(
û−uℎ𝑝𝑞 , 𝜙−𝜙ℎ𝜋𝜌

)
− 1

2
𝐶

(
𝜙−𝜙ℎ𝜋𝜌, û−uℎ𝑝𝑞

)
− 1

2
𝑏

(
𝜙−𝜙ℎ𝑝𝑞 , 𝜙−𝜙ℎ𝜋𝜌

)
= 𝜂𝑀 −𝜂𝐶 −𝜂𝐸 = 𝜂. (32)

In the above relation, the difference in potential energies result-
ing from the estimated solution

(
û, 𝜙

)
and the numerical solu-

tion
(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
was replaced by the equivalent sum of elastic

strain energy 1/2𝐵, electric field energy 1/2𝑏 and the coupling
energy 𝐶. We thus introduce three components of the error esti-
mate 𝜂 (mechanical 𝜂𝑀 , electric 𝜂𝐸 and electro-mechanical 𝜂𝐶 ).
These components are defined by the total errors at any point
within the mechanical field of displacements and electric field
of potential:

𝜼𝑡 = û−uℎ𝑝𝑞 = (û−u𝑞) +
(
u𝑞 −uℎ𝑝𝑞

)
= 𝜼𝑚 +𝜼𝑎,

𝜂𝑡 = 𝜙−𝜙ℎ𝜋𝜌 =
(
𝜙−𝜙𝜌

)
+
(
𝜙𝜌 −𝜙ℎ𝜋𝜌

)
= 𝜂𝑚 +𝜂𝑎 .

(33)

The total errors (index 𝑡) can be divided into those due to mod-
elling (index 𝑚) and approximation (index 𝑎). The estimated
solution (u𝑞 , 𝜙𝜌) corresponds to the fixed orders 𝑞 and 𝜌 of
the mechanical models M𝐼, RM, TR and the electric model E𝐽,
respectively.

In the case of element components of the above estimators,
the exact values of the estimates

(
û, 𝜙

)
and (u𝑞 , 𝜙𝜌) are re-

placed by their local (element) FEM approximations, respec-
tively

(
u𝐻𝑃𝑄, 𝜙𝐻ΠP) and

(
u𝐻𝑃𝑞 , 𝜙𝐻Π𝜌

)
, in the cases of the

total and approximation error estimation. These approximations
are obtained from the local problems defined in equations (20)
and (21).

Obtaining analogous true error definitions of 𝑒, 𝑒𝑀 , 𝑒𝐶 , 𝑒𝐸
requires replacing the ERM-estimated solution

(
û, 𝜙

)
with the

exact solution (u, 𝜙) in equation (15). Doing so allows us to
determine three components of the error and define total, mod-
elling, and approximation errors, e𝑡 , e𝑎, e𝑚, 𝑒𝑡 , 𝑒𝑎, 𝑒𝑚, for each
of these three components. Note that the exact solution (u, 𝜙)
from equation (13) equals

(
uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌

)
from equation (14) for

1/ℎ, 𝑝, 𝑞→∞ and 1/ℎ, 𝜋, 𝜌→∞. In practice, we use the max-
imum values possible in our FEM adaptive code instead of the
infinite values. This way an overkill mesh is generated and the
exact solution (u, 𝜙) is replaced by

(
uref , 𝜙ref ) , with maximum

possible values of 𝑝, 𝜋 and 𝑞, 𝜌, for the total error calculation.
In the case of the approximation error, another overkill mesh is
created and (u, 𝜙) in equation (15) is replaced by

(
umod, 𝜙mod)

with maximum possible values of 𝑝, 𝜋 and fixed 𝑞, 𝜌 taken from
the global problem defined by equation (14).

4.2. Model problem

Our numerical tests concern a square plate of length 𝑙 = 3.1414 ·
10−2 m and thickness 𝑡 = 0.15 ·10−2 m.

As the shape, boundary conditions, forces and charges are
all symmetric, a quarter of the plate of dimensions 𝑙/2× 𝑙/2× 𝑡
will be analyzed. The applied mesh will consist of 4× 4× 2
prismatic elements. We will apply two simple and three complex
piezoelectric models. In the simple models, we will apply either
hierarchical M𝐼 (𝐼 ≡ 𝑞 = 2) or first-order RM (𝑞 = 1) shell models
and symmetric-thickness hierarchical electric models E𝐽 (𝐽 ≡
𝜌 = 2 for M𝐼) or (𝐽 ≡ 𝜌 = 1 for RM). In the case of the complex
models (Fig. 1), one layer of hierarchical (M𝐼, E𝐽, 𝐼 = 2, 𝐽 =
2) elements is applied along the plate boundary. Additionally,
two layers of (RM, E𝐽, 𝐽 = 1) elements are employed in the
interior of the plate. These two types of elements are connected
with one layer of transition elements (TR, E𝐽, 𝐽 = 1 and 2). In
the complex models, we use either the classical, modified or
enhanced transition elements.

The piezoelectric properties of the plate correspond to a typ-
ical piezoceramic material [22]. Young’s modulus is equal to
𝐸 = 0.5 ·1011 N/m2, and the Poisson’s ratio is 𝜈 = 0.294.

A normal pressure on the upper surface of the plate is
𝑝 = 4 · 106 N/m2. The lateral sides of the plate are clamped.
These sides are also electrically grounded. The plate upper
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Fig. 1. Complex model of a symmetric quarter of the piezoelectric plate

surface is loaded with electric charges 𝑐 = 0.2 · 10−1 C/m2.
At constant stress, the dielectric permittivity constant equals
𝛿 = 0.1593 · 10−7 F/m. At constant stress again, the non-zero
piezoelectric constants are 𝑐13 = 𝑐23 = −0.15 · 10−9 C/N, 𝑐33 =
0.3 · 10−9 C/N and 𝑐52 = 𝑐62 = 0.5 · 10−9 C/N. In practical en-
gineering calculations, the values of the pressure and electric
charges are usually smaller. Here, we applied their maximum
possible values as they give mechanical and electric potential
energy contributions of the same order (the most numerically
demanding case of error estimation – cf. [11]). Note that the val-
ues of pressure and charges do not influence our error effectivity
calculations due to the linearity of the piezoelectric problem and
the relative character of the effectivity indices.

In our effectivity calculations changing values of the longitu-
dinal approximation orders within the mechanical and electric
fields will be applied: 𝑝 = 𝜋 = 1,2,3, . . ., 𝑝max = 𝜋max = 7 or 8.

In the case of overkill meshes mentioned in Section 4.1, the
calculation of (uref , 𝜙ref) is performed for 𝑝, 𝜋 = 9 and 𝑞, 𝜌 = 6,
while obtainment of (umod, 𝜙mod) requires 𝑝, 𝜋 = 9 with fixed

𝑞 and 𝜌 taken as for (uℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) from equation (14). For both
overkill meshes, the longitudinal division numbers are equal to
𝑚 = 𝑙/2ℎ = 9.

Note that our model problem does not include singularities.
To check effectivity indices in such cases, other model problems,
e.g., L-shaped domain piezoelectric plate, can be proposed for
future research.

4.3. Results and discussion
To obtain the results in the tables presented below, values of
the mechanical, coupling, and electric parts of the global ERM
estimators are applied including their total, approximating, and
modelling components. These values result from a collection
of the local ERM solutions of the problems defined in equa-
tions (20) and (21) for the total and approximation error estima-
tors. The modelling error estimator is obtained as a difference
between the previous two. In the local problems, all 18 ver-
tex displacement degrees of freedom are constrained. Also, one
electric potential degree of freedom is constrained. In the local
problems, longitudinal orders of approximation 𝑃 and Π are
increased by 1 concerning the global values 𝑝 and 𝜋, in the case
of total and approximation error estimation. Vertical orders 𝑄
and P are increased by 1 concerning the global values of 𝑞 and
𝜌, in the case of the total error estimation.

Table 1 presents global effectivity results for the complex
model (M𝐼/TR/RM,E𝐽) employing the classical transition ele-
ments. The presented results can be confronted with [14] where
different mesh density is applied.

In Table 2 the global effectivity results for three parts of
the estimator and three components of each part are displayed.
They correspond to the complex model (M𝐼/TR/RM,E𝐽) with
the modified transition elements employed.

Table 3 presents global effectivity results for all parts and all
components of the estimator. The results concern the complex
model (M𝐼/TR/RM,E𝐽) employing the enhanced transition el-
ements.

Table 1
Global effectivities in the case of a complex piezoelectric model with classical transition elements (M𝐼/TR/RM, E𝐽) (in the global problem
𝑞 = 𝜌 = 1 and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 +1, 𝑄 = 𝑞 +1 or

𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Part of estimator Component of a part
Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7

Total 0.77 2.15 1.03 0.97 1.01 1.00 1.01

Mechanical Approximation 0.73 2.30 1.13 0.94 0.96 1.04 1.32

Modelling 0.78 1.56 1.02 1.00 1.01 1.01 1.01

Total 1.01 2.99 1.14 1.10 1.09 1.08 1.08

Coupling Approximation 1.29 1.73 0.79 0.77 0.83 0.90 1.16

Modelling 0.29 1.09 1.07 1.07 1.08 1.08 1.08

Total 1.12 1.25 0.93 0.93 0.93 0.92 0.92

Electric Approximation 1.20 1.56 0.85 0.84 0.88 0.94 1.16

Modelling 1.33 0.98 0.95 0.93 0.93 0.92 0.92
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Table 2
Global effectivities in the case of a complex piezoelectric model with modified transition elements (M𝐼/TR/RM, E𝐽) (in the global problem
𝑞 = 𝜌 = 1 and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 +1, 𝑄 = 𝑞 +1 or

𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Part of estimator Component of a part
Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7

Total 0.82 2.16 1.06 1.05 1.08 1.08 1.10
Mechanical Approximation 0.78 2.34 1.26 1.32 1.88 1.87 1.60

Modelling 0.94 1.54 1.03 1.03 1.04 1.04 1.05
Total 1.31 2.74 1.11 1.10 1.07 1.07 1.07

Coupling Approximation 1.67 2.52 0.83 0.82 0.96 1.19 2.04
Modelling 0.46 1.18 1.06 1.07 1.07 1.08 1.08

Total 1.32 2.22 0.94 0.93 0.93 0.93 0.93
Electric Approximation 1.41 3.11 0.91 0.86 0.95 1.09 1.70

Modelling 1.61 1.20 0.94 0.93 0.93 0.92 0.92

Table 3
Global effectivities in the case of a complex piezoelectric model with enhanced transition elements (M𝐼/TR/RM, E𝐽) (in the global problem
𝑞 = 𝜌 = 1 and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ,𝑃 = 𝑝 +1, 𝑄 = 𝑞 +1 or

𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Part of estimator Component of a part
Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7

Total 0.82 2.17 1.06 1.05 1.07 1.07 1.09
Mechanical Approximation 0.78 2.35 1.28 1.38 1.95 1.94 1.67

Modelling 0.95 1.56 1.04 1.04 1.05 1.05 1.06
Total 1.31 2.84 1.11 1.09 1.07 1.07 1.07

Coupling Approximation 1.67 2.52 0.83 0.82 0.95 1.18 2.02
Modelling 0.46 1.18 1.07 1.07 1.07 1.08 1.08

Total 1.32 2.12 0.94 0.93 0.93 0.93 0.93
Electric Approximation 1.40 3.10 0.91 0.86 0.95 1.09 1.71

Modelling 1.61 1.20 0.94 0.93 0.93 0.92 0.92

For all three piezoelectric complex models, for the longitudinal
approximation orders 𝑝 ≥ 3 and 𝜋 ≥ 3, almost all total and mod-
elling components of the estimator are between 0.9 and 1.1. For
the same range, most of the approximation components of the es-
timator are in the range between 0.8 and 2.0. This means that the
true and estimated error values are either close (the range 0.9–
1.1) or similar (the range 0.8–2.0) to the desired effectivity value
equal to 1.0. The best results for the approximation components
are obtained with the use of the classical transition elements.

The first general remark we would like to make is that accept-
able ERM global effectivities are between 1.0 and 3.0 (com-
pare [23]). Note also that higher values of the global effectivities
can be observed for thin structures or small errors, for example.
In our model problem, the approximation error is ten times less
than the modelling error. As a result, our effectivities for the ap-
proximation components are worse than for the modelling com-
ponents. Another general remark concerns some deterioration
of the effectivity values with the increase of the approximation

order. The deterioration usually results from insufficient quality
of the true error value obtained from the overkill mesh. This
is also our case – we were not able to obtain better true error
results due to our code capabilities.

In Tables 4 and 5, to further assess by comparison the qual-
ity of the estimation for the above three complex models, we
present the effectivity results for simple (basic) models (M𝐼,
E𝐽) and (RM, E𝐽).

Note that the results presented in Table 4 for the coupling
and electric parts of the estimator can be improved (effectivities
can move closer to 1.0) using the tuning procedure presented
in [11].

It results from a comparison of Tables 1–3 and Tables 4–5
that all three complex models of the piezoelectric plate deliver
effectivities of the same quality as two basic (homogenous)
piezoelectric models. For all estimator components, except those
requiring the application of a tuning procedure, the results are
either close (less than 10% difference) or similar (up to 50%
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Table 4
Global effectivities in the case of a simple piezoelectric plate model (M𝐼, E𝐽) (in the global problem 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4; in the local
problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ,

Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Part of estimator Component of a part
Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7

Total 0.76 2.27 1.07 1.01 1.02 1.02 1.03

Mechanical Approximation 0.76 2.35 1.15 0.92 0.92 1.00 1.22

Modelling 0.93 1.79 1.03 1.02 1.03 1.02 1.03

Total 1.01 1.83 0.79 0.73 0.71 0.62 0.50

Coupling Approximation 1.01 1.86 0.79 0.76 0.81 0.88 1.07

Modelling 0.43 1.03 0.40 0.32 0.39 0.31 0.34

Total 1.13 1.54 0.83 0.77 0.69 0.58 0.47

Electric Approximation 1.14 1.61 0.85 0.84 0.87 0.94 1.10

Modelling 0.71 0.71 0.47 0.42 0.41 0.39 0.40

Table 5
Global effectivities in the case of a simple piezoelectric plate model (RM, E𝐽) (in the global problem 𝑞 = 𝜌 = 1, 𝑝 = 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4; in the local
problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ,

Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Part of estimator Component of a part
Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7

Total 0.80 1.80 0.95 0,93 0,93 0.92 0.92

Mechanical Approximation 0.68 2.13 1.87 1.35 1.65 1.24 1.87

Modelling 0.85 1.41 0.95 0.93 0.93 0.92 0.92

Total 1.00 1.37 0.99 1.00 1.01 1.01 1.01

Coupling Approximation 2.14 5.00 0.86 1.36 1.23 1.99 1.48

Modelling 0.67 1.22 1.00 1.00 1.01 1.01 1.01

Total 1.09 1.12 0.98 0.98 0.98 0.98 0.98

Electric Approximation 1.36 3.04 1.26 1.52 1.38 1.95 1.16

Modelling 0.73 1.07 0.98 0.98 0.98 0.98 0.98

difference) for the total and modelling components, and the
approximation components, respectively.

It can be noticed that the effectivities are higher for the com-
plex models than for the simple (homogenous) models. This is
consistent with the observation of other researchers concern-
ing numerical models with different orders of approximation in
neighbouring elements.

To further assess the quality of the estimation for coupled
problems one can compare the results presented in Tables 1–3
with the analogous results for uncoupled problems for which the
upper bound of the estimation holds. In Table 6 we consider three
complex mechanical models with different (classical, modified,
enhanced) transition elements employed. Also, the common re-
sults for the complex dielectric model are presented. In this

model, 𝐽 = 𝜌 = 2 is applied to two boundary layers of elements
and 𝐽 = 𝜌 = 1 to internal layers.

Comparing the results from Table 6 for three uncoupled me-
chanical problems one can notice their closeness (about 10%
difference) or similarity (less than 50% difference) in the case
of total and modelling components and the case of approxi-
mation components, respectively. The analogous closeness and
similarity can be seen by comparing these results with the analo-
gous results for three coupled piezoelectric problems presented
in Tables 1–3. Additionally, such closeness (total and modelling
components) or similarity (approximation components) can be
observed for the common uncoupled problem of dielectricity
from the above table and the results presented in Tables 1–3 for
three coupled piezoelectric problems.
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Table 6
Global effectivities – three complex models for uncoupled problems (M𝐼/TR/RM) and (E𝐽) (in the global elasticity problem 𝑞 = 1 and 𝑞 = 2,
𝑝 = 𝑣𝑎𝑟, 𝑚 = 4; in the local problems: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 +1, 𝑄 = 𝑞 +1 or 𝑄 = 𝑞, and in the dielectric global problem: 𝜌 = 1 and

𝜌 = 2, 𝜋 = 𝑣𝑎𝑟, 𝑚 = 4, in the local problems: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 +1, P = 𝜌 +1 or P = 𝜌)

Uncoupled problem type Part of
estimator

Component
of a part

Values of the degrees of approximation 𝑝 or 𝜋

1 2 3 4 5 6 7 8

Elasticity
(classical transition model)

Total 0.65 1.81 1.03 0.97 0.98 0.96 0.95 0.94

Mechanical Approximation 0.64 1.81 1.05 0.99 1.04 1.13 1.23 1.51

Modelling 0.91 1.78 1.02 0.96 0.96 0.94 0.95 0.93

Elasticity
(modified transition model)

Total 0.65 1.84 1.05 1.00 1.01 1.00 1.00 0.99

Mechanical Approximation 0.64 1.89 1.20 1.38 1.32 1.25 1.44 1.47

Modelling 0.86 1.57 0.94 0.90 0.91 0.98 0.98 0.89

Elasticity
(enhanced transition model)

Total 0.65 1.84 1.05 0.99 1.00 0.99 0.99 0.98

Mechanical Approximation 0.65 1.86 1.08 1.05 1.15 1.35 1.41 1.81

Modelling 0.91 1.72 1.02 0.98 0.98 0.97 0.97 0.96

Total 1.59 1.82 1.01 1.01 1.00 1.01 1.01 1.01

Dielectricity Electric Approximation 1.58 2.52 1.09 1.13 1.04 1.04 1.02 1.21

Modelling 2.16 1.11 1.00 1.00 1.00 1.01 1.01 1.01

5. CONCLUSIONS

The theoretical considerations and calculations in model exam-
ples indicate that the equilibrated residual method (ERM) can
be applied to complex models of piezoelectrics in which the me-
chanical field is described by the hierarchical, first-order, and
transition shell models, and the electric field by the hierarchical
symmetric-thickness model.

The presented effectivities of error estimation using the equi-
librated residual method in stationary problems of complex
piezoelectric models are either close (less than 10% difference)
or similar (up to 50% difference) to the cases of homogeneous
models of piezoelectrics and the cases of uncoupled problems
of elasticity (elastostatics) and dielectricity (electrostatics).
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