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Abstract. The choice of C/C++ compiler significantly impacts the performance and energy consumption of multithreaded numerical al-
gorithms related to linear algebra. This study investigates the effects of the C/C++ compiler choice and processor frequency scaling (using
Dynamic Voltage Frequency Scaling) on the performance and energy consumption of the multithreaded WZ factorization on three different
computing platforms, two featuring Intel Xeon processors and one featuring AMD EPYC processor. The factorization is implemented both
without optimization techniques and with strip-mining. Based on time and energy tests, we have demonstrated that, for the WZ factorization
(in both implementations), each compiler reacts somewhat differently to frequency changes, thus affecting overall performance and energy
consumption. The Intel compilers achieved the best performance and energy savings in a multithreaded environment compared to the other
compilers on each of the tested computing platforms.
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1. INTRODUCTION

The choice of a C/C++ compiler and its associated configu-
rations holds a pivotal sway over the performance and energy
consumption characteristics of multithreaded numerical algo-
rithms, particularly those in the domain of linear algebra. A
compiler with a robust support for multithreading can produce
the code that effectively exploits parallelism, thereby enhanc-
ing performance and reducing energy consumption on multi-
core systems. Researchers and practitioners confront the im-
perative task of meticulously evaluating and selecting compil-
ers that align precisely with the characteristics and require-
ments of the targeted multi-core architecture. This judicious
selection emerges as a significant contributing factor in achiev-
ing the desired equilibrium between high-performance com-
puting and energy efficiency. This judicious selection emerges
as a significant contributing factor in achieving the desired
balance between high-performance computing and energy ef-
ficiency, which is a crucial aspect of complex systems infor-
matiks. As highlighted in the article [1], energy efficiency and
the proper choice of algorithms play a fundamental role in the
functioning of parallel systems.

In today’s computing environment, which is characterized
by the proliferation of multi-core processors, the limitations of
conventional programming languages are evident. As a result,
there is a growing need for specialized frameworks and ex-
tensions dedicated to High-Performance Computing (HPC) to
bridge this gap. Frameworks like OpenMP, utilized in the re-
search under discussion, empower programmers to incorporate
parallelism into their codebases. Consequently, it is essential
for compilers to work in tandem with runtime libraries to effec-
tively translate parallel code into the complexities of processor
architecture. Many HPC applications heavily rely on such ex-
tensions, continuously evolving through collaborative efforts
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between creators of optimized computational algorithms, such
as those in the article [2] , developers and hardware vendors.
Thus, compilers must remain updated with the evolving stan-
dards for language extensions to ensure smooth adaptation to
the ever-changing landscape of parallel computing paradigms.

This article serves as a natural extension of our previous
work [3]. Previous study, explored the impact of processor
frequency scaling using Dynamic Voltage Frequency Scaling
(DVFS) on the performance and energy consumption of the
WZ factorization, concentrating exclusively on the Intel C++
compiler.The conclusion from our tests was that the highest
frequency is not always the best in terms of time and energy
consumption. For the WZ factorization algorithm, it pays to re-
duce the frequency to save energy without losing performance.
Because the choice of compiler may prove to be a signifi-
cant factor in achieving the desired equilibrium between high-
performance computing and energy efficiency in this extended
investigation, our scope intentionally broadens to encompass
compilers adhering to the OpenMP standard, specifically GCC
(GNU Compiler Collection), and two versions of the Intel
compiler—ICC and its latest iteration, OneAPI. OpenMP sup-
port was systematically enabled for each compiler during the
compilation process using the appropriate flags, resulting in
the creation of a multithreaded implementation on the CPU.
Additionally, we extended our research to three platforms: two
computing platforms with Intel Xeon processors—Intel Xeon
Gold like in [3] and Intel Xeon Platinum—and one platform
with an AMD EPYC processor. This selection allows us to
evaluate the impact of compilers on the performance of the
WZ algorithm code across a broad spectrum of architectures,
providing insights into how different hardware setups influence
the optimization results.

The WZ matrix factorization, also known as Quadrant In-
terlocking Factorization (QIF), made its debut in 1979 cour-
tesy of D.J. Evans and M. Hatzopoulos [4]. Their primary
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objective was to design a factorization method with superior
parallelization potential compared to the well-established LU
factorization. The distinctive feature of WZ factorization lies
in its simultaneous zeroing of two columns/rows, contrasting
with the LU factorization, which zeros only one column/row.
Since its introduction, WZ factorization has garnered atten-
tion from various researchers, as evidenced by the works of
[5, 6, 7, 8, 9, 10]. These studies contribute to the understand-
ing of the applications of WZ factorization in solving linear
systems. As highlighted in the article [11], numerical algebra
methods are crucial for optimizing computations, particularly
in robotics.

The WZ factorization algorithm is inherently complex and
particularly well-suited for studying the impact of compiler op-
timizations. Its inherent challenges, such as avoiding issues
like over synchronization and memory bottlenecks, make it a
rigorous test case for compilers. This allows for focused re-
search on maximizing the effectiveness of various optimiza-
tions, including multithreading and frequency scaling, across
different architectures.

Publication [8], presented a detailed implementation of mul-
tithreaded WZ factorization using OpenMP on a multicore ar-
chitecture, incorporating various nested loop transformation
strategies to optimize the program. The implementation of an
algorithm plays a crucial role in determining its performance.
Hence, this article examines two distinct multithreaded imple-
mentations of the WZ row algorithm. One implementation
serves as the baseline, while the other incorporates a loop op-
timization technique and employs strip-mining. Through this
comparative analysis, we aim to explore how implementation
choices, beyond compilation, significantly impact algorithmic
performance.

Our current research utilized the GCC, Intel ICC, and In-
tel OneAPI compilers, along with the Intel Xeon Gold, Intel
Xeon Platinum, and AMD EPYC platforms. GCC is an open-
source compiler known for its broad support across many ar-
chitectures, while Intel ICC and Intel OneAPI are optimized
for Intel processors, enabling full use of advanced features like
AVX-512. Intel Xeon Gold and Platinum were chosen due to
differences in core count and cache, allowing for performance
comparison across varying levels of computing power. AMD
EPYC, with its high core count, was included to assess the al-
gorithm on a platform with significant parallel processing po-
tential.

Energy savings can be achieved through both hardware [12]
and software approaches [13, 14, 15, 16, 17, 18, 19]. The for-
mer involves innovations in computer hardware, encompassing
microarchitecture advancements and integrated circuit design.
On the software front, energy optimization operates at both
the operating system and application levels. In this article, we
concentrate on a hybrid approach, combining dynamic voltage
and frequency scaling (DVFS) at the operating system level
with C/C++ compiler selection for the program algorithm at
both levels (hardware and software).

The main contributions of this paper are the following.

• Evaluation of Multithreaded Implementations: We con-

ducted thorough testing and evaluation of two multithreaded
implementations (basic and strip-mining) of the WZ factor-
ization on multicore CPUs. This investigation spans the uti-
lization of three compilers—GCC, Intel Compiler ICC, and
its latest iteration, OneAPI. Additionally, it is conducted on
three different computing platforms: Intel Xeon Gold, Intel
Xeon Platinum, and AMD EPYC.

• Compiler Sensitivity to Frequency Changes: Our analysis
reveals nuanced variations in the reactions of each compiler
to frequency changes. These differences manifest in dis-
cernible impacts on overall performance and energy con-
sumption during the execution of the WZ factorization al-
gorithm.

The rest of the paper is organized as follows. Section 2
presents a literature review on the impact of C/C++ compilers
on performance and energy consumption. Section 3 describes
the WZ factorization algorithm using two versions of OpenMP
programming models. Section 4 presents the methodology we
used in our research. It presents the computational platforms,
compilers, the DVFS technique and the RAPL interface we
used to perform time and energy measurements. Sections 5 and
6 present a numerical experimental evaluation of the impact of
the choice of C/C++ compiler and processor frequency scaling
on the performance and energy consumption of WZ factoriza-
tion on multicore architectures. Finally, Section 7 concludes
the paper.

2. RELATED WORK

When examining the impact of C/C++ compiler selection on
the performance and energy consumption of multithreaded al-
gorithms, various approaches are discussed in the existing lit-
erature. The research focused on energy efficiency in multi-
threaded numerical algorithms, as highlighted in the works of
[20, 18, 13, 16], provides insights into compiler considerations
and runtime systems aiming to minimize energy consumption
and optimize computational performance for numerical com-
puting. The studies conducted by [20] and [18] involve an
analysis of performance and energy consumption per CPU for
real-world scientific codes related to the solidification model-
ing application. These applications utilize the phase-field (PF)
method and a generalized finite difference scheme for solv-
ing governing partial differential equations (PDEs). Specifi-
cally, the paper [20] focuses on various C/C++ compilers tai-
lored for AMD EPYC processors in the context of numerical
modeling of solidification. Moreover, the works presented in
[13, 16] delve into the examination of performance and en-
ergy consumption across four OpenMP runtime systems on a
Non-Uniform Memory Access (NUMA) platform. Those pa-
pers present experimental studies characterizing OpenMP run-
time systems for three factorizations: Cholesky, LU, and QR.
The goal is to gain a deeper understanding of the behavior of
these runtime systems in various multithreaded scenarios. The
works [3] and [10] focus on the utilization of a specific multi-
core algorithm, WZ factorization, to investigate performance
and energy consumption. These studies employ the Intel com-
piler, specifically ICC. The publication of such research allows
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for concluding in the context of specific challenges related to
numerical linear algebra algorithms. This article serves as an
extension of the content presented in article [3], delving into
the role of C/C++ compilers in influencing the performance,
computational efficiency, and energy aspects of WZ factoriza-
tion.

3. WZ FACTORIZATION

We present shortly the WZ factorization [4]. We transform a
square and nonsingular matrix A into a product of two ma-
trices, namely WZ. The matrix W is a matrix of the form
of a butterfly with units on its main diagonal, the matrix Z is
a matrix of the form of an hourglass. Both the matrices are
complements of each other in the sense of the structure of non-
trivial elements (one has non-trivial elements in places where
the other has zeros/units — and vice versa). The forms of these
matrices can be seen in Figure 1.

We chose this numerical algorithm here because it’s quite
complicated and difficult to optimize by the compiler. The
WZ factorization has been parallelized and vectorized using
OpenMP pragmas.

Figure 2 presents a basic algorithm for the WZ factorization
for an even size of the matrix (we only consider even sizes —
without loss of generality).

Considering performance and energy consumption, it is im-
portant to have optimized algorithms and their implementation.
A general technique for improving performance is to take full
advantage of multicore architectures’ features. A good exam-
ple is the use of loop optimization in the code as the most
common critical places are just the loops. One of the known
loop optimization techniques is strip-mining. A loop in the
process of strip-mining is divided into two loops, where the
inner one has BLOCK_SIZE iterations and the outer one has
n/BLOCK_SIZE iterations (n being the number of iterations in
the original loop). The strip-mining alone can have some pos-
itive impact on the performance (by easing the automatic vec-
torization process).

In Figure 3, we present a strip-mining algorithm for the
WZ factorization with the parameter of this algorithm, namely
n/BLOCK_SIZE. We use the compiler clause __assume which
tells the compiler that a given condition is fulfilled — here, we
declare that ii and jj are multiples of the BLOCK_SIZE .

The number of floating-point operations for the WZ factor-
ization algorithm in both versions (basic and optimized for
strip mining technique) is the same and equals 2

3 n3 +O(n2)
[9]. However, the algorithm (in both implementations) is rather
memory-bound than compute-bound — that is, the amount of
computations is relatively small compared to the amount of
reads from and writes to memory. Namely in Figures 2 and 3,
we can see that in the inner-most loop (which has the most it-
erations), there are 5 memory reads/writes for every 4 floating-
point operations. It is less cache-friendly and can impact both
the speedup and energy savings.

4. METHODOLOGY

Similarly to [3], we consider two variants of the WZ factoriza-
tion algorithm: the basic version and block algorithms employ-
ing strip-mining. The dataset for our assessment comprises
a randomly generated square matrix containing nxn double-
precision values, where n equals 32768. Consequently, our test
dataset encompasses 1073741824 cells, equivalent to 8GB of
data. All algorithm versions adhere to a row-wise layout and
are coded in C++, with vectorization and parallel processing.

Our experimental setup comprises three computing plat-
forms: two featuring Intel Xeon processors and one featuring
an AMD EPYC processor. One platform, identical to that used
in [3], is equipped with a modern Intel Xeon Gold multi-core
processor. The second platform utilizes an Intel Xeon Platinum
processor. The third platform is equipped with a contemporary
AMD EPYC multi-core processor. Detailed information about
our computing platforms is presented in the Table 1. It collects
information about the clock frequency, number of cores, cache
size, and thermal design power (TDP) of the Intel Xeon Gold,
Intel Xeon Platinum, and AMD EPYC processors. These de-
tails are crucial because they affect the performance and energy
consumption of the WZ factoring algorithm. Differences in the
number of cores and clock speed affect, for example, parallel
processing capabilities, while TDP affects energy efficiency in
different workloads, which is crucial for focusing the study on
performance and energy consumption.

Intel Xeon Platinum offers higher performance, more cores,
better memory support, and more advanced features compared
to Intel Xeon Gold. This makes Platinum more efficient for
parallel computations. The higher core count allows for better
load balancing, especially for larger problems, which reduces
processing time. EPYC processors have a very large core count
and are optimized for high parallelism. AMD EPYC 9654,
with its more cores and higher maximum frequency (up to 3.7
GHz), performs better for computations that can effectively use
a large number of cores.

Due to their higher TDP (Thermal Design Power; although
both manufacturers understand this concept slightly differ-
ently), Intel Xeon Platinum and AMD EPYC processors can
use more power than Intel Xeon Gold processors. This is a re-
sult of their increased performance capabilities, larger number
of cores, and more advanced architectural features, which re-
quire more energy to operate at peak efficiency. The higher
TDP indicates that these processors are designed to handle
greater workloads but at the cost of increased power consump-
tion. Choosing between them depends on balancing your per-
formance needs with energy efficiency, as higher TDP proces-
sors are better suited for more demanding tasks but may result
in higher operational costs due to increased power usage.

We have many C++ code compilers available for Intel Xeon
and AMD EPYC processors. The role of the compiler is a
key element in the effective use of the hardware potential of
the system on which specific software runs. An effective com-
piler should allow programmers to concentrate on building the
code rather than worrying about the limitations of the com-
piler. Its ability to generate an optimal binary should cover
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W1∗ = (1,0, . . . ,0︸ ︷︷ ︸
n−1

)

Wi∗ = (wi1, . . . ,wi,i−1,1,0, . . . ,0︸ ︷︷ ︸
n−2i+1

,wi,n−i+2, . . . ,win) for i = 2, . . . , n
2 ,

Wi∗ = (wi1, . . . ,wi,n−i,0, . . . ,0︸ ︷︷ ︸
2i−n−1

,1,wi,i+1, . . . ,win) for i = n
2 +1, . . . ,n−1,

Wn∗ = (0, . . . ,0︸ ︷︷ ︸
n−1

,1)

Zi∗ = (0, . . . ,0︸ ︷︷ ︸
i−1

,zii, . . . ,zi,n−i+1,0, . . . ,0) for i = 1, . . . , n
2 ,

Zi∗ = (0, . . . ,0︸ ︷︷ ︸
n−i

,zi,n−i+1, . . . ,zii,0, . . . ,0) for i = n
2 +1, . . . ,n.

Fig. 1. The output of the WZ factorization — rows of the matrices W and Z

Table 1. Specification of computing platforms

Processor Clock frequency Cores Cache TDP
Intel Xeon Gold 5218R 800 MHz - 2.1 GHz 2 x 20 cores L1i: 32KB, L1d: 32KB, L2: 1024KB, L3: 28MB 125 W
Intel Xeon Platinum 8358 800 MHz - 2.6 GHz 2 x 32 cores L1i: 32KB, L1d: 48KB, L2: 1280KB, L3: 48MB 270 W
AMD EPYC 9654 400 MHz - 3.7 GHz 96 cores L1i: 32KB, L1d: 32KB, L2: 1024KB, L3: 32MB 320 W

for(k = 0; k < n/2-1; k++)

{

p = n-k-1;

akk = a[k][k];

akp = a[k][p];

apk = a[p][k];

app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

#pragma omp parallel for

for(i = k+1; i < p; i++)

{

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

#pragma omp simd

for(j = k+1; j < p; j++)

a[i][j] += - w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

Fig. 2. The basic algorithm for the multithreaded WZ factorization —
pseudocode

even the most abstract high-level code. Unfortunately, finding
a compiler that meets these criteria is often a challenge. Not
all compilers are able to produce optimal code. In some cases,
they can generate different sets of low-level instructions for the
same piece of high-level code.

For our tests we chose three of available for our processor
compilers, namely: GCC, Intel ICC and Intel OneAPI.

In this research, we select compiler options so that differ-
ent compilers can be compared with corresponding options.
Therefore, we give up various types of manual optimizations
through detailed options, because they can be different for

for(k = 0; k < n/2-1; k++)

{

p = n-k-1;

akk = a[k][k];

akp = a[k][p];

apk = a[p][k];

app = a[p][p];

detinv = 1 / (apk*akp - akk*app);

#pragma omp parallel for

for(i = k+1; i < p; i++)

{

w[i][k] = (apk*a[i][p] - app*a[i][k])

* detinv;

w[i][p] = (akp*a[i][k] - akk*a[i][p])

* detinv;

start = RDTTNM(k+1, BLOCK_SIZE);

for(jj = start; jj < p; jj += BLOCK_SIZE)

{

__assume(jj % BLOCK_SIZE == 0);

#pragma omp simd

for(j = jj; j < jj+BLOCK_SIZE; ++j)

a[i][j] += - w[i][k]*a[k][j]

- w[i][p]*a[p][j];

}

}

}

Fig. 3. Strip-mining in the basic algorithm — pseudocode

different compilers and work differently (like the ICC com-
piler options used in [3]: -ipo -no-prec-div -fp-model

fast-2).
The following software was used during the tests along with

the following compiler options:

• operating system: CentOS 7.5
• kernel: Linux 3.10.0
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• GCC/G++ compiler v. 13.1.1 with the following compiler
options:
-fopenmp -O3

• Intel ICC compiler v. 2021.5.0 with the following compiler
options:
-qoenmp -O3

• Intel OneAPI DPC++/C++ compiler v. 2022.0.0 with the
following compiler options:
-qoenmp -O3

The G++ compiler (GCC), part of the GNU Compiler Col-
lection and developed by the Free Software Foundation [21],
is an open-source compiler known for its capability to produce
binaries for diverse target architectures. It is extensively ac-
cessible on Unix-like operating systems. The G++ compiler
utilized in this project offers defoult backing for the C++17
standard and features support for up to the C++23 standard.
Additionally, it incorporates the OpenMP 5.0 standard.

The Intel C++ compiler (ICC) was crafted by the Intel
Corporation, specializing in optimization for Intel processor
architectures. It is tailored to accommodate the latest genera-
tion of Intel processors, encompassing support for C++2a and
preceding standards. In the context of this paper, the Intel C++
compiler employed embraces the entirety of the OpenMP 4.5
standard, along with a subset of functionalities from OpenMP
5.0 [22]. This compiler is open-source.

The Intel OneAPI DPC++/C++ Compiler [23] is the spe-
cific compiler provided by Intel as part of the OneAPI plat-
form. This compiler supports DPC++ and standard C++. It
is optimized to support heterogeneous platforms, which means
it allows programming on different types of processors such as
CPU, GPU, FPGA and others. The compiler used in this article
supports C++2a and preceding standards and covers the entire
OpenMP 4.5 standard along with a subset of the functionality
from OpenMP 5.0. This compiler is open-source.

Intel ICC and OneAPI typically offer better results on In-
tel processors because they are optimized to take advantage of
Intel-specific architecture features such as AVX-512, advanced
cache management, and dynamically adjusting execution pa-
rameters to the processor architecture. The -O3 option allows
for more aggressive optimization, which further improves per-
formance. They may not be as well optimized for AMD archi-
tectures. GCC may perform better on AMD processors than
Intel compilers because it is more broadly optimized for dif-
ferent architectures and can work better with AMD-specific
instruction sets such as AVX2, which are standard on AMD
architectures.

We used the RAPL (Running Average Power Limit) inter-
face [24] to measure the power and energy consumption of
CPU-level components. We access RAPL energy meters via
Machine-Specific Registers (MSR). Counters are 32-bit reg-
isters that indicate the amount of energy used since the pro-
cessor was started, they are updated approximately once every
1 ms (or 1000 Hz). Since its introduction, RAPL has been
widely used in energy measurement and modeling. The results
presented in the work [24] suggest that RAPL can be a very
useful tool for measuring and monitoring energy consumption

on multicore computers without the need to implement com-
plicated power meters. The experience of the authors of the
works [18, 10, 25] with RAPL confirms the results from the
literature. RAPL is able to measure the energy consumption of
a complex scientific application with acceptable accuracy and
detail.

We carry out 5 iterations of each version of the algorithm for
each tested frequency, and then average the results to obtain a
statistically correct result. As the results from [10] show, HT
does not provide any speedup benefits for the tested versions
of the WZ factorization algorithm. During the tests, we use
all hardware in terms of the number of processors and test for
the number of threads of 40 on Intel Xeon Gold, 64 on Intel
Xeon Platinum, and 96 on AMD EPYC, respectively, without
HT. In this paper, we only consider the energy consumed by the
processor, we ignore the energy consumed by memory because
it is small and does not change significantly.

Using the technique of Dynamic Voltage Frequency Scal-
ing, we adjusted the clock frequencies through CPU frequency
scaling. By default, the intel_pstate driver is used to con-
trol the performance of processors on GNU/Linux systems. In
our case, we did not obtain a satisfactory clock frequency forc-
ing effect and we used the acpi_cpufreq driver. By default,
the acpi_cpufreq driver follows governor conservative,
which increases or decreases the clock frequency depending
on the load on the core by selecting one of several available
frequencies from the minimum to the maximum supported by
the processor. Each core is independently adjustable. Using
the cpupower program, we changed the minimum and maxi-
mum values of the processor frequency limit at a given level.
The frequency setting has been made for all cores of the whole
machine. We used the commands:

cpupower frequency-set -d 1400000

cpupower frequency-set -u 1400000

for setting the minimum and maximum frequency limits at 1.4
GHz. Using this setting means that the clock speed on all cores
does not exceed 1.4 GHz, although this setting may result in a
drop in clock speeds depending on the load on the cores.

We conducted our tests on each platform for 8 selected fre-
quencies from the minimum to the maximum supported by the
processors, making changes as evenly as possible and taking
into account the limitations of the allowable frequency settings
for each processor. On Intel Xeon platforms, only some clock
frequencies can be set, the AMD EPYC platform is much more
flexible in this respect, enabling an almost smooth change of
the clock frequency. For Intel Xeon Gold the frequencies for
which we performed the tests were: 0.8, 1.0, 1.2, 1.4, 1.6, 1.8,
2.0 and 2.1, for Intel Xeon Platinum they were: 0.8, 1.1, 1.4,
1.6, 1.8, 2.0, 2.3 and 2.6, and for AMD EPYC they were: 0.4,
0.9, 1.4, 1.9, 2.4, 2.9, 3.4 and 3.7.

5. THE PERFORMANCE AND ENERGY CONSUMPTION
FOR BASIC WZ FACTORIZATION ALGORITHM

Similarly to [3], we start by measuring the runtime of the
basic version of the WZ factorization algorithm for different
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clock frequencies. We perform tests for three compilers (ICC,
GCC and OneAPI) and three different platforms like in table
1. The test results are shown in the Figure 4.

As expected, the results presented in Figure 4 indicate that
the Intel Xeon Platinum platform provides better overall per-
formance than the Intel Xeon Gold platform, with the greatest
time and energy savings achieved on the AMD EPYC plat-
form.

Analysis of the impact of compiler and clock frequency on
performance (Figure 4) revealed irregular variations in execu-
tion times for all three compilers when changing the frequency.
The largest variations were observed on the Intel Xeon Gold
platform, especially for the GCC compiler (20% increase in
execution time when reducing the frequency from 2.1 GHz to
0.8 GHz). For the Intel Xeon Platinum and AMD EPYC plat-
forms, these differences were much smaller (maximum 8% and
2%, respectively).

In terms of execution time, the GCC compiler performed
worse than ICC and OneAPI on both Intel Xeon platforms, es-
pecially at lower frequencies. These differences for Intel Xeon
Gold reached 18% and 20% respectively and about 6% for In-
tel Xeon Platinum at 0.8 GHz. On the AMD EPYC platform,
the differences between the compilers were minor.

The energy consumption analysis showed that the GCC
compiler was the least energy efficient on all platforms, with
differences of up to 18% on 0.8 GHz clock frequency to the
detriment of GCC on the Intel Xeon Gold. For the Intel Xeon
Platinum and AMD EPYC platforms, these differences were
11% on 1.8 GHz clock frequency and 9% on 0.8 GHz clock
frequency, respectively. Furthermore, the increase in clock fre-
quency led to an increase in energy consumption on all plat-
forms, regardless of the compiler used.

The energy consumption profile depending on the clock fre-
quency shows significant differences between the Intel and
AMD platforms. While on the Intel platforms, the increase
in clock frequency translates linearly into an increase in en-
ergy consumption which is consistent with typical CPU power
consumption patterns, where higher frequencies require more
power, on the AMD platform we observe an unusual phe-
nomenon. Energy consumption remains at a constant, mini-
mum level for frequencies from 0.4 to 1.9 GHz, and increases
only occur above this value to a frequency of 3.4 GHz after
which it stays at the same high level. We observe these results
regardless of the compiler used. The AMD EPYC platform’s
stable power consumption at lower frequencies may be due to
its ability to manage power more efficiently within the cores.

The Table 2 presents the optimal clock frequency settings
for the tested algorithm and indicates the most efficient and
energy-efficient compiler for this settings. The best results in
terms of both performance and energy efficiency on all plat-
forms were achieved by Intel compilers. On both Intel Xeon
platforms, OneApi performed better, while for AMD EPYC
platform, a better result was achieved using the ICC compiler.
The last two columns of the Table 2 describe the percentage
time loss and energy gain relative to the change observed when
reducing the clock frequency from the maximum for a given
platform to the value at which we observed the best energy re-

sult on each platform, i.e. 0.8 GHz for the Intel Xeon platforms
and 1.9 GHz for the AMD EPYC platform, respectively.

6. THE PERFORMANCE AND ENERGY CONSUMPTION
FOR BASIC-SM VERSIONS OF WZ FACTORIZATION

In this part, similarly to [3], we will present test results for
block versions of the WZ factorization algorithm with strip-
mining (abbreviated sm). We consider three block sizes: 128,
256, 512, so we have the following versions: basic-sm-128,
basic-sm-256, basic-sm-512. We omitted the tests of
block 64, which performed the worst in the tests, the results of
which are presented in [3]. Our goal is to answer the question
how optimization of sm and additional clock frequency scaling
for the sm version affect performance and energy consumption
depending on the compiler used.

6.1. Analysis across platforms and block sizes

Intel Xeon and AMD EPYC processors differ in terms of cache
configuration (L1, L2, L3) and the number of cores, which
affects how data is stored and processed. Different block sizes
can optimize the use of these resources to varying degrees. In
this section, we examine which block size performs better on
each of the computing platforms.

The Figure 5 presents the results for all three platforms and
various block sizes using the ICC compiler. The results for
the remaining compilers confirm the general trends observed
in Figure 5 for each platform, with a detailed comparison be-
tween the compilers to be discussed in the next section.

Figure 5 shows that the Intel Xeon Platinum platform gen-
erally provides better performance than the Intel Xeon Gold,
while the greatest time and energy savings were achieved on
the AMD EPYC platform, consistent with earlier observations
for the basic version of the WZ factorization algorithm.

As before, we observe fluctuations in execution times with
changes in clock frequency, which are more pronounced on
the Intel Xeon platforms and significantly smaller on the AMD
EPYC platform. The energy consumption profile with varying
clock frequency also confirms previous observations—on the
Intel Xeon platforms, there is a regular increase in energy con-
sumption, whereas on the AMD EPYC platform, it remains
stable at a minimal level for frequencies from 0.4 GHz to 1.9
GHz, with an increase beyond this range up to 3.4 GHz, where
it then stabilizes at a high level.

Analyzing the results in the Figure 5, we can observe
slightly better performance and energy efficiency for a block
size of 512 on the Intel Xeon Gold platform and for a block
size of 128 on the other platforms (see Table 3). The tests
showed that this trend is also consistent for the other two com-
pilers.

The results of tests conducted on the Intel Xeon Gold plat-
form in the context of WZ factorization with strip-mining in-
dicate that the optimal block size depends on the clock fre-
quency. However, for most clock settings, a block size of 512
proves to be the most efficient in terms of performance and en-
ergy consumption, regardless of the compiler used (first row
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Fig. 4. Runtime and energy consumption of basic for data size 32 768 on three computing platforms

in Table 3). The advantage of the 512 block over other blocks
does not exceed 10%. In situations where this advantage is
zero (Table 3), it indicates that for some frequency settings,
there is no noticeable advantage, and there may even be a slight
decrease. Nevertheless, for most frequency settings, the 512
block demonstrates an advantage. Therefore, further compar-

isons of compiler efficiency on this platform will be limited to
the analysis of results for the 512 block.

On the Intel Xeon Platinum and AMD EPYC platforms, test
results showed better performance and energy efficiency for
the 128 block, regardless of clock frequency, with the advan-
tage on the Intel Xeon Platinum platform reaching up to 20%
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Table 2. Energy efficiency for basic (32768)

Compiler
Runtime Total energy Performance Energy effi- Time Energy

[s] [J] [Gflops/s] ciency[Gflops/J] loss gain
Intel Xeon Gold 5218R for frequency 0.8 GHz

GCC 748.93 130 569.40 31.32 0.180 20.8% 5.4%
ICC 613.19 111 111.65 38.25 0.211 4.4% 15.1%
OneAPI 597.08 106 933.86 39.28 0.219 -0.3% 21.3%

Intel Xeon Platinum 8358 for frequency 0.8 GHz
GCC 551.30 93 636.21 42.55 0.251 6.3% 19.2%
ICC 520.62 87 052.95 45.05 0.269 1.0% 24.0%
OneAPI 516.31 86 985.09 45.43 0.270 3.2% 22.1%

AMD EPYC 9654 for frequency 1.9 GHz
GCC 256.62 60 275.65 90.70 0.389 1.0% 21.9%
ICC 253.81 55 021.94 92.42 0.426 0.2% 25.4%
OneAPI 254.43 55 597.97 92.19 0.422 0.5% 24.7%

(second row in Table 3). On the AMD EPYC platform, the dif-
ferences between blocks are minimal, not exceeding 2%, but
the 128 block still appears to be more optimal (third row in Ta-
ble 3). Consequently, further analyses on these platforms will
focus on the 128 block.

The Intel Xeon Gold processor, with fewer cores and smaller
cache compared to Intel Xeon Platinum and AMD EPYC, ben-
efits more from larger block sizes (512). Larger blocks make
better use of the available processing resources and cache, min-
imizing the overhead associated with context switching and
improving performance. This approach allows for longer op-
erations on a single core, reducing the costs of memory man-
agement and synchronization between cores.

In contrast, Intel Xeon Platinum and AMD EPYC, with sig-
nificantly more cores and larger, more advanced cache struc-
tures, perform better with smaller block sizes (128). Smaller
blocks allow for more efficient parallel data processing across
multiple cores, improving overall performance by enabling
each core to operate more effectively. Larger blocks on these
platforms, however, could overwhelm the cache or lead to de-
lays in data access between cores.

Thus, for the Intel Xeon Gold processor, larger blocks are
more beneficial as they make better use of the limited cores
and cache. On the other hand, Intel Xeon Platinum and AMD
EPYC perform more efficiently with smaller blocks, as tasks
are distributed more evenly across cores, minimizing memory
access delays and enhancing parallelism.

6.2. Platform specific analysis of compiler impact on WZ
factorization with strip-mining

In this section, we will analyze the impact of the compiler on
the time and energy optimization of the WZ factorization al-
gorithm using strip-mining on various platforms. To this end,
we focus on analyzing the basic-sm version of the WZ factor-
ization algorithm for the best block sizes for a given platform
according to the results in the table 3.

Figure 6 presents the runtime (left column) and energy con-
sumption (right column) of selected basic-sm versions of the
WZ factorization algorithm across different platforms, from

top to bottom: Intel Xeon Gold, Intel Xeon Platinum, and
AMD EPYC. The green bars represent the runtime and energy
consumption for the GCC compiler, the blue bars for the ICC
compiler, and the orange bars for the OneAPI compiler. All
charts use the same scale, which highlights the difference in
bar heights, demonstrating the performance advantage of the
more powerful machines. The scale does not start at 0 to better
highlight differences between individual compilers.

Let us now note the differences between the compilers used.
In the Figure 6, we observe that the GCC compiler performs
worse on Intel platforms compared to the ICC and OneAPI
compilers, which are specifically designed for these platforms.
Additionally, GCC also underperforms on the AMD platform,
despite having a broader spectrum than the Intel-dedicated ICC
and OneAPI compilers. GCC was the least efficient compiler
on all platforms. This is probably because GCC, while ver-
satile, is not as well tuned for specific hardware as ICC and
OneAPI are for Intel processors.

The ICC and OneAPI compilers perform well across all
three tested platforms. However, identifying the superior com-
piler reveals a dependency on clock frequency settings. More
significant differences between them are observed on the Intel
Xeon platforms than on the AMD EPYC. On the Intel Xeon
Gold platform, the ICC compiler outperforms OneAPI in 5 out
of 8 considered frequencies; for instance, at 2.1 GHz, the ad-
vantage is about 9% in energy and in time. However, at 1.2
GHz, OneAPI surpasses ICC with a 13% and 9% advantage
in time and energy, respectively. Similar frequency-dependent
differences are observed on the Intel Xeon Platinum platform,
where OneAPI more frequently has the upper hand (in 4 out of
8 frequencies). For example, at 2.0 GHz, OneAPI shows a 5%
and 7% advantage in time and energy, respectively, whereas at
2.3 GHz, ICC surpasses OneAPI by approximately 4% in both
time and energy.

On the AMD EPYC platform, ICC generally outperforms
OneAPI at most tested frequencies, but the differences are min-
imal, not exceeding 1% and 3% in time and energy consump-
tion, respectively.
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Fig. 5. Runtime and energy consumption of basic-sm for ICC compiler on three computing platforms.

The Table 4 provides a summary of the WZ factorization al-
gorithms with strip-mining, along with the most optimal com-
piler for each and the frequency at which the best energy con-
sumption result was achieved. Across all three platforms, the
best results were obtained using the ICC compiler. The last
two columns of the Table 4 describe the percentage time loss
and energy gain relative to the change observed when reducing
the clock frequency from the maximum for a given platform to
the value indicated in the third column of the table.

7. CONCLUSIONS

The subject of our research was to investigate the impact
of the choice of C/C++ compilers when scaling the clock fre-
quency using the DVFS technique on the performance and
energy efficiency of the WZ factorization algorithm in two
versions: basic and optimized using strip-mining. We con-
ducted this analysis on three different computing platforms:
Intel Xeon Gold, Intel Xeon Platinum and AMD EPYC, to
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Table 3. Percentage advantage in terms of energy savings for the best block in the context of WZ factorization using strip-mining, across platforms
and compilers.

Platform (compared blocks) GCC ICC OneAPI
Intel Xeon Gold (512 vs 128 and 256) 0%−10% 0%−10% 0%−7%
Intel Xeon Platinum (128 vs 256 and 512) 5%−20% 3%−19% 6%−16%
AMD EPYC (128 vs 256 and 512) 0.1%−2% 0.4%−1.9% 0.8%−1.4%

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.1

GCC 799.92 714.36 732.53 775.35 818.90 773.09 761.70 753.67

ICC 669.65 629.51 681.72 650.49 627.78 631.14 719.89 611.44

OneAPI 609.74 646.12 595.65 675.20 645.24 675.89 677.34 675.59
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Fig. 6. Runtime and energy consumption of across platforms and compilers for selected block size.

identify the optimal configurations for each hardware environ-
ment. The goal of this study was to determine which C/C++
compilers, for different hardware configurations, provide the

best performance in terms of execution time and energy con-
sumption.

In terms of computing platforms, the best performance re-
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Table 4. Best compiler choice for performance and energy efficiency for selected platform and block size in WZ Factorization with strip-mining.

Platform/algorithm
Compiler Clock settings Runtime Total energy Performance Energy efficien- Time Energy

[GHz] [s] [J] [Gflops/s] cy[Gflops/J] loss gain

Intel Xeon Gold/basic-sm-512 ICC 1.0 666.18 121274.95 35.21 0.193 2.9% 15.4%
Intel Xeon Platinum/basic-sm-128 ICC 0.8 529.88 87694.96 44.27 0.267 4.5% 22.2%
AMD EPYC/basic-sm-128 ICC 1.9 255.52 55287.29 91.80 0.424 0.2% 25.7%
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Fig. 7. Percentage advantage of Intel compiler (ICC) over GCC for WZ factorization algorithm with strip-mining optimization. The left column
concerns the runtime of the energy consumption law.

sults were obtained for the AMD EPYC processor with the largest number of cores and the widest clock range, despite

11

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



 

the largest TDP that this processor has. In terms of energy
efficiency, the advantage is about 35% over Intel Xeon Plat-
inum, which in turn shows an advantage of about 20% over
Intel Xeon Gold.

Our tests show that Intel ICC and OneAPI compilers out-
perform GCC in terms of execution time optimization and en-
ergy efficiency (figure 7). Note the slightly different scales
on the X-axis of the graphs representing the different plat-
forms. The performance differences between the compilers
were more pronounced on Intel platforms, where ICC and
OneAPI showed a significant advantage over GCC. However,
there were exceptional cases where GCC performed better in
terms of execution time on Intel Xeon platforms. One such
case was observed on Intel Xeon Gold at 2.0 GHz, where GCC
outperformed the Intel compiler for the basic WZ factoring al-
gorithm by 3% in execution time. On Intel Xeon Platinum,
these cases were more frequent (Figure 7 - middle line), where
GCC outperformed in execution time for the three frequencies
tested, although the advantage did not exceed 8% (Figure 7).
These frequencies - 1.1 GHz, 2.0 GHz, and 2.6 GHz - showed
a GCC advantage for the algorithm optimized for bandwidth
mining with smaller block sizes. This advantage also held
when taking into account energy efficiency, but did not exceed
5% and is observed at 1.1 GHz and 2.6 GHz only for a block
size of 256.

On the AMD EPYC platform, GCC performed relatively
better compared to Intel platforms, although ICC and OneAPI
still consistently delivered better results, with a smaller advan-
tage of about 2% in execution time and up to 13% in power
consumption.

Both ICC and OneAPI performed well on all platforms
tested, but their relative performance depended on the clock
speed settings. On Intel Xeon platforms, ICC more often
outperformed OneAPI at higher frequencies, while OneAPI
showed better performance at lower frequencies. On AMD
EPYC processors, ICC maintained a small advantage with
minimal differences (Figure 6).

Figure 7 illustrates the percentage advantage of ICC over
GCC. We can see that this advantage decreases with increas-
ing hardware capabilities - more cores and higher clock speeds
lead to decreasing performance differences, as shown by the
trend lines (dashed lines - represent polynomial trend lines)
that decrease with increasing clock speed (Figure 7). It ap-
pears that on more advanced hardware, where computations
are more parallel (due to more cores) and clock speeds are
higher, the impact of specific compiler optimizations becomes
less significant on overall performance. This suggests that
on modern hardware, differences in compiler choice may be
less critical, and hardware quality and capabilities play a more
dominant role. However, as our tests show, especially when
energy efficiency is a priority, it can still be beneficial to re-
duce the clock speed (to 0.8-1.0 GHz for Intel Xeon platforms
and 1.9 GHz for AMD EPYC). As shown in tables 2 and 4,
choosing the right compiler also plays a significant role.

Our tests covered two versions of the WZ factoring algo-
rithm, the basic version and the one with strip-mining opti-
mization. The tests showed (see Table 2 and Table 4) that the

basic version of the algorithm performed slightly better with a
minimal advantage on AMD EPYC and Intel Xeon Platinum
platforms and with a slightly larger advantage of about 10%
and 12%, respectively, in terms of performance and energy ef-
ficiency on the Intel Xeon Gold platform.

In our upcoming research, we aim to explore the nuanced
correlations between compiler selections and how they in-
fluence the efficiency and energy consumption of algorithms
like the WZ factorization, along with pivotal ones such as
Cholesky, LU, and QR decomposition in dense linear alge-
bra. Specifically, we will scrutinize how these influences may
vary across diverse hardware architectures, encompassing tra-
ditional Central Processing Units (CPUs), Graphics Processing
Units (GPUs), hybrid multiprocessor systems, and emerging
architectures like RISC-V.

Data from all conducted experiments are available in
the public repository at https://github.com/mdpiekarz/
time-energy-compiler-choice-article.
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