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Second-order maximum principle controlled weakly
singular Volterra integral equations

Jasarat J. GASIMOV @ and Nazim I. MAHMUDOV

This work studies a class of singular Volterra integral equations that are (controlled) and
can be applied to memory-related problems. For optimum controls, we prove a second-order
Pontryagin type maximal principle.
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1. Introduction

Studying optimal control problems described by singular integral equations
offers a unique and intellectually stimulating challenge that has important im-
plications for both theoretical research and practical applications in many fields.
Singular integral equations, which involve integrals that may have singularities
(i.e., integrals that become unbounded or undefined at certain points), arise in
a variety of complex systems, and addressing these problems opens the door
to solving real-world optimization issues in diverse scientific and engineering
domains. The study of optimal control problems described by singular integral
equations is not just a niche but a powerful and essential area of research with
vast implications in multiple fields. From engineering design and material science
to robotics and fluid dynamics, singular integral equations capture the essential
behaviors of systems with singular interactions, and optimal control provides
the framework to optimize these systems for better performance, efficiency, and
stability.
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This area offers a rich, interdisciplinary research environment where innova-
tions in mathematics, physics, and engineering can come together to solve real-
world problems. By tackling the challenges posed by singular integral equations,
you are contributing to the development of both theoretical and computational
methods that will have far-reaching practical applications, advancing not only
control theory but also our ability to model and optimize complex systems in
nature and technology.

In this paper, we investigate the controlled Volterra integral equation given
below:

gIARIONIO

oo s, te[0,T). (1)

y(1) =n(1) +

The above representations of n(-) and f(-, -, -, ) are maps that are referred to as
the generator and the free term of the state equation, respectively; y(-) represents
the state trajectory and takes values in the Euclidean space R”; u(-) represents the
control and takes values in convex subset U C R", constant @ € (0, 1). We present
the cost functional performance metric to gauge the control’s effectiveness.

T
1) = [ ey w.um)drs Y H(s(e) @
4 i=1
The running cost and the prespecified instant costs (ar 0 < t] <tp < --- <

tm < T), are represented by the two terms on the right hand, respectively.

The Pontryagin Maximum Principle can indeed be extended to optimal con-
trol problems described by singular integral equations, but this extension involves
overcoming significant challenges due to the singularities present in the system
dynamics and the adjoint equations. The singular kernels complicate both the
theoretical derivation of the adjoint equations and the practical process of maxi-
mizing the Hamiltonian.

To address these challenges, the first-order necessary conditions (Pontryagin’s
type maximum principle) for optimal control problems involving singular integral
equations were established by Lin and Yong in [1]. Additionally, in [6], it was
shown that a Pontryagin maximum principle can be applied to terminal state-
constrained optimal control problems involving Volterra integral equations with
singular kernels. This result extends the applicability of Pontryagin Maximum
Principle to more complex problems where the system dynamics exhibit singular
behavior.

On the other hand, the second-order necessary conditions for optimal control
problems are important for ensuring that a candidate solution is not only a critical
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point (satisfying the first-order conditions) but also a local minimum of the cost
functional. These conditions involve the second variation of the cost functional
and the second derivative of the Hamiltonian. They help refine our understanding
of the optimal control problem by providing a more thorough test for optimality
and are essential for distinguishing between minima, maxima, and saddle points
in the optimization process. For the integral necessary condition of optimality
of the second order for control problems given by volterra integral equations
and a system of integro-differential equations, we refer to [2—4], and for singular
controls for systems with fractional derivatives, and dynamic systems, see [5,7,8].

Motivated by the previous works, this research seeks to explore the second-
order necessary conditions for optimal control problems of the form (1), which
are governed by singular Volterra integral equations. The aim is to develop a
second-order Pontryagin maximum principle specifically tailored to the optimal
control problem in this context.

2. Main Result

We analyze the state equation (1) alongside the cost functional (2). Let U be a
nonempty bounded or unbounded convex subset of R". For any p > 1, we define
the set UP[0,T] as follows:

UPT0,T] = {u : [0,T] — U | u(-) € LP(0,T;:R™)}.
Also, we define
LP*(0,T;R") = U LY(0,T;R"), p e [l,o00).
q>p

If n = 1, we use notation L?*(0,T) = LP*(0,T;R).

Problem(P) Find a u*(-) € UP [0, T] such that

J(u*(+) = inf  J(u(:)). 3
)=, ot I(() 3

Any u*(-) satisfying (3) is called an optimal control of Problem(P), the corre-
sponding state y*(-) ius called an optimal state and (y*(-),u"(:)) is called an
optimal pair.

e (Al):Let f : AXR"XU — R”" be a transformation with (¢, s) — f(t,s,y,u)
being measurable, (y,u) — f(t,s,y,u) being continuously differentiable up to
order-1. There are nonnegative functions Lg(+), L(-) with

Lo(-) € La*(0,T), L(-) € L7+1*(0,T),
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1
for some p > —, ug € U.
a

|f(2,5,0,u0)| < Lo(s), (2,5) €A,
|f(t,S,X,Lt) - f(t9 S,X,,I/t,)| < L(s)[|x —X,l + |I/£ - I/t,|],
(t,s) e A,x,x’ e R",u,u’ € U.

We denote A = {(t,5) € [0,T] X [0,T]] 0<s<t<T}.

e (A2): Let n(-) be continuous at ;,i = 1,2,...,m. Let b’ : R" —» R,i =
1,2,...,mbe continuously differentiable up to order-2,and g : [0, T]|XR"xXU —
R be a transformation with ¢ — g(¢, y, u) being measurable, (y,u) +— g(t,y, u)
being continuously differentiable up to order-1. There is a constant L > 0 such
that

lg(2,0,u)| + |gx(t,x,u)| + |gu(t,x,u)| < L, (t,y,u) € [0,T] xR"xU.
Theorem 1. Let (Al) and (A2) hold, and n(-) € LP(0,T;R"). Suppose
(y*(-),u*(+)) is an optimal pair of (1) — (2). Then there a solution y(-) €
P
L7-1(0,T;R"™) of the following adjoint equation

r T * *
b /fy (5.1, (1), (1))

(s —1t)l-a

Y(s)ds —gy(t, y* (1), u" (1))

t

n T(tiy b, y* (1), u* (1)) .
Y o (2O ) ae e q0,1, @

— (t; =)t

such that following estimation holds:

T
/Hu(t)v(t)dt <0,
0
where
T
His o) = [T a1 - g5y (9.
- Yo .

i=1

e (Bl):Let f : AXR"XU — R”" be atransformation with (¢, s) — f(t,s,y,u)
being measurable, (y,u) — f(t,s,y,u) being continuously differentiable up to
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order-2. There are nonnegative functions Lg(+), L(+-) with
Lo() € L7*(0.T), L() € LF¥(0,7),
for some p > é, upg € U.

|f(t,5,0,u0)| < Lo(s), (t,5) €A,
|f(l,S,X,Lt) - f(t9 S’x U )| = L(s)[lx _x,l + |M - I/l,|],
(t,s) € A,x,x’ e R"u,u’ € U.
e (B2): Let n(-) be continuous at t;,i = 1,2,...,m. Let k' : R" — R,i =
1,2, ...,mbe continuously differentiable up to order-2, and g : [0, T|xXR"xXU —
R be a transformation with ¢ +— g(¢, y, u) being measurable, (y,u) +— g(t,y,u)

being continuously differentiable up to order-2. There is a constant L > 0 such
that

1g(2,0,u)| + |gx(t, x, u)| + [gu(t, x, u)| < L
| g (2, 2, )| + g (8, %, )| + | guu (2, x, u)| < L, (t,y,u) € [0,T] xR" x U.

Definition 1. An admissible control u(t) is considered to be singular according
to the Pontryagin maximum principle if, within the process {u(t), y(t)}, it implies
that

H,(t)=0, re]0,T]. (6)

Theorem 2. Let (Bl1) and (B2) hold, and n(-) € LP(0,T;R"). Suppose

(y*(+),u*(+)) is an optimal pair of (1) — (2). Then there a solution y(-) €
P

L7»=1(0,T;R"™) of the following adjoint equation

t,y* (1), u*(t
w(r) = / A (S ’ )l_f D syds - gy oy (0. ()

n ti, t, t .
—Zlom()f’( COLD . ae. rel0.T] @)

_1
i=1 )a

such that following estimation holds:

T T T
H,, (t)vz(t)dt + v(t)M(7,s)v(s)dsdt
/ /]

t

T
+2 v(s)Hy, (1)Q(t,s)v(r)dt| ds| <O,
I/
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where

0(t,s) = fu(t, s,y (s), u*(s)) /(D(t 1) fu(T, 8, y5(s), u (s))

(r=s)= (r=s)=
M(t,s) = / O(t,s)Hyy(1)Q(t, T)dt

max{7,s}
- Z Li0.) () 1[0 (DQ (11, ), (y* (1)) Q (11, 7)., 7,5 € [0,T].
i=1

An extended Gronwall’s inequality with a singular kernel is given in the
following lemma.

Lemma 1. [/] Let « € (0,1) and q > é Let L(-),a(-), y(-) be nonnegative
functions with L(-) € L1(0,T) and a(-), y(-) € L%(O, T). Suppose

t
L
w0y <atn+ [ EOE) 4o e reou.
( S)l 1%
Then there exists a constant K > 0 such that
L
v <a+K [ o (S)”;Esl s, ae. tel0,T].

Let p > 0 and cosider the following linear integral equation:

AL $)y(s)

TR e [0, 7). (8)

y() =n(r) +
0

where @ € (0,1),n(-) € LP(0,T;R"), and A : A — R™" is measurable and
satisfies

|A(7,5)] < L(s), (t,5) €A,
for some measurable function L(-) € L(EVE)+(O, 7).

Lemma2. [I]Letl <p<

1
, forany s € [0,T)
—-a

D(t,s) =

ae. te(sT].

A(t, s) /A(t, (. 5)
; [ALDOTS)

(t _ S)l—a (t _ T)l—w o

N
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Then

t

y(t) =n(t) +/CD(I, s)n(s)ds, a.e. €][0,T]

0

the expression gives a representation for the solution to the linear equation (8).

2.1. Proof of the Theorem 2
Let (y*(-),u*(-)) be an optimal pair of (1) — (2) and fix any u(-) € UP[0,T].
Denote
W () =u*(-)+6v(-) where v(:)=u(-)—u*(-). 9)

Clearly, u°(-) € UP[0,T]. Let y°(-) = y(-,n(-),u’(-)) be the corresponding
state.
It follows that

V) =30 = / AESEONEC S [CES KO RNCINY

(I—S)l a

/ POD -y onas

L (t,5) \
/(t o — (1) - u(1))ds, (10)
where

1
£(t.s) = / £,y () + T (0) — (O] ()T, (o5) € A,
" (11)
f,f(t, 5) = /f,,(t, s, yé(s), u*(s) + T[ué(l‘) —u*(t)])dr, (t,5) €A.
0

(A1) provides with
@) <L(s),  1f2(1s) < L(s), (1,5) €A, (12)
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1
Clearly, L(s) € L9(0,T) for some g € (—,p). That being so
a

)y ()] = /(t )1a|y5<t>—y*<r>|ds

/uL(?lal O -w®lds, e[0T (13

1
By the extended Gronwall’s inequality Lemma 1 and (9), choosing ¢’ € (—, q)
a
(see, [11),

’

(1) = y*(1)| < K674 —0, 6—0 uniformlyin 7e[0,T]. (14)

e let Y;(-) is the solution of the following first-order variational equation:

Yi() _/fy(f 5,y (s), u (S))Yl(s)ds

)la

/fm £V 9 09) G451 e [0.7]. (15)

)la

e let Y, (+) is the solution of the following second-order variational equation:

Ya(r) = /fy(t s, y"(s), u (S))Yz( Vs + /fyy(t 5,y (), u (S))Yz(s)ds

)1 17 S)l 107

Yi(s)v(s)ds

2 fyu(t, s, y*(s), u*(s))
+/ (t—s)l-@

(s)ds, te[0,T]. (16)

fuu(l S,y (S) u (S)) 2
+/ ( S)l @
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As a consequence of those,
Yo (1) =y (1)

5 = Y1(1)

_ [ Ry [F0-0), A o),

(t—s)1 @ 5 (t—s)l‘“ 5

/fy(r SUORNCINN, /fu(t Y () (5) |

)l a S)l a

LR ) (y‘s(t) —y*(1)

T ) (=)l 5
0

—Yl(s)) ds

L[ fs) (u%) — w0

(t—s)l " 5 —v(s)) ds

/fy(f .8) = fy(t, s,y (5), u™(s)) Yi(s)ds

(t —s)l-@

/flf(t’ S) - fu(t’ S, y*(S),U*(S))

(1 —s)l-@

K@) (00 =y (1)
/(t—s)1 "( 5 _Yl(s))ds

+a(t) +aS (1) +a5(r) tel0,T],

2 2(t,5) (ul(t) —u*(1)
(1) = /(t e a( 5 —v(s)) ds

a3(1) = /fy (1.8) = fy(t, 5. y*(5), u™(s))

(t—s)l-@

v(s)ds

where

Y1(s)ds,

(0 = /fu (1,5) = fult, 5,3 (5), 0" (5))

(I—S)l a

v(s)ds

(17)
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The dominated convergence theorem (like [1]), and (9) supplies
lim |a(7)| = lim |a$(7)| = lim |a(7)| =
51—I>I(1)|a1( ) =0, 61—I>I(l)|a2( ) =0, 61_I)I(1)|a3( )]

The dominated convergence theorem and the extended Gronwall’s inequality
Lemma 1(like [1]) produces

Yo (1) = y* (1)
0

lim

-Y1(1)| =
0—0 1()

(18)

Sequentially,

S(ey _ o
POy - 2n

_ jfy@’ YO (PO

0
(1 —s)l-@ 5 -Y1(s) - EYZ(S)) ds

fu(t 5, y"(s),u*(s)) ( u’ () —u*(s)
(t—s)1 @ )

- v(s)) ds

(¥°(s) = y"(s))*ds

fyy(t 5,y"(s),u*(s))
26/ )1 a

Yz(s)ds

__/fyy(t s, " (), u*(s))

S)l a

/fyu(tsy (5),u”(s))

5)1-a (°(s) = y* () (U’ (s) — u*(s))ds

_g/ﬁﬁmﬁ@m%h

(= s)i-a Yi(s)v(s)ds

/fuu(t s,y (s), u”(s))

gy (u(s) —u*(s))*ds

__/nmsyuwmeOd

§i=a te[0,7T].
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The extended Gronwall’s inequality Lemma 1, (18), and (9) yields

0 ¥ S
lim M Y1) - SH(0)| = 0. (19)

Also, by the optimality of (y*(-),u*(-)), one has

T
0<J@u’ () =J(u*(-)) =/[g(t,y6(t),u6(t)) —g(t,y" (1), u(1))] dr
0

T T

gy (1,y" (1), u” (1) (y° (1) = y* (1)) d1 +/gu(t, Y (0, u* () (u (1) = u* (1)) dt

0

O\

gyy (1, " (1), w* (1)) (y° (1) — y*(1))*dt

+
5 | =
O\ﬂ

+ [ gyu(t,y" (), u* (1) (Y’ (1) — y* (1)) (u®(t) — u*(2))dt

+
O\\]

8uu (1, y* (1), u* (1) (u (1) = u* ()*d1 + Z Ry (" (1) (3 (1) = ™ (1))
i=1

+
| =
INgb

Il
—_

Ry (7 (1)) (Y0 (1) = y* (1)), (20)

1

Further, from (19), (18), and (14), we get

T
0<J@W() = Jw () = 5/gy(t, y (o), u (0)Y1(r)de
0

T T
+%2/gy(t’y*(t),M*(t))Yz(t)dt+(5/gu(t,y*(t),u*(t))v(t)dt
0 0

T
2

T
+ 2 [on ey O @ war+ 6 [ ey O @mi v
0

0
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T
2 m
2 / 03" (0 (D)1 +6 ) B G () 1)
i=1
52 & mo
721 V) + % Zlh;y<y*(r,~))Yf(r,~>+o<62)

T T
=5 oy @ @moa S [oy oo
0

0

52 2
gu(t,y*(t),u*(t))v(t)dH3/gyy(r,y*(t),u*(r))Yf(t)dt

0

+
>
o\ﬂ

T T
2
+6 [ oty OO Ov0dr+ % [ gty 0. @R dr

0

0
T
2 DN RN >(fy(”’s’y_§jf’_z Dy, (5
0

(;
fu(tt s, y°(s8),u*(s))
( . S)] —-a

L T £t 5,5 (). 1 (5))
+?/Zhy(y (ti))l[o’fj)(s)( > (j‘i)is;l‘z ° Y>(s)ds

L Syt 5,57 (s), u (S))Yz(s) y 2hwtin 5,57(s), u”(5)
(t; =)t (ti =)t

fuum(: y (;) LAOIET >)ds & Z WO ()Y (1) +0(6%)

(s)ds)ds

Yi(s)v(s)

Sy(tiss,y"(s),u"(5))
(ti =)'

T
=5 [ [0 0.0 000+ 3 B0 10y 0 Jroar
0 i=1

T

52 no
+ / (gya, ¥ (0. (1)) +Z] W () 02, (5)

0

Sy (s, y"(s), u™(s))
(ti =)'

)Yz(t)dt
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T 62 T
/ @ty O O+ S [ g0 0.0 )V 1)

0

0

T T
2
+67 / Syu(t, Y (1), u (’))Yl(t)v(t)dt+% / G (1, Y (1), u* (1))v(r)*dt
0
T

* fu(ths’y*(s)’ >k(s))
4o / 107 6) S (5)ds

y2(s) 4 Ml 53 (). ()

T
6 fyy(tia S’y*(s)’ L{*(S))
5/
0

(ti = s)-@ ! (5 — 5)1@ Yi(s)v(s)
fuu(tz S, ¥*(s),u (S)) 2( )
( . S)l a
) Zhl (Y (1)YE(t:) +0(6%), & — 0. @1)

Applying (7), (15), and (16)
0<J@()) - J(u*( )

T
6/( win+ /fy a2 g? - ())ws)ds)n(r)dr
0 t

T
5_2/( ,E)+ /fy( ry(r)a(r))w( s )m)dt

2 nl-a

0
T T
2
5 / gulty* (0,1 ())v(1)di + & / g0 (1" (O, 1" ()Y (1) dt
0

0

T T
2
#6 [ gty O @ Ov0dr+ % [ gty 0.0 )P

0

0
T
0 1

(li —S)l
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T
+6_2/(fyy(ti,s,y (5),u™(s)) Yy (s)v(s)

2 2fyu(ti»s’ y*(s)’”*(s))
o (t; =)t R (t; =)t

fuu(tl s, y (S) u (S)) 2( )
( S)l a

)ds +— Z R (S ()Y (1) + 0(6), & — 0.
(22)
By using again (5),(15),(16) and Fubini’s theorem,

0 < I ) =6 () = =5 [ Hovd
52 T ° T 52 T
- E/Hyy(t)le(t)dt—62/Hyu(t)Y1(t)v(t)dt - E/Huu(t)vz(t)dt
0 0 0

2m
+ % Z; h (0 (ENYE() +0(6%) (8 — 0). 23)

Lemma 2 provides following expressions

fy(t s, y*(s), u*(s)) Sy 7,y (1), u* (7)) ®(7, S)
D(t,s) = myyE / e dr
and
Ju(t,s,y"(s),u”(s))
N = / P (5)ds

/dD(t s) (/ Juls, 7,y 5_;3 Z (T))v(r)dT) ds

/[fu(t $,y*(5), u”(s)) /q)(t’T)fu(T’ $,y*(s),u”(s))

(=)@ (r =)l dT] v(s)ds.

N

As a result, we have

Yi(r) = | O(t,s)v(s)ds, (24)
/
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Ju(t,s,y" (), u”(s)) O, 1) ful1,5.y°(5), " ()
Q(t,s) ( s)l a / (T—S)l a

s

Substitute (24) into (23), and Fubini’s theorem

/Hyy(t)Yz(t)dt = /Hyy(t) (/Q(t s)v(s)ds)(/Q(l T)V(T)dT) dr

T T
//v(s) / O(t,s)Hyy (1)Q(t, )dt | v(T)dsdt
0 0 ax{7,s}
T
://V(S)M(T,S)V(T)dsdT,
0 0
and
Z Ty (3 ()Y (1)
- T T
-/ v(s)[21 100 1[0 (D11, ) (57 (1) Qs Tﬂv(ﬂdrds
00
Therefore,

0<JWl()) = Ju* (")) = —6/H (t)v(t)dt——/Huu(t)vz(t)dt

T T
[//V(T)M(T s)v(s)dsdr
0 0

t

T
+2 v(s)H,, (1)O(t, s)v(t)dtl ds] +0(6%) (6—>0), (25
I/

NI%
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where

T
M(t,s) = /Q(t,s)Hyy(t)Q(t,T)dt

max{7,s}

- Z I[O,ti)(s) 1 [0,;) (T)Q(ti’ S)hlyy(y*(tl))Q(tla T)’ T,8 € [0’ T] .
i=1

We can now prove our theorem, which is based on the cost functional estimation
mentioned previously.

The theorem is obtained by dividing the right side of (25) by 62 and allowing
d to approach zero, while taking into account H, (¢) = 0 in expression (25).

The Theorem 2 was proved.

2.2. Proof of the Theorem 1

By the optimality of (y*(-),u*(-)), we have

T
0 < I () — I(u* () = / oty (1), (1)) — (1, y* (1), (1))
OT
- / gy (1.y" (0.1 () (1) = y* (1)) di
’ T
+ / gut, Y (0. () (W (1) = u* (1)) di
0

+ G E) (1) -y (). (26)
i=1
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Morever, from (18), and (14), it follows
T
0 < I 0) = () =6 [ gty O D)W (0)dr

0
T

5 / g0 (13" (0. " (D)v (1) ds

0
+6 ) K@) () +0(8),  (6—0). (27)
i=1

Substituting (7), (15), and (5) into (27), we obtain theexpression below

T
0<JW() = Ju*(-) = —5/Hu(t)v(t)dt +0(0), (6 —=0). (28)
0

The Theorem 1 was proved.

Example 1. Consider the problem

y() =1+1Vr + /tit(s)u)(s) ae tel0,1],
Y

1

J(u) =y(1) +/y(s)u(s)ds —> min, |u| <1
0

We are evaluating the efficiency of the control input u(¢) = 1 and analyzing its
optimality. This particular selection of control corresponds to the solution 1 +#v/¢
for the integral equation. Throughout the course of the process represented by
(1 +tV/,0), we have noted the following outcome.

w()y=1, H=0.

Therefore, the control u(7) = 0 is identified as a singular control. Clearly, employ-
ing the control u(¢) = 0 yields a performance measure value of J(u) = 2. Now,
let’s investigate if there is an alternative control function that leads to functional

values less than 2. We will compute the value of J for the admissible control
1
u(t) =—-=

y(t) =1.
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Then, we have

1 1
5 :J(—E) < J(0) =2.

This indicates that opting for the control u(¢) = O within the interval ¢ € [0, 1] is
not an optimal.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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