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Abstract. The article presents the equilibrated residual method (ERM) of error estimation in coupled problems in the case of 
complex piezoelectric models. These models include hierarchical, first-order and transition models within the mechanical field 
of displacements, as well as hierarchical models within the electric field of potential. Three (classical, modified and enhanced)

transition models are considered. The paper presents a variational formulation of the model problem of general piezoelectricity 
in the case of complex piezoelectric models and the finite element approximation of this problem. Next, the equilibration residual 
method for coupled problems of piezoelectricity and complex piezoelectric models is presented. The mechanical, electric and 
coupled parts of the modelling, approximation and total error estimators and true errors are given. Effectivity indices (the ratio 
of estimated error to true error) are used to assess the quality of error estimation in the case of three error parts and three types 
of error for the complex models of piezoelectric plates. The effectivity results for simple piezoelectric models and uncoupled

problems of elasticity and dielectricity are applied as references.
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1. INTRODUCTION 

The main objective of the paper is to propose and verify the 

equilibrated residual method (ERM) of error estimation in the 

case of piezoelectrics. The ERM estimated error values can be 

potentially used for the adaptive analysis of simple (one model 

applied) and complex (multiple models applied) models of 

piezoelectrics. The simple and complex models are used to 

model piezoelectric transducers (actuators and sensors). The 

complex piezoelectric description requires the application of 

the transition models between the basic (hierarchical and first-

order) models. The first (classical) transition model guarantees 

continuity of displacements on the boundaries between the 

transition and basic (hierarchical and first-order) models. The 

second (modified) one allows an additional smooth transition 

of the stress state between the basic models, while the third 

(enhanced) one additionally ensures a smooth transition of the 

strain state between the basic models. 

1.1. State of the art 

The equilibrated residual method applied to the finite element 

method (FEM) was developed in [1], [2] [3]. Its final version is 

presented in [4]. The application of ERM to error estimation for 

elliptic problems was performed in [5] and [6]. Elasticity 

problems were considered in this context in [7]. ERM error 

estimation for conventional (mid-surfaces dofs) and 3D-based 

(through-thickness dofs) models of thin-walled structures were 

presented in [8] and [9], respectively. Application of the method 

to 3D-based models of dielectric and piezoelectric structures 

can be found respectively in [10] and [11].  

1.2. Novelty of the paper 

Our previous works on the theory and application of the 

residual equilibrated method considered uncoupled 3D-based 

problems of elasticity [9] and dielectricity [12], [13]. Next, the 

method was proposed [13] and applied [10] to coupled 3D-

based problems of piezoelectricity. Simple, homogeneous, 

hierarchical piezoelectric models were used within the latter 

work. In [14], we also suggested the use of ERM for complex 

piezoelectric models, taking into account the simplest 

(classical) transition model. Here, we apply the method to the 

complex piezoelectric models with use of three different 

(classical, modified and enhanced) transition models. Also, the 

homogeneous (basic) piezoelectric model of the first-order is 

applied in the present work.  

1.3. The methodology used 

The applied ERM error estimation is assigned to the control of 

model and discretization adaptation within complex 3D-based 

piezoelectric hpq-approximated finite element models. The h, p 

and q denote element size, and longitudinal and transverse 

orders of approximation within piezoelectric finite elements. 
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These two orders are defined independently for the mechanical 

field of displacements and the electric field of potential, while 

the size of the element is common for both fields. The applied 

approach uses hierarchical modelling and hierarchical 

approximations described in [13]. The starting point for 

hierarchical modelling and hierarchical approximations was the 

works [15] and [16]. Hierarchical models and approximations 

of piezoelectric basic (hierarchical and first-order) and 

transition elements have been proposed in [13], [10] and [17], 

respectively. The starting point was the works [18] and [19]. 

The mentioned hierarchical piezoelectric models are 3D models 

polynomially constrained through the thickness and applied to 

thin-walled domains. The order of these polynomial constraints 

determines the model order. In the case of the first-order model, 

the hierarchical model has to be modified due to the plane-stress 

assumption and kinematic assumptions within the mechanical 

field of the piezoelectric.  

2. MODEL PROBLEM  

2.1. Variational formulation 

The variational formulation holds in volume 𝑉 of the 
piezoelectric. This volume can be any bounded three-
dimensional domain. In this paper, however, we choose the 
geometry typical for piezoelectric transducers (actuators or 
sensors), i.e. symmetric-thickness, thin- or thick-walled 
domains. These domains are defined with the use of the mid-
surface and the thickness vector. For such domains elasticities, 
dielectric constants, anisotropic piezoelectric constants, strains 
and electric field are defined in two longitudinal and one 
transverse directions 𝛼, 𝛽, 𝛾, 𝛿 = 1,2,3, while displacements 
and forces are defined globally 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3. In the 
definition of the piezoelectric constants, the third local direction 
is the polarization direction. The relation between the global 
Cartesian and local Cartesian directions reads 𝑥𝛼 = 𝜃𝛼𝑖𝑥𝑖, 
where 𝜃𝛼𝑖 denote cosines between the directions of two types. 
These cosines are consistent with the parametric geometry 
representation presented in [20] and [21].  

The stationarity condition of the electromechanical potential 

energy functional 𝛱(𝒗, 𝜓) reads: 

𝛱(𝒗, 𝜓) = −𝐵(𝒗, 𝒖) + 𝐶(𝒗, 𝜙) + 𝐶(𝜓, 𝒖)   

        +  𝑏(𝜓, 𝜙) + 𝐿(𝒗) − 𝑙(𝜓) = 0  (1) 

where 𝒖 and 𝜙 represent solution quantities while 𝒗 and 𝜓 
represent admissible quantities. Above, the first term 
represents the strain energy, the next two terms denote 
electro-mechanical coupling energy, the fourth stands for 
the electric field energy, and the last two terms define the 
work of external forces and the work of external electric 
charges. The coupled solution belongs to the following 
space: (𝒖, 𝜙) ∈ 𝑈 × 𝛷. The spaces for displacements and 

electric potential are 𝑈 = {𝒗 ∈ (𝐻1(𝑉))
3
: 𝒗 = 𝟎 on 𝑊} and 

𝛷 = {𝜓 ∈ 𝐻1(𝑉): 𝜓 = 0 on 𝐹} with 𝑊 and 𝐹 being the 
supported and grounded parts of the boundary 𝜕𝑉 ≡ 𝑆 of 
the volume 𝑉. 
In the bilinear form 

𝐵(𝒗, 𝒖) = ∫ 𝐷𝛼𝛽𝛾𝛿𝜀𝛾𝛿(𝒖)𝜀𝛼𝛽(𝒗)𝑑𝑉𝑉
  

= ∫ 𝐷𝛼𝛽𝛾𝛿𝑢𝛾,𝛿𝑣𝛼,𝛽𝑑𝑉𝑉
   (2) 

𝐷𝛼𝛽𝛾𝛿  and 𝜀𝛾𝛿(𝒖) (𝛼, 𝛽, 𝛾, 𝛿 = 1,2,3), where 𝒖 = {𝑢𝑖} and 
𝑢𝛼 = 𝜃𝛼𝑖𝑢𝑖  and 𝑢𝛾,𝛿 = 𝜃𝛾𝑖𝑢𝑖,𝑗𝜃𝑗𝛿 , stand for the tensors of 
elastic constants and local strains, while 𝑢𝑖 denote the global 
components of the displacement vector 𝒖. The vector 𝒗 
represents kinematically admissible displacements. 

In the mixed forms  

𝐶(𝒗, 𝜙) = ∫ 𝐶𝛼𝛽𝛾𝐸𝛾(𝜙)𝜀𝛼𝛽(𝒗)𝑑𝑉𝑉
  

   = ∫ 𝐶𝛼𝛽𝛾𝜙,𝛾𝑣𝛼,𝛽𝑑𝑉𝑉
    (3) 

𝐶(𝜓, 𝒖) = ∫ 𝐶𝛼𝛾𝛿𝜀𝛾𝛿(𝒖)𝐸𝛼(𝜓)𝑑𝑉𝑉
  

   = ∫ 𝐶𝛼𝛾𝛿𝑢𝛾,𝛿𝜓,𝛼𝑑𝑉𝑉
    (4) 

𝐶𝛼𝛽𝛾 and 𝐸𝛾(𝜙) (𝛼, 𝛽, 𝛾 = 1,2,3) stand for the tensor of 

piezoelectric constants at constant strain [22] and the electric 
field vector expressed by the potential 𝜙. The function 𝜓 
represents electrostatically admissible values of this potential.  

In the second bilinear form 

𝑏(𝜓, 𝜙) = ∫ 𝛾𝛼𝛽𝐸𝛽(𝜙)𝐸𝛼(𝜓)𝑑𝑉 𝑉
  

   = ∫ 𝛾𝛼𝛽𝜙,𝛽𝜓,𝛼𝑑𝑉𝑉
  (5) 

𝛾𝛼𝛽 stands for the tensor of dielectric constants at constant 

strain [22].  

In the linear forms 

 𝐿(𝒗) = ∫ 𝑓𝑖𝑣𝑖𝑑𝑉𝑉
+ ∫ 𝑝𝑖𝑣𝑖𝑑𝑆𝑃

 (6) 

 𝑙(𝜓) = ∫ 𝑐𝜓𝑑𝑆
𝑄

   (7) 

𝑓𝑖 and 𝑝𝑖  (𝑖 = 1,2,3)  define external volume and surface 
forces and 𝑐 is the external surface electric charge. The symbols 
𝑃 and 𝑄 denote respectively the loaded and charged parts of the 
surface 𝑆 of the volume 𝑉 of the piezoelectric. 

2.2. The applied hierarchical, first-order and transition 
piezoelectric models 

In this paper, the complex description of the mechanical 
field [20] allows for the use of the hierarchical shell 
model M𝐼, 𝐼 ≥ 2, with 𝐼 standing for the order of the model. 
Also, the first-order Reissner-Mindlin (RM) model is 
applied. Both models are connected by the transition model 
TR ≡ M𝐼/RM. In the complex description of the electric 
field [21], the symmetric-thickness hierarchical model 
E𝐽, 𝐽 ≥ 1 is applied, with  𝐽 being the order of the model. As 
a result, the following division 𝑉 = 𝑉M𝐼,E𝐽 ∪ 𝑉TR,E𝐽 ∪ 𝑉RM,E𝐽 
holds. In the special case of simple homogeneous models, 
we will limit ourselves to 𝑉 = 𝑉M𝐼,E𝐽 or 𝑉 = 𝑉RM,E𝐽. 

In all the above-mentioned models 3D-based approach is 
applied. This means that the constitutive relations for the 
hierarchical shell models [20] and hierarchical symmetric-
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thickness dielectric models [21] are the same as for the 3D 
elasticity and 3D dielectricity. The displacement and 
electric potential fields are defined as three-dimensional 
and are polynomially constrained through the thickness. 
For the other models, the following modifications 
presented bellow have to be introduced into hierarchical 
piezoelectric models.  
In the case of the first-order shell model, the following 
relation of plain stress assumption for the local stress 
components 𝜎𝛼𝛽 , 𝛼, 𝛽 = 1,2,3 has to be introduced into the 
piezoelectric constitutive relations 

𝜎33 = 𝐷[𝜈𝜀11 + 𝜈𝜀22 + (1 − 𝜈)𝜀33] − 𝐶33𝐸3 = 0 

Above, 𝐷 = 𝐸 [(1 + 𝜈)(1 − 2𝜈)]⁄  with 𝐸 and 𝜈 denoting 
Young’s modulus and Poisson’s ratio, 𝐶33 stands for a non-
zero term of the matrix representation of the piezoelectric 
constants 𝐶𝛼𝛽𝛾, 𝛼, 𝛽, 𝛾 = 1,2,3 under constant strain.  
Also, the Reissner-Mindlin kinematic assumption of 
deformation of the lines normal to the mid-surface and 
oriented along the third local (transverse) direction 𝑥𝛿 , 
 𝛿 = 3, onto straight lines holds for all three local directions 
𝛼 = 1,2,3: 

 𝑢𝛼 =
1

2
(𝑢𝛼

𝑏 + 𝑢𝛼
𝑡 ) +

𝑥𝛿

𝑡
(𝑢𝛼

𝑡 − 𝑢𝛼
𝑏) 

Above, the quantity 𝑡 in the denominator is the structure 
thickness. Additionally, the assumption of no elongation of 
these normal holds: 

 𝑢𝛿
𝑡 − 𝑢𝛿

𝑏 = 0 

with 𝛿 = 3 denoting the third (transverse) local 
displacement component. The indices 𝑡 and 𝑏 correspond 
to the top and bottom surfaces of the thin-walled 
piezoelectric domain. 
In the case of the classical transition element, the 
constitutive relations are three-dimensional and are taken 
from the hierarchical piezoelectric models.  
In the case of the modified and enhanced transition models, 
the transition from the plane stress to the three-
dimensional stress state is assumed for the stress 
components 𝜎𝛼𝛽 in the local directions (𝛼, 𝛽 = 1,2,3) and 
described with the relation 

𝜎33 = −𝐶33𝐸3 = 𝐷 {𝜈𝜀11 + 𝜈𝜀22 + (1 − 𝜈) [𝜁𝜀33 +

               +(1 − 𝜁) (
−𝜈

1−𝜈
(𝜀11 + 𝜀22) +

𝐶33

𝐷(1−𝜈)
𝐸3)]}    

where 𝜁 represents the linear blending function equal to 1 
at the boundary with the three-dimensional model and 0 at 
the boundary with the first-order model.  
In the case of the enhanced transition model, the transverse 
displacement field changes from no elongation of the 
normals to the mid-surface (at the boundary of the first-
order model) to free elongation of these normals (at the 
boundary with the hierarchical shell model). Now the 
function 𝜁 plays the role of a gradually switching function. 
By this assumption, one can write 

𝑢𝛼 =
1

2
(𝑢𝛼

0 + 𝑢𝛼
𝐼 ) + 𝛿𝛼𝛽

𝑥𝛿
𝑡
(𝑢𝛽

0 − 𝑢𝛽
𝐼 ) 

      +𝛿𝛼𝛿𝜁
𝑥𝛿

𝑡
(𝑢𝛿

0 − 𝑢𝛿
𝐼 ) + 𝜁 ∑ 𝑓𝑙(𝑥𝛿)𝑢𝛼

𝑙𝐼−1
𝑙=1     

where 𝛼 = 1,2,3, 𝛽 = 1,2, 𝛿 = 3 and 𝛿𝛼𝛽, 𝛿𝛼𝛿 represent 
Kronecker deltas, 𝑓𝑙  denote linear (𝑙 = 0 or 𝑙 = 𝐼) or higher-
order (𝑙 = 1,2, … , 𝐼 − 1) polynomials defined in 
accordance with the displacement field of the hierarchical shell 
model 𝑀𝐼 of order 𝐼 [17].  

2.3. Finite element formulation 

Equation (1) can be converted into two coupled equations  

 {
𝐵(𝒗, 𝒖) − 𝐶(𝒗, 𝜙) = 𝐿(𝒗)

−𝐶(𝜓, 𝒖) − 𝑏(𝜓, 𝜙) = −𝑙(𝜓)
 

The problem (13), after its finite element approximation, can be 

described by 

{
𝐵(𝒗ℎ𝑝𝑞 , 𝒖ℎ𝑝𝑞) − 𝐶(𝒗ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) = 𝐿(𝒗ℎ𝑝𝑞)

−𝐶(𝜓ℎ𝜋𝜌 , 𝒖ℎ𝑝𝑞) − 𝑏(𝜓ℎ𝜋𝜌 , 𝜙ℎ𝜋𝜌) = −𝑙(𝜓ℎ𝜋𝜌)
 (14) 

Above, (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) is the FEM approximation of the 
solution (𝒖, 𝜙), and 𝒗ℎ𝑝𝑞 and 𝜓ℎ𝜋𝜌  stand for the 
kinematically admissible displacements and the 
electrostatically admissible potential. The independent 
longitudinal and transverse orders of approximation of 
displacements and electric potential are denoted 𝑝, 𝑞 and 
𝜋, 𝜌. The error of (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) with respect to (𝒖, 𝜙) is of 
interest in this work. The numerical solution belongs to the 
approximated space, i.e. (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) ∈ 𝑈ℎ𝑝𝑞 × 𝛷ℎ𝜋𝜌, 

where 𝑈ℎ𝑝𝑞 = {𝒗ℎ𝑝𝑞 ∈ (𝐻1(𝑉))
3
: 𝒗ℎ𝑝𝑞 = 𝟎 on 𝑊} and 

𝛷ℎ𝜋𝜌 = {𝜓ℎ𝜋𝜌 ∈ 𝐻1(𝑉): 𝜓ℎ𝜋𝜌 = 0 on 𝐹}.  

The way the assumptions on constitutive relations, 
displacement field and electric field are introduced into the 
finite element formulation of the hierarchical, first-order 
and three transition elements is presented in [17]. 

3. ERROR ESTIMATION IN BASIC AND TRANSITION 
ELEMENTS 

In this section, we will apply the equilibrated residual 
method [4] for error estimation in the basic (hierarchical 
and first-order) and transition finite elements within 
complex piezoelectric domains. Following this method, we 
will investigate the global estimate and element estimators 
as well. All estimators will be defined as differences of the 
potential energies 𝛱 corresponding to the ERM estimate 
(�̂�, �̂�) of the exact solution (𝒖, 𝜙) and the numerical 
solution (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌). 

3.1. Error estimation 

The global estimator 𝜂 is defined as a sum of elemental 

estimators 𝜂
𝑒

 in the following way 

𝜂 = −𝛱(�̂�, �̂�) + 𝛱(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) = ∑ 𝜂
𝑒

𝑒  
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For any element 𝑒, the estimator is equal to  

𝜂
𝑒
= −𝛱

𝑒

(�̂�, �̂�) − ∫ �̂�𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆



+∫ �̂� 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌)〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

+ 𝛱
𝑒

(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌)

where the first three terms denote the potential energy of 
the exact solution of the element 𝑒. The first term consists 
of the element energies (strain, electric field and coupling 
ones) and the works of the external forces and electric 
charges defined with Eqs (2)-(7) after the division of the 

domain 𝑉 into element subdomains 𝑉
𝑒

, 𝑒 = 1,2, … , 𝐸 with 𝐸 
being the total number of elements in the domain. The next 
two terms represent the work of inter-element reaction 

stresses 𝒓
𝑒
(𝒖ℎ𝑝𝑞) and equivalent charges ℎ

𝑒

(𝜙ℎ𝜋𝜌) acting on 

the internal surfaces 𝑆
𝑒

\𝑆. These stresses and charges are 
defined in [11] in the way typical for the equilibrated 
residual method. The fourth term of Eq. (16) stands for the 
potential energy of the known numerical solution 
(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) and it is defined as in [11], i.e. 

𝛱
𝑒

(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) = −
1

2
𝐵
𝑒

(𝒖ℎ𝑝𝑞 , 𝒖ℎ𝑝𝑞) +
1

2
𝐶
𝑒

(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌)  

+
1

2
𝐶
𝑒

(𝜙ℎ𝜋𝜌, 𝒖ℎ𝑝𝑞) +
1

2
𝑏
𝑒

(𝜙ℎ𝜋𝜌, 𝜙ℎ𝜋𝜌)

The above Eqs (16) and (17) are valid for hierarchical, first-
order and transition piezoelectric elements.  

3.2. Local problems of elements 

In the case of the total error estimation, the condition of 
stationarity of the functional from Eq. (15) (completed with 
Eqs (16) and (17)) can be replaced by the element 
stationarity conditions of the form: 

0 = −𝛱
𝑒

(𝒗𝐻𝑃𝑄 , 𝜓𝐻ΠΡ) − ∫ (𝒗𝐻𝑃𝑄)𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

  

      +∫ 𝜓𝐻ΠΡ 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌)〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

  

where the global estimate (�̂�, �̂�) of the exact solution (𝒖,𝜙) 
was replaced by a collection of its local finite element 
approximations (𝒖𝐻𝑃𝑄, 𝜙𝐻ΠΡ) ∈ 𝑈𝐻𝑃𝑄 × 𝛷𝐻ΠΡ. The exact 
result of the estimation corresponds to 1/𝐻, 𝑃, 𝑄 → ∞ and 
1/𝐻, Π, Ρ → ∞. In practice, we use lower values, i.e.  
𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 and Π = 𝜋 + 1, Ρ = 𝜌 + 1, 
where ℎ, 𝑝, 𝑞, 𝜋, 𝜌 stand for discretization parameters in the 
assessed global problem and 𝐻, 𝑃, 𝑄, Π, Ρ are their 
counterparts in the local problems.  
In turn, in the case of the approximation error (𝑄 ≡ 𝑞 and 
Ρ ≡ 𝜌), the element component of the stationarity 
condition of the functional from Eqs (15)-(17) has to be 
defined in the following way 

0 = −𝛱
𝑒

(𝒗𝐻𝑃𝑞 , 𝜓𝐻𝛱𝜌) − ∫ (𝒗𝐻𝑃𝑞)𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

  

+∫ 𝜓𝐻𝛱𝜌 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌)〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

                    (19) 

In this case, the exact solution (𝒖𝑞 , 𝜙𝜌) replaces (𝒖, 𝜙) in 
Eqs (15)-(17). Vectors 𝒖𝑞 and 𝜙𝜌 correspond to the 
element models M𝐼 and E𝐽 of assumed orders 𝐼 = 𝑞 and  
𝐽 = 𝜌 (see [13] for details). The infinite values of 𝐻, 𝑃, Π are 
replaced with 𝐻 = ℎ, 𝑃 = 𝑝 + 1,  and Π = 𝜋 + 1. 
Additionally, the local coupled solution belongs to: 
(𝒖𝐻𝑃𝑞 , 𝜙𝐻Π𝜌) ∈ 𝑈𝐻𝑃𝑞 × 𝛷𝐻Π𝜌. 
In the case of the Dirichlet type local problems (elements 
adjacent to the boundary parts 𝑊 and 𝐹 of the global 
domain), the local (element) spaces 𝑈𝐻𝑃𝑄 (or 𝑈𝐻𝑃𝑞) and 
𝛷𝐻ΠΡ (𝑜𝑟 𝛷𝐻Π𝜌) are defined analogously to the global 
spaces 𝑈ℎ𝑝𝑞  and 𝛷ℎ𝜋𝜌 presented below Eq. (14), with 

element volume 𝑉
𝑒

 and element surface parts 𝑊
𝑒

, 𝐹
𝑒

, 𝑆
𝑒

 
replacing the global domain quantities 𝑉 and 𝑊,𝐹, 𝑆. In the 
case of the Neumann type local problems (elements non-
adjacent to the boundary parts 𝑊 and 𝐹), these spaces must 
exclude rigid body motions in the displacement field and 
underdetermination of the potential field.  
With the use of the potential energy definition of Eq. (1) 
(completed with Eqs (2)-(7)), the stationarity Eqs (18) and 
(19) can be converted to: 

{
  
 

  
 𝐵
𝑒
(𝒗𝐻𝑃𝑄, 𝒖𝐻𝑃𝑄) − 𝐶

𝑒
(𝒗𝐻𝑃𝑄, 𝜙𝐻ΠΡ) = 𝐿

𝑒
(𝒗𝐻𝑃𝑄)                                

                                                              +∫ (𝒗𝐻𝑃𝑄)𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

𝐶
𝑒
(𝜓𝐻ΠΡ, 𝒖𝐻𝑃𝑄) + 𝑏

𝑒
(𝜓𝐻ΠΡ, 𝜙𝐻ΠΡ) = 𝑙

𝑒
(𝜓𝐻ΠΡ)                             

                                                               + ∫ 𝜓𝐻ΠΡ 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

      (20) 

and 

{
  
 

  
 𝐵
𝑒
(𝒗𝐻𝑃𝑞 , 𝒖𝐻𝑃𝑞) − 𝐶

𝑒
(𝒗𝐻𝑃𝑞 , 𝜙𝐻Π𝜌) = 𝐿

𝑒
(𝒗𝐻𝑃𝑞)                                       

                                                        +∫ (𝒗𝐻𝑃𝑞)𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

𝐶
𝑒
(𝜓𝐻Π𝜌, 𝒖𝐻𝑃𝑞) + 𝑏

𝑒
(𝜓𝐻Π𝜌, 𝜙𝐻Π𝜌) = 𝑙

𝑒
(𝜓𝐻Π𝜌)                                   

                                                      +∫ 𝜓𝐻Π𝜌 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

  

The above relations can be used for the determination of 
the approximated local solutions corresponding to the total 
error estimation and the approximated local solutions 
corresponding to the approximation error estimation, 
respectively.  

3.3. Determination of the equilibrated inter-element 
stresses and charges 

The vector of the equilibrated inter-element stresses is 
defined in the following way 

 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 = 𝜶

𝑓𝑒

𝒓
𝑒
(𝒖ℎ𝑝𝑞) + 𝜶

𝑒𝑓

𝒓
𝑓
(𝒖ℎ𝑝𝑞)
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where 𝒓
𝑒

 and 𝒓
𝑓

 are the surface stress vector of element 𝑒 and 

its neighbour 𝑓, while 𝜶
𝑓𝑒

 and 𝜶
𝑒𝑓

= 𝟏 − 𝜶
𝑓𝑒

 are the so-called 
splitting functions (see [4] for the explanation). By analogy, 
inter-element equivalent charges can be defined as 

 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌)〉 = 𝛽
𝑓𝑒

ℎ
𝑒

(𝜙ℎ𝜋𝜌) + 𝛽
𝑒𝑓

ℎ
𝑓

(𝜙ℎ𝜋𝜌) 

where ℎ
𝑒

 and ℎ
𝑓

 are equivalent surface charges of the 

elements 𝑒 and 𝑓. Subsequently, 𝛽
𝑓𝑒

and 𝛽
𝑒𝑓

= 1 − 𝛽
𝑓𝑒

 are the 
corresponding splitting functions. 

To determine the nodal splitting factors 𝜶
𝑓𝑒

𝑘  and 𝛽
𝑓𝑒

𝑘  of the 

linear splitting functions 𝜶
𝑓𝑒

 and 𝛽
𝑓𝑒

 the following definitions 
are applied 

 𝜶
𝑓𝑒

= ∑ 𝜶
𝑓𝑒

𝑘𝜒𝑘𝑘 , 𝛽
𝑓𝑒

= ∑ 𝛽
𝑓𝑒

𝑘𝜒𝑘𝑘 

where 𝑘 = 1,2, … ,𝐾 and 𝐾 is the total number of the vertex 
nodes in the element, while 𝜒𝑘  are vertex node shape 
functions.  
The starting point for the determination procedure is the 
load compatibility condition [6] extended for the case of 
piezoelectricity [11]. The nodal contribution to this 
condition reads  

0 = −𝐵
𝑒

(𝒖ℎ𝑝𝑞 , 𝝌𝑘) + 𝐶
𝑒

(𝜙ℎ𝜋𝜌 , 𝝌𝑘) + 𝐿
𝑒

(𝝌𝑘)  

 +∫ 𝝌𝑘
𝑇 〈𝒓

𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

   (25) 

In the case of electric field, the external and equivalent 
charge compatibility condition holds (see [11]). Its nodal 
contribution is 

0 = 𝑏
𝑒

(𝜙ℎ𝜋𝜌 , 𝜒𝑘) + 𝐶
𝑒

(𝒖ℎ𝑝𝑞 , 𝜒𝑘) − 𝑙
𝑒

(𝜒𝑘)  

                +∫ 𝜒𝑘 〈ℎ
𝑒

(𝜙ℎ𝜋𝜌)〉 𝑑𝑆
𝑒

𝑆
𝑒
\𝑆

 

Equations (25) and (26) are valid for the vertex nodes of 
the hierarchical shell models M𝐼, 𝐼 ≡ 𝑞 ≥ 2 and symmetric-
thickness electric models E𝐽, 𝐽 ≡ 𝜌 ≥ 1. We will call such 
nodes hierarchical vertex nodes and the corresponding 
vertex shape functions hierarchical vertex shape functions. 
These two relations are also valid for hierarchical vertex 
nodes of the transition elements (TR, E𝐽), where  
TR ≡ M𝐼/RM.  
In the case of the first-order model RM (𝑞 = 1), Eq. (25) has 
to be modified. Firstly the hierarchical vertex shape 
functions have to be replaced by the first-order vertex 

shape functions defined as 𝜆𝑘 = 0.5 (𝜒𝑘 + 𝜒𝑘+𝐾
2

)  for  

𝑘 = 1,2, …𝐾/2 and 𝜆𝑘 = 0.5(𝜒𝑘−𝐾/2 + 𝜒𝑘)  for  

𝑘 = 𝐾 2⁄ + 1, 𝐾 2⁄ + 2,… , 𝐾 to satisfy Eq. (10) of no 
elongation of the lines perpendicular to the shell mid-

surface (see [9]). Additionally, Eq. (25) has to be written 
using the nodal direction consistent with the Reissner-
Mindlin no-elongation condition, i.e. 

0 = −𝐵
𝑒

(𝒖ℎ𝑝𝑞 , 𝜽𝑘𝝀𝑘) + 𝐶
𝑒

(𝜙ℎ𝜋𝜌 , 𝜽𝑘𝝀𝑘) + 𝐿
𝑒

(𝜽𝑘𝝀𝑘)

       + ∫ 𝝀𝑘
𝑇𝜽𝑘

𝑇 〈𝒓
𝑒
(𝒖ℎ𝑝𝑞)〉 𝑑𝑆

𝑒

𝑆
𝑒
\𝑆

 

where 𝜽𝑘 represents the nodal transformation matrix of the 
global directions (𝑖 = 1,2,3) to the local directions  
𝛼 = 1,2,3 at the node 𝑘. This matrix is consistent with the 
matrix 𝜽 = {𝜃𝛼𝑖} introduced for the parametric geometry 
representation (see Section 2.1).  
After substitution of Eqs (22), (23) and (24) respectively 
into Eqs (25) and (26) one can obtain the following 
directional conditions for the hierarchical vertex nodes 
corresponding to the mechanical field  

0 = −𝐵
𝑒

(𝒖ℎ𝑝𝑞 , 𝝌𝑘) + 𝐶
𝑒

(𝜙ℎ𝜋𝜌 , 𝝌𝑘) + 𝐿
𝑒

(𝝌𝑘)  

    +∑ [𝜶
𝑓𝑒

𝑘 ∫ 𝝌𝑘
𝑇𝒓
𝑒
(𝒖ℎ𝑝𝑞)𝑑𝑆

𝑒

𝑆
𝑒𝑓 + 𝜶

𝑒𝑓

𝑘 ∫ 𝝌𝑘
𝑇𝒓
𝑒
(𝒖ℎ𝑝𝑞)𝑑𝑆

𝑒

𝑆
𝑒𝑓 ]𝑓  

(

with 𝜶
𝑒𝑓

𝑘 = {𝛼𝑖}, 𝑖 = 1,2,3. The scalar condition for the 
hierarchical vertex nodes of the electric field reads 

0 = 𝑏
𝑒

(𝜙ℎ𝜋𝜌 , 𝜒𝑘) + 𝐶
𝑒

(𝒖ℎ𝑝𝑞 , 𝜒𝑘) − 𝑙
𝑒

(𝜒𝑘)  

+∑ [𝛽
𝑓𝑒

𝑘 ∫ 𝜒𝑘ℎ
𝑒

(𝜙ℎ𝜋𝜌)𝑑𝑆
𝑒

𝑆
𝑒𝑓 + 𝛽

𝑒𝑓

𝑘 ∫ 𝜒𝑘ℎ
𝑒

(𝜙ℎ𝜋𝜌)𝑑𝑆
𝑒

𝑆
𝑒𝑓 ]𝑓    

(

where 𝑆
𝑒𝑓

 is a part of 𝑆
𝑒

\𝑆 neighbouring the element 𝑓. 

In the case of the first-order nodes, the local splitting factors 

𝜶
𝑒𝑓

𝑘 = {𝛼𝛼}, 𝛼 = 1,2,3 are in use and the Eq. (28) reads  

0 = −𝐵
𝑒

(𝒖ℎ𝑝𝑞 , 𝜽𝑘𝝀𝑘) + 𝐶
𝑒

(𝜙ℎ𝜋𝜌 , 𝜽𝑘𝝀𝑘) + 𝐿
𝑒

(𝜽𝑘𝝀𝑘)  

        +∑ [𝜶
𝑓𝑒

𝑘 ∫ 𝝀𝑘
𝑇𝜽𝑘

𝑇𝒓
𝑒
(𝒖ℎ𝑝𝑞)𝑑𝑆

𝑒

𝑆
𝑒𝑓  𝑓   

        +𝜶
𝑒𝑓

𝑘 ∫ 𝝀𝑘
𝑇𝜽𝑘

𝑇𝒓
𝑒
(𝒖ℎ𝑝𝑞)𝑑𝑆

𝑒

𝑆
𝑒𝑓 ] 

The nodal splitting factors 𝜶
𝑓𝑒

𝑘  and 𝛽
𝑒𝑓

𝑘  can be calculated 
from the equilibration conditions, i.e. Eq. (28) (or Eq. (30)) 
and Eq. (29) written for the element patches including 
elements surrounding the hierarchical or first-order vertex 
nodes of the domain 𝑉 (see [6], [7] and [11]). 
Note that in this and our previous implementations of ERM, we 
use averaging when the equilibration conditions become 
underdetermined. Then the splitting factors are equal to 1/2. 
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4. NUMERICAL EXAMPLES  

In our calculations, we will be interested in the effectivity of 
error estimation using the equilibrated residual method in 
the case of piezoelectric structures with a complex 
description of the electro-mechanical field. We will define 
such effectivity as the ratio of the estimated error value to 
its exact (or true) value, i.e. 

𝜃 =
𝜂

𝑒
 

4.1. Errors and their estimators 

The estimated error (or error estimate) of the potential 
energy will be defined as follows 

−𝛱(�̂�, �̂�) + 𝛱(𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) ≡ 𝛱(�̂� − 𝒖ℎ𝑝𝑞 , �̂� − 𝜙ℎ𝜋𝜌)  

=
1

2
𝐵(�̂� − 𝒖ℎ𝑝𝑞 , �̂� − 𝜙ℎ𝜋𝜌) −

1

2
𝐶(�̂� − 𝒖ℎ𝑝𝑞 , �̂� − 𝜙ℎ𝜋𝜌)  

−
1

2
𝐶(�̂� − 𝜙ℎ𝜋𝜌, �̂� − 𝒖ℎ𝑝𝑞) −

1

2
𝑏(�̂� − 𝜙ℎ𝑝𝑞 , �̂� − 𝜙ℎ𝜋𝜌)  

= 𝜂𝑀 − 𝜂𝐶 − 𝜂𝐸 = 𝜂  

In the above relation, the difference in potential energies 
resulting from the estimated solution (�̂�, �̂�) and the 
numerical solution (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) has been replaced by the 
equivalent sum of elastic strain energy 1/2 𝐵, electric field 
energy 1 2⁄ 𝑏 and the coupling energy 𝐶. We thus introduce 
three components of the error estimate 𝜂 (mechanical 𝜂𝑀, 
electric 𝜂𝐸  and electro-mechanical 𝜂𝐶). These components 
are defined on the total errors at any point within the 
mechanical field of displacements and electric field of 
potential:  

𝜼𝑡 = �̂� − 𝒖ℎ𝑝𝑞 = (�̂� − 𝒖𝑞) + (𝒖𝑞 − 𝒖ℎ𝑝𝑞) = 𝜼𝑚 + 𝜼𝑎

𝜂𝑡 = �̂� − 𝜙ℎ𝜋𝜌 = (�̂� − 𝜙𝜌) + (𝜙𝜌 − 𝜙ℎ𝜋𝜌) = 𝜂𝑚 + 𝜂𝑎

  

The total errors (index 𝑡) can be divided into those due to 
modelling (index 𝑚) and approximation (index 𝑎). The 
estimated solution (𝒖𝑞 , 𝜙𝜌) corresponds to the fixed orders 
𝑞 and 𝜌 of the mechanical models M𝐼, RM, TR and the 
electric model E𝐽, respectively.  
In the case of element components of the above estimators, 
the exact values of the estimates (�̂�, �̂�) and (𝒖𝑞 , 𝜙𝜌) are 
replaced by their local (element) FEM approximations, 
respectively (𝒖𝐻𝑃𝑄, 𝜙𝐻ΠΡ) and (𝒖𝐻𝑃𝑞 , 𝜙𝐻Π𝜌), in the cases of 
the total and approximation error estimation. These 
approximations are obtained from the local problems 
defined in Eqs (20) and (21). 
Obtaining analogous true error definitions of 𝑒, 𝑒𝑀, 𝑒𝐶 , 𝑒𝐸  
requires replacing the ERM-estimated solution (�̂�, �̂�) with 
the exact solution (𝒖, 𝜙) in equation (15). Doing so allows 
us to determine three components of the error and define 
total, modelling, and approximation errors, 𝒆𝑡, 𝒆𝑎, 𝒆𝑚, 𝑒𝑡 , 
𝑒𝑎, 𝑒𝑚, for each of these three components. Note that the 
exact solution (𝒖, 𝜙) from Eq. (13) equals (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) 
from Eq. (14) for 1/ℎ, 𝑝, 𝑞 → ∞ and 1/ℎ, 𝜋, 𝜌 → ∞. In 
practice, we use the maximum values possible in our FEM 
adaptive code instead of the infinite values. This way an 
overkill mesh is generated and the exact solution (𝒖, 𝜙) is 

replaced by (𝒖𝑟𝑒𝑓 , 𝜙𝑟𝑒𝑓), with maximum possible values of 
𝑝, 𝜋 and 𝑞, 𝜌, for the total error calculation. In the case of the 
approximation error, another overkill mesh is created and 
(𝒖, 𝜙) in Eq. (15) is replaced by (𝒖𝑚𝑜𝑑 , 𝜙𝑚𝑜𝑑), with 
maximum possible values of 𝑝, 𝜋 and fixed 𝑞, 𝜌 taken from 
the global problem defined by Eq. (14).  

4.2. Model problem  

Our numerical tests concern a square plate of length  
𝑙 = 3.1414 ∙ 10−2𝑚 and thickness 𝑡 = 0.15 ∙ 10−2𝑚.  
As the shape, boundary conditions, forces and charges are 
all symmetric, a quarter of the plate of dimensions  
𝑙 2⁄ × 𝑙 2⁄ × 𝑡 will be analyzed. The applied mesh will 
consist of 4 × 4 × 2 prismatic elements. We will apply two 
simple and three complex piezoelectric models. In the 
simple models, we will apply either hierarchical M𝐼  
(𝐼 ≡ 𝑞 = 2) or first-order RM (𝑞 = 1) shell models and 
symmetric-thickness hierarchical electric models E𝐽  
(𝐽 ≡ 𝜌 = 2 for MI) or (𝐽 ≡ 𝜌 = 1 for RM). In the case of the 
complex models (Fig. 1), one layer of hierarchical 
(M𝐼, E𝐽, 𝐼 = 2, 𝐽 = 2) elements is applied along the plate 
boundary. Additionally, two layers of (RM, E𝐽, 𝐽 = 1) 
elements are employed in the interior of the plate. These 
two types of elements are connected with one layer of 
transition elements (TR, E𝐽, 𝐽 = 1 and 2). In the complex 
models, we use either the classical or modified or enhanced 
transition elements.  
 

 

Fig. 1. Complex model of a symmetric quarter of the piezoelectric plate 

 

Piezoelectric properties of the plate correspond to a typical 
piezoceramic material [22]. Young's modulus is equal to 
𝐸 = 0.5 ∙ 1011𝑁/𝑚2, and the Poisson's ratio is 𝜈 = 0.294.  
A normal pressure on the upper surface of the plate is 
𝑝 = 4 ∙ 106𝑁/𝑚2. The lateral sides of the plate are clamped. 
These sides are also electrically grounded. The plate's 
upper surface is loaded with electric charges  
𝑐 = 0.2 ∙ 10−1 𝐶/𝑚2. At constant stress, the dielectric 
permittivity constant equals 𝛿 = 0.1593 ∙ 10−7 𝐹/𝑚. At 
constant stress again, the non-zero piezoelectric constants 
are 𝑐13 = 𝑐23 = −0.15 ∙ 10−9𝐶/𝑁, 𝑐33 = 0.3 ∙ 10

−9𝐶/𝑁 and 
𝑐52 = 𝑐62 = 0.5 ∙ 10−9𝐶/𝑁. In practical engineering 
calculations, the values of the pressure and electric charges 
are usually smaller. Here, we applied their maximum 
possible values as they give mechanical and electric 
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potential energy contributions of the same order (the most 
numerically demanding case of error estimation – cf. [11]). 
Note that the values of pressure and charges do not 
influence our error effectivity calculations due to the 
linearity of the piezoelectric problem and the relative 
character of the effectivity indices. 
In our effectivity calculations changing values of the 
longitudinal approximation orders within the mechanical 
and electric fields will be applied: 𝑝 = 𝜋 = 1,2,3, …, 
𝑝𝑚𝑎𝑥 = 𝜋𝑚𝑎𝑥 = 7 or 8.  
In the case of overkill meshes mentioned in section 4.1, the 
calculation of (𝒖𝑟𝑒𝑓 , 𝜙𝑟𝑒𝑓) is performed for 𝑝, 𝜋 = 9 and 
𝑞, 𝜌 = 6, while obtainment of (𝒖𝑚𝑜𝑑 , 𝜙𝑚𝑜𝑑) requires  
𝑝, 𝜋 = 9 with fixed 𝑞 and 𝜌 taken as for (𝒖ℎ𝑝𝑞 , 𝜙ℎ𝜋𝜌) from 
Eq. (14). For both overkill meshes, the longitudinal division 
numbers are equal to 𝑚 = 𝑙 2ℎ⁄ = 9. 
Note that our model problem does not include singularities. 
In order to check effectivity indices in such cases, other 
model problems, e.g. L-shaped domain piezoelectric plate, 
can be proposed for future research.  

4.3. Results and discussion 

In order to obtain the results in the tables presented below, 
values of the mechanical, coupling and electric parts of the 
global ERM estimators are applied including their total, 
approximating and modelling components. These values 
result from a collection of the local ERM solutions of the 
problems defined in Eqs (20) and (21) for the total and 
approximation error estimators. The modelling error 
estimator is obtained as a difference of the previous two. In 
the local problems, all 18 vertex displacement degrees of 
freedom are constrained. Also, 1 electric potential degree of 
freedom is constrained. In the local problems, longitudinal 
orders of approximation 𝑃 and Π are increased by 1 with 
respect to the global values 𝑝 and 𝜋, in the case of total and 
approximation error estimation. Vertical orders 𝑄 and Ρ are 
increased by 1 with respect to the global values of 𝑞 and 𝜌, 
in the case of the total error estimation.  
Table 1 presents global effectivity results for the complex 
model (M𝐼/TR/RM, E𝐽) employing the classical transition 
elements. The presented results can be confronted with 
[14] where different mesh density is applied.  

TABLE 1. Global effectivities in the case of a complex piezoelectric model with classical transition elements (M𝐼 TR⁄ /RM,E𝐽) (in the global 

problem 𝑞 = 𝜌 = 1 and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟,𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 
𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or  Ρ = 𝜌) 

Part of estimator Component of a part 
Values of the degrees of approximation p or  

1 2 3 4 5 6 7 

mechanical 

total 0.77 2.15 1.03 0.97 1.01 1.00 1.01 

approximation 0.73 2.30 1.13 0.94 0.96 1.04 1.32 

modelling 0.78 1.56 1.02 1.00 1.01 1.01 1.01 

coupling 

total 1.01 2.99 1.14 1.10 1.09 1.08 1.08 

approximation 1.29 1.73 0.79 0.77 0.83 0.90 1.16 

modelling 0.29 1.09 1.07 1.07 1.08 1.08 1.08 

electric 

total 1.12 1.25 0.93 0.93 0.93 0.92 0.92 

approximation 1.20 1.56 0.85 0.84 0.88 0.94 1.16 

modelling 1.33 0.98 0.95 0.93 0.93 0.92 0.92 

In Table 2 the global effectivity results for three parts of the 
estimator and three components of each part are displayed. 

They correspond to the complex model (M𝐼/TR/RM, E𝐽) 
with the modified transition elements employed.  

TABLE 2. Global effectivities in the case of a complex piezoelectric model with modified transition elements (M𝐼 TR⁄ /RM,E𝐽) (in the global 

problem 𝑞 = 𝜌 = 1  and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = var,𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 
 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or  Ρ = 𝜌) 

Part of estimator Component of a part 
Values of the degrees of approximation p or  

1 2 3 4 5 6 7 

mechanical 

total 0.82 2.16 1.06 1.05 1.08 1.08 1.10 

approximation 0.78 2.34 1.26 1.32 1.88 1.87 1.60 

modelling 0.94 1.54 1.03 1.03 1.04 1.04 1.05 

coupling 

total 1.31 2.74 1.11 1.10 1.07 1.07 1.07 

approximation 1.67 2.52 0.83 0.82 0.96 1.19 2.04 

modelling 0.46 1.18 1.06 1.07 1.07 1.08 1.08 

electric 

total 1.32 2.22 0.94 0.93 0.93 0.93 0.93 

approximation 1.41 3.11 0.91 0.86 0.95 1.09 1.70 

modelling 1.61 1.20 0.94 0.93 0.93 0.92 0.92 
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Table 3 presents global effectivity results for all parts and 
all components of the estimator. The results concern the 

complex model (M𝐼/TR/RM, E𝐽) employing the enhanced 
transition elements.  
 

TABLE 3. Global effectivities in the case of a complex piezoelectric model with enhanced transition elements (M𝐼 TR⁄ /RM,E𝐽) (in the global 

problem 𝑞 = 𝜌 = 1 and 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟,𝑚 = 4; in the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 
 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or  Ρ = 𝜌) 

Part of estimator Component of a part 
Values of the degrees of approximation p or  

1 2 3 4 5 6 7 

mechanical 

total 0.82 2.17 1.06 1.05 1.07 1.07 1.09 

approximation 0.78 2.35 1.28 1.38 1.95 1.94 1.67 

modelling 0.95 1.56 1.04 1.04 1.05 1.05 1.06 

coupling 

total 1.31 2.84 1.11 1.09 1.07 1.07 1.07 

approximation 1.67 2.52 0.83 0.82 0.95 1.18 2.02 

modelling 0.46 1.18 1.07 1.07 1.07 1.08 1.08 

electric 

total 1.32 2.12 0.94 0.93 0.93 0.93 0.93 

approximation 1.40 3.10 0.91 0.86 0.95 1.09 1.71 

modelling 1.61 1.20 0.94 0.93 0.93 0.92 0.92 

For all three piezoelectric complex models, for the 
longitudinal approximation orders 𝑝 ≥ 3 and 𝜋 ≥ 3, almost 
all total and modelling components of the estimator are 
between 0.9 and 1.1. For the same range, most of 
approximation components of the estimator are in the 
range between 0.8 and 2.0. This means that the true and 
estimated error values are respectively either close (the 
range 0.9-1.1) or similar (the range 0.8-2.0) to the desired 
effectivity value equal to 1.0. The best results for the 
approximation components are obtained with use of the 
classical transition elements.  
The first general remark we would like to make is that 
acceptable ERM global effectivities are between 1.0 and 3.0 
(compare [23]). Note that higher than 1.0 values of the 
global effectivities can be observed for thin structures or 

small errors, for example. In our model problem, the 
approximation error is ten times less than the modelling 
error. As a result, our effectivities for the approximation 
components are worse than for the modelling components. 
Another general remark concerns some deterioration of the 
effectivity values with the increase of the approximation 
order. The deterioration usually results from insufficient 
quality of the true error value obtained from the overkill 
mesh. This is also our case – we were not able to obtain 
better true error results due to our code capabilities.  
In Tables 4 and 5, to further assess by comparison the 
quality of the estimation for the above three complex 
models, we present the effectivity results for simple (basic) 
models (M𝐼, E𝐽) and (RM, E𝐽). 

TABLE 4. Global effectivities in the case of a simple piezoelectric plate model (M𝐼, E𝐽) (in the global problem 𝑞 = 𝜌 = 2, 𝑝 = 𝜋 = 𝑣𝑎𝑟,𝑚 = 4; in 

the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 
𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or  Ρ = 𝜌) 

Part of estimator Component of a part 
Values of the degrees of approximation p or  

1 2 3 4 5 6 7 

mechanical 

total 0.76 2.27 1.07 1.01 1.02 1.02 1.03 

approximation 0.76 2.35 1.15 0.92 0.92 1.00 1.22 

modelling 0.93 1.79 1.03 1.02 1.03 1.02 1.03 

coupling 

total 1.01 1.83 0.79 0.73 0.71 0.62 0.50 

approximation 1.01 1.86 0.79 0.76 0.81 0.88 1.07 

modelling 0.43 1.03 0.40 0.32 0.39 0.31 0.34 

electric 

total 1.13 1.54 0.83 0.77 0.69 0.58 0.47 

approximation 1.14 1.61 0.85 0.84 0.87 0.94 1.10 

modelling 0.71 0.71 0.47 0.42 0.41 0.39 0.40 

Note that the results presented in this table for the coupling 
and electric parts of the estimator can be improved 

(effectivities can move closer to 1.0) using the tuning 
procedure presented in [11].  
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TABLE 5. Global effectivities in the case of a simple piezoelectric plate model (RM,E𝐽) (in the global problem 𝑞 = 𝜌 = 1, 𝑝 = 𝜋 = 𝑣𝑎𝑟,𝑚 = 4; in 

the local problems in the mechanical field: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, in the electric field: 1 vertex constraint, 
𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or  Ρ = 𝜌) 

Part of estimator Component of a part 
Values of the degrees of approximation p or  

1 2 3 4 5 6 7 

mechanical 

total 0.80 1.80 0.95 0,93 0,93 0.92 0.92 

approximation 0.68 2.13 1.87 1.35 1.65 1.24 1.87 

modelling 0.85 1.41 0.95 0.93 0.93 0.92 0.92 

coupling 

total 1.00 1.37 0.99 1.00 1.01 1.01 1.01 

approximation 2.14 5.00 0.86 1.36 1.23 1.99 1.48 

modelling 0.67 1.22 1.00 1.00 1.01 1.01 1.01 

electric 

total 1.09 1.12 0.98 0.98 0.98 0.98 0.98 

approximation 1.36 3.04 1.26 1.52 1.38 1.95 1.16 

modelling 0.73 1.07 0.98 0.98 0.98 0.98 0.98 

It results from a comparison of Tables 1-3 and 4-5 that all 
three complex models of the piezoelectric plate deliver 
effectivities of the same quality as two basic (homogenous) 
piezoelectric models. For all estimator components, except 
those requiring the application of a tuning procedure, the 
results are either close (less than 10% difference) or similar 
(up to 50% difference) for the total and modelling 
components, and the approximation components, 
respectively.  
It can be noticed that the effectivities are higher for the 
complex models than for the simple (homogenous) models. 
This is consistent with the observation of other researchers 

concerning numerical models with different orders of 
approximation in neighboring elements. 
To further assess the quality of the estimation for coupled 
problems one can compare the results presented in Tables 
1 to 3 with the analogous results for uncoupled problems 
for which the upper bound of the estimation holds. In Table 
6 we consider three complex mechanical models with 
different (classical, modified, enhanced) transition 
elements employed. Also, the common results for the 
complex dielectric model are presented. In this model,  
𝐽 = 𝜌 = 2 is applied to two boundary layers of elements 
and 𝐽 = 𝜌 = 1 to internal layers.  

TABLE 6. Global effectivities – three complex models for uncoupled problems (M𝐼/TR/RM) and (E𝐽) (in the global elasticity problem 𝑞 = 1 and 

𝑞 = 2, 𝑝 = 𝑣𝑎𝑟,𝑚 = 4 ; in the local problems: 18 vertex constraints, 𝐻 = ℎ, 𝑃 = 𝑝 + 1, 𝑄 = 𝑞 + 1 or 𝑄 = 𝑞, and in the dielectric global problem:  

𝜌 = 1 and 𝜌 = 2, 𝜋 = 𝑣𝑎𝑟,𝑚 = 4, in the local problems: 1 vertex constraint, 𝐻 = ℎ, Π = 𝜋 + 1, Ρ = 𝜌 + 1 or Ρ = 𝜌) 

Uncoupled problem 

type 

Part of 

estimator 

Component of 

a part 

Values of the degrees of approximation p or  

1 2 3 4 5 6 7 8 

elasticity (classical 

transition model) 
mechanical 

total 0.65 1.81 1.03 0.97 0.98 0.96 0.95 0.94 

approximation 0.64 1.81 1.05 0.99 1.04 1.13 1.23 1.51 

modelling 0.91 1.78 1.02 0.96 0.96 0.94 0.95 0.93 

elasticity (modified 

transition model) 
mechanical 

total 0.65 1.84 1.05 1.00 1.01 1.00 1.00 0.99 

approximation 0.64 1.89 1.20 1.38 1.32 1.25 1.44 1.47 

modelling 0.86 1.57 0.94 0.90 0.91 0.98 0.98 0.89 

elasticity (enhanced 

transition model) 
mechanical 

total 0.65 1.84 1.05 0.99 1.00 0.99 0.99 0.98 

approximation 0.65 1.86 1.08 1.05 1.15 1.35 1.41 1.81 

modelling 0.91 1.72 1.02 0.98 0.98 0.97 0.97 0.96 

dielectricity electric 

total 1.59 1.82 1.01 1.01 1.00 1.01 1.01 1.01 

approximation 1.58 2.52 1.09 1.13 1.04 1.04 1.02 1.21 

modelling 2.16 1.11 1.00 1.00 1.00 1.01 1.01 1.01 

Comparing the results from the above table for three 
uncoupled mechanical problems one can notice their 
closeness (about 10% difference) or similarity (less than 
50% difference) in the case of total and modelling 
components and the case of approximation components, 
respectively. The analogous closeness and similarity can be 
seen by comparing these results with the analogous results 
for three coupled piezoelectric problems presented in 
Tables 1-3. Additionally, such closeness (total and 
modelling components) or similarity (approximation 

components) can be observed for the common uncoupled 
problem of dielectricity from the above table and the results 
presented in Tables 1-3 for three coupled piezoelectric 
problems.  

5. CONCLUSIONS  

The theoretical considerations and calculations in model 
examples indicate that the equilibrated residual method 
(ERM) can be applied to complex models of piezoelectrics 
in which the mechanical field is described by the 
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hierarchical, first-order and transition shell models, and the 
electric field by the hierarchical symmetric-thickness 
model.  
The presented effectivities of error estimation using the 
equilibrated residual method in stationary problems of 
complex piezoelectric models are either close (less than 
10% difference) or similar (up to 50% difference) to the 
cases of homogeneous models of piezoelectrics and  to the 
cases  of uncoupled problems of elasticity (elastostatics) 
and dielectricity (electrostatics).  
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