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Abstract. Image recognition is one of the essential branches of computer vision and has significant theoretical and practical 

importance. This study aims to enhance a deep learning model, DenseNet, by incorporating parallel structures using X-ray 

images from the MURA (Musculoskeletal Radiographs) dataset. X-ray images of the elbow and finger are analyzed using 

AlexNet, DenseNet, Parallel DenseNet, and Proposed Parallel DenseNet (PPDN) deep learning models for anomaly detection, 

and the results are compared. For the elbow, 1534 healthy and 1630 anomaly X-ray images; for the finger, 1965 healthy and 

1938 anomaly X-ray images were used to train the deep learning models. As a result of the statistical analysis, the most 

successful model with the test accuracy value for the elbow part was the suggested PPDN model (78.74%). The next successful 

model for the elbow part was AlexNet (77.05%). The most successful model for the finger part was again the PPDN model 

(69.97%), and the next successful model was the Parallel DenseNet model for the finger part (68.94%). In anomaly detection 

of musculoskeletal elbow and finger X-ray images, the PPDN model is more successful than the classical DenseNet and 

Alexnet models in terms of test accuracy. 
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1. INTRODUCTION 

Musculoskeletal disorders are injuries or pain that occur in the 

human musculoskeletal system, including ligaments, joints, 

nerves, tendons, muscles, and structures supporting the neck, 

limbs, and back. Patients suffer from chronic pain and various 

limitations in mobility, dexterity, and functional abilities [1]. 

Musculoskeletal radiographic images are an essential tool in 

the diagnosis of anomalies. Usually, when a patient has an 

accident or a fracture is suspected, the patient goes to the 

emergency room, where his or her doctor first performs a 

fracture examination, and radiographs are taken to detect 

fractures. The misclassification rate of X-ray images in the 

emergency department is due to the emergency room doctor 

classifying the X-ray images as needing to be an experienced 

radiologist and rapidly taking images, causing errors. 

Therefore, various anomalies, including fractures, hardware, 

degenerative joint disease, lesions, and subluxations, may be 

missed depending on the doctor's experience [1,2]. An 

automatic classifier to help doctors classify X-ray images can 

significantly reduce the error rate [3]. Deep learning has 

critical importance in categorizing medical images. 

Deep learning algorithms make life easier for radiologists and 

orthopedic surgeons by providing faster and more accurate 

real-time findings [4]. Therefore, deep learning has recently 

become one of the most potent and impressive learning 

models for image pattern recognition and classification 

problems [5]. Two points are important in deep learning. The 

first is that the data should have an extensive collection 

labeled; the second is to find the appropriate deep-learning 

approach to interpret the data accurately [6].  

 
1.1. Related works 

Examining studies aimed at musculoskeletal diagnosis 

revealed that deep learning techniques and patient X-ray 

image datasets were usually applied. Liang ve Gu in studies 

propose a novel multi-network architecture consisting of a 

multi-scale convolution neural network (MSCNN) with a fully 

connected graph convolution network (GCN), named 

MSCNN-GCN, for the detection of musculoskeletal 

abnormalities via musculoskeletal radiographs. The model's 

effectiveness was validated using the MURA dataset, 

comparing it to radiologists' performance and three popular 
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CNN models (DenseNet169, CapsNet, and MSCNN) [7]. 

Harini et al. compared the training results with deep learning 

models; Inception V3, Xception, VGG-19, DenseNet169, and 

MobileNet using the MURA dataset (hand, wrist, and 

shoulder) and showed that the performance of the VGG-19 

model was the lowest [8]. Cheng et al. used the masking 

method they proposed on the input images obtained from the 

MURA data set (hand, finger, wrist, forearm, elbow, humerus, 

and shoulder) as input data. They compared them with the 

DenseNet model and achieved more successful results in their 

proposed model [9]. Lysdahlgaard, using elbow and wrist X-

ray images in the MURA dataset, obtained analysis results 

with derivatives of VGG, ResNet, DenseNet, Xception, and 

Inception models. Successful results for the elbow part were 

obtained with test accuracy values between 64% and 73% 

with the DenseNet model. With test accuracy scores of 84% 

using the VGG model, the wrist portion produced successful 

results [10]. Solovoya and Solovyov analyzed the kappa 

statistic results obtained from training the DenseNet169 model 

on the entire MURA dataset. The highest kappa value, 0.942, 

was achieved for the wrist component, while the lowest, 

0.395, was observed for the finger component [11]. Kandel et 

al. used VGG, ResNet, DenseNet, Xception, and Inception 

deep learning models to analyze the X-ray images in the 

MURA dataset using various statistical methods and a 

different algorithm, and the results were compared [12]. 

Mondol et al. designed a model combining VGG-19 

architecture and ResNet-50 architecture to detect 

musculoskeletal anomalies in the MURA dataset. The model, 

which they call (CADx), was trained on four parts of the 

MURA dataset: elbow, finger, humerus, and wrist. They stated 

that the CADx model performed relatively better than the 

classical VGG-19 and ResNet-50 architecture [13]. Morra et 

al. considered a multi-stage transfer learning approach for 

medical image analysis. They combined color information 

extraction with transfer learning and used different 

classification models such as ResNet and DenseNet. They 

achieved successful results in the classification of medical 

images using deep-learning models with color features [14]. 

Studies in the literature have shown that the DenseNet deep 

learning model has achieved successful results in 

musculoskeletal disorders. Although deep learning methods 

utilizing parallel layers have been employed in the literature, 

performance analysis regarding the increase in the number of 

parallel layers and layer count in datasets with a large number 

of X-ray images, such as the MURA dataset, still needs to be 

improved. In this study, it was predicted from the literature 

that the parallel and multi-layered architecture would increase 

the accuracy performance and was tested by applying it to the 

DenseNet architecture. This study analyzed the performance 

of the test accuracy values of the layers of the DenseNet deep 

learning model in parallel connection and compared them with 

AlexNet. This study proposes to apply the PPDN model in a 

way that makes it possible to detect musculoskeletal system 

anomalies in MURA dataset X-ray images compared to the 

classical DenseNet model. 

This study is structured as follows: Chapter 2 covers deep 

learning models and related technical procedures. Chapter 3 

presents the proposed models along with their processes. 

Performance metrics are detailed in Chapter 4, and Chapter 5 

discusses the experimental analysis and results. Finally, 

Chapter 6 provides conclusions, discussion points, and 

recommendations. 

 
2. METHODOLOGY 

2.1. Deep learning 

Deep learning is a subset of the field of machine learning that 

deals with creating deep artificial neural networks inspired by 

biological neural networks in the human brain [15]. Deep 

learning has become crucial in healthcare, significantly 

enhancing diagnostic accuracy, personalized treatment, and 

predictive analytics. Deep learning models can assist 

healthcare professionals in early disease detection, reducing 

errors, and optimizing patient outcomes by analyzing complex 

medical data such as medical imaging, genomics, and patient 

records. For this reason, deep neural networks outperform 

shallow machine learning algorithms in most applications 

where text, image, video, speech, and audio data need to be 

processed [16]. We can classify deep learning architectures as 

Recurrent Neural Networks (RNN), Convolutional Neural 

Networks (CNN), Generative Adversarial Networks (GAN), 

Autoencoders (AE), Hybrid Architectures (HA), and Deep 

Belief Networks (DBN) [17]. 

 
2.2. Models 

Convolutional Neural Network (CNN) stands at the forefront 

of representative algorithms for image recognition through a 

neural network [18]. Recent studies have shown that 

convolutional neural networks have become deeper and 

deeper in order to obtain more accurate results [19]. This study 

used popular DenseNet and AlexNet deep learning methods to 

train CNN with a dataset. 

2.2.1. AlexNet model 

AlexNet deep learning architecture is the first convolutional 

neural network to participate in the ImageNet competition 

held in 2012. It outperformed all previous low-depth 

algorithms with an accuracy rate of 84,6% in image 

classification. Since then, CNNs have become the most 

advanced algorithm in image classification [19]. AlexNet 

architecture: It has 650,000 neurons, 60,000,000 parameters, 

five convolution layers, and three dense layers. Two 

innovations made in AlexNet were using the ReLU activation 

function instead of the sigmoid activation function and the 

dropout method to overcome the overfitting problem that this 

deep architecture can cause. The main advantage of this 

network is that the training process is computationally 

efficient compared to other networks. On the other hand, the 

AlexNet deep learning method needs to be deeper to capture 

 complex features from images [18,19]. Fig. 1 shows the 

architecture of the AlexNet deep learning model. 
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Fig.1. The architecture of the AlexNet deep learning model [20]. 

 

2.2.2. DenseNet model 

Dense blocks were first proposed by Gao Huang et al. (2016). 

The model refers to densely connected convolutional 

networks. DenseNet is inspired by ResNet, but the authors 

propose using dense blocks instead of residual links [17,21]. 

The DenseNet model is a novel CNN designed for image 

classification. It is crafted to operate through dense blocks, 

utilizing densely connected layers, enabling intensive 

processing. Dense blocks facilitate information sharing by 

establishing dense connections between layers. These 

connections ensure enhanced information flow, utilizing the 

densely interconnected layers in the model [22]. The input of 

the DenseNet model consists of an RGB image with 

dimensions defined as 1 (batch size), 3 (channels), 224 

(height), and 224 (width) [23,24]. This entry goes through a 

pile of interconnected features; this stack consists of combined 

attributes by combining the output of all previous layers with 

further layers. This form of connection is the main idea of 

DenseNet models. For example, the input of a layer X3 = H3 

([X0, X1, X2]) consists of the outputs of previous layers, such 

as X2, X1, X0, and the original input. These inputs are 

combined to create a single deep feature map with the exact 

spatial resolution but a different number of filters. 

Continuously connecting successive dense blocks will 

eventually lead to profound entrances. The architecture is 

divided into dense blocks using all consecutive layers in each 

block. This performs a shrinking process to reduce the depth 

of the feature map while using one-by-one convolution in 

successive layers to preserve spatial resolution. After this 

process, max pooling is used to reduce the feature map size 

[23]. Different types of DenseNet exist, including DenseNet-

121, DenseNet-169, DenseNet-201, and DenseNet-264. The 

numbers next to DenseNet types refer to the number of layers; 

for example, DenseNet-264 has 264 layers [25]. DenseNets 

require fewer parameters than traditional CNNs because there 

are no redundant feature maps. If we analyze the structure of 

DenseNets, the feature map sizes remain constant in blocks 

with different filters. This feature helps optimize the number 

of parameters while increasing the learning ability of the 

network [26]. Since architectures differ according to DenseNet 

types, these differences are shown in Table 1. Fig. 2 shows the 

architecture of the Densenet model.  

 

TABLE 1. DenseNet architectures. Each "conv" layer shown in the table corresponds to the sequence BN (Batch Normalization)-ReLU-Conv 
(Convolution), respectively [27] 
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Fig.2. The architecture of the DenseNet deep learning model [28]. 
 

Fig. 3 shows the DenseNet block expansion architecture. 

 

 
 

Fig.3. DenseNet block expansion [25]. 
 

 

Fig. 4 shows the DenseNet Transition layer expansion 

architecture. 

 

 
 

Fig.4. DenseNet Transition layer expansion [25]. 
 

The MURA dataset X-ray images were analyzed using 

DenseNet-264, a classical DenseNet model. 

 
3. PROPOSED MODELS AND PROCESSES 

The task of the Dense Block module, which is the main 

module of the DenseNet model, is to extract features from 

images. Nevertheless, this module has room for optimization 

as the arrangement of various functional layers may need to be 

revised. Using different parallel structures in the CrodenseNet 

architecture achieved better results in diagnosing COVID-19 

disease [29]. Yin et al. obtained promising results using 

parallel layers on the classical DenseNet model using the 

CIFAR 10 and CIFAR 100 datasets, so in this study, the 

DenseNet deep learning method was developed by adding 

parallel blocks by deleting or adding some layers and 

adjusting the convolution layer. In contrast to Yin et al., who 

used three blocks by reducing the number of classic DenseNet 

blocks, four blocks were utilized in this study. When 

additional convolutional layers are superimposed on top of 

each other, with a larger receptive field in terms of size, it can 

lead to the extraction of richer features and higher 

computational efficiency. In contrast to Yin et al., in the 

developed DenseNet deep learning models, A 3x3 convolution 

layer was used instead of 1x1 to capture and extract features in 

larger areas. The 3x3 convolution layer processes each pixel in 

a 3x3 window around itself and its neighbors. Additionally, 

DenseNet processes input features through the dense block 

module and employs only a single convolutional kernel for 

feature extraction. This inevitably results in a relatively 

uniform structure, making it susceptible to potential loss of 

information in the image [18]. In order to take full advantage 

of the existing features and not add too many parameters, a 

new dilated convolution block based on the dilated 

convolution method is designed in parallel. Then, multipath 

Dense blocks are connected to combine various feature maps 

from different channels. This helps model the feature 

compatibility of channels and perform powerful feature 

extraction. In this study, to develop the DenseNet model, a 

deep learning model using X-ray images from the MURA 

dataset, a "Parallel DenseNet" model was first developed by 

adding Dense blocks parallel to the classical DenseNet 

architecture. By parallelizing the DenseNet architecture, better 

results are obtained in classification [18,29]. By optimizing 

this developed Parallel DenseNet architecture, the "Proposed 

Parallel DenseNet" model was developed. The DenseNet 

models used in the study are used for image recognition after 

training. Moreover, the accuracy of this image recognition is 

obtained by comparing the results with the labels of the test 

images. 

 

3.1. Parallel DenseNet model 

In the parallel DenseNet model, the layers and repetition 

numbers of the classical DenseNet-264 model were used 

precisely. The transition layer is the same as shown in Fig. 4. 

The architecture of the Parallel DenseNet deep learning model 

is shown in Fig. 5. The dense block expansion is shown in 

Figure 3. 
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Fig.5. The architecture of the Parallel DenseNet deep learning model. 
 

As seen in Fig. 5, based on the classical DenseNet 

architecture, Dense blocks with the same layers and features, 

connected in parallel to the classical Dense blocks, have been 

added. The number of classic DenseNet blocks is four, as 

shown in Figure 2. These block numbers can be increased and 

decreased [18]. In the analyses performed with three blocks, 

the number of blocks was chosen as four since there was a 

performance decrease in the test accuracy value at an accuracy 

value of 10%. Parallel blocks were connected with Transition 

layers, which have the same properties as classical DenseNet. 

As a result of the parallel connections, the feature extraction 

process is performed after the inherent structure of Dense 

blocks concatenates the feature maps. The 'Pooling' and 'Full 

Connection' layers are connected in the last layer, and the 

'Anomaly- Healthy' classification is made.   

3.2. Proposed parallel DenseNet (PPDN) model 

In the PPDN model, the layers and repetition numbers of the 

classical DenseNet-264 model were used precisely. The 

transition layer is the same as shown in Fig. 4. In the proposed 

model, the architecture shown in Fig. 6 was created by 

connecting discrete Density blocks in parallel to the developed 

Density blocks. Classic DenseNet architecture consists of 

successively added layers. Parallel blocks were connected 

with Transition layers, which have the same properties as 

classical DenseNet. In the PPDN architecture, as seen in Fig. 

6, Dense blocks combine feature maps from different channels 

to help the feature extraction process. 

 

Fig.6. The architecture of the Proposed Parallel DenseNet deep learning model. 
 

The Improved DenseNet block expansion is shown in Fig. 7. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. Improved DenseNet block expansion. 

                                                                                                  

As shown in Fig. 7, in the Improved DenseNet block 

expansion, unlike the classical DenseNet block (Fig. 3), 

convolution layers are used as 3x3 instead of 1x1 so as not to 

lose the information in the image. Unlike the classic Dense 

block, Batch Normalization-ReLU-Conv (Convolution) layers 

have been added respectively. The Discrete DenseNet block 

expansion is shown in Fig. 8. 

 
Fig.8. Discrete DenseNet block expansion. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6 

In the PPDN architecture, the parallel connected Discrete 

DenseNet block expansion is shown in Fig. 8; unlike the 

classical Dense block (Fig. 3), convolution layers are used as 

3x3 instead of 1x1 so as not to lose information in the image.  

Unlike the classic Dense block, a Batch Normalization layer 

has been added for the normalization process. Before the 

classification layer, unlike the classical DenseNet architecture, 

the 'Anomaly-Healthy' classification is made using Batch 

Normalization-ReLU-Conv (Convolution) and dropout layers. 

 

3.3. Dataset and Image preprocessing 

The dataset features and source used in the study are as 

follows. The MURA dataset was collected from HIPAA 

(Health Insurance Portability and Accountability Act) 

compliant images from Stanford Hospital's Picture Archive 

and Communication System (PACS). MURA is a large 

radiography dataset containing 14,863 musculoskeletal studies 

and a total of 40,561 multi-view radiographic images of 

12,173 patients between 2001 and 2012. This is one of the 

most extensive publicly available radiographic image datasets. 

The dataset was manually labeled as healthy or an anomaly by 

radiologists. The dataset consists of 9,045 healthy and 5,818 

anomalies. It includes the radiographic study of the 

musculoskeletal system of the humerus, shoulder, forearm, 

elbow, wrist, finger, and hand [6,30]. Table 2 shows the 

distribution of the dataset. 

TABLE 2. Distribution of Stanford MURA dataset for upper body 
studies [31] 

 
 

Anomaly detection is a binary classification task that 

determines whether a study is healthy or an anomaly. 

Determining whether a radiographic study is healthy or an 

anomaly is critical; it can eliminate the requirement for 

patients to undergo further diagnostic tests, procedures, and 

interventions. Anomalies include fractures, hardware, 

degenerative joint diseases, lesions, and subluxations [32]. 

Figures 9 and 10 show the X-ray images for the elbow and 

finger parts of the MURA dataset. 

 

 
Fig.9. MURA dataset elbow part (a) healthy, (b) anomaly example. 

 
 
 

 
Fig.10. MURA dataset finger part (a) healthy, (b) anomaly example. 

 

The original dimensions of the images in the MURA dataset 

are not fixed and vary between 512x512 pixels and 97x512 

pixels. The file extension of the images is '.png' [12]. Since the 

input data in deep learning must have the same pixel value, all 

variable-size images were resized to 320x320 pixels [33]. 

After this resizing, images with '.png' extensions were 

centered by trimming the excess edges or spaces, as shown in 

Fig. 9 and Fig. 10; the image was centered. This process 

removes unnecessary or empty areas around the edges to bring 

the image closer to the focal point or area of interest. The bit 

depth of the images in the MURA dataset varies between 8 

and 24. In order to make the training in deep learning more 

efficient, the bit depth of all input image data in the study was 

converted to 8 [34]. The input image data was reproduced by 

randomly rotating it horizontally and vertically between -300 

and +300 and reflecting it on both axes [1]. In addition, the 

input image data was increased by scaling the input image 

data between 0,9 and 1,1 [35]. 

The number of radiography data used in experimental analyses 

is shown in Table 3. 
 

TABLE 3. Summary of some studies using the MURA radiography 
dataset 

 Part Healthy Anomaly 

In this study Elbow 1534 1630 

Harini et al.[8] Elbow 2925 2006 

Kumar and 

Cutsuridis [30] 

Elbow 162 160 

In this study Finger 1965 1938 

Harini et al.[8] Finger 3138 1968 

Kumar and 

Cutsuridis [30] 

Finger 175 164 

 
4. PERFORMANCE METRICS 

Performance of modeling for healthy-anomaly detection in 

MURA data set; evaluated using clinically meaningful 

statistical measures such as accuracy, precision, recall, 

specificity, F1-score, k-fold cross validation, Cohen’s kappa 

statistic and  area under the curve (AUC). These criteria are 

briefly defined as follows: 

4.1. Accuracy 

It is a parameter that evaluates the capacity of a model by 

measuring the proportion of correctly predicted cases out of 

the total number of cases. It is expressed mathematically as: 

 

       Accuracy = (TP + TN)/ (TP + FP + FN + TN)          (1) 
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Here, TP is the number of positive cases correctly predicted by 

the model; TN is the number of negative cases correctly 

predicted by the model; FP is the number of positive cases 

incorrectly predicted by the model; FN refers to the number of 

negative cases incorrectly predicted by the model. However, 

accuracy may only sometimes be an excellent metric to 

evaluate the performance of the model, especially in the case 

of asymmetric data sets. Therefore, it is necessary to evaluate 

other performance metrics to test the model. 

4.2. Precision 

The ratio of correctly predicted positive cases to total positive 

cases. A high precision value is associated with a low FP rate. 

Precision is calculated as follows:  

                          Precision = TP/(TP + FP)                   (2) 

4.3. Specificity 

The ratio of correctly predicted negative observations to all 

true negative observations. 

                          Specificity = TN/(FP + TN)               (3) 

4.4. Recall 

Recall is a metric that shows how many trades we should 

predict as positive we predict as positive. 

                                Recall=TP/(TP+FN)                            (4) 

4.5. F1-Score 

The F1 Score is measured primarily in the case of uneven 

class distribution with many accurate negative observations. 

F1-score provides a balance of precision and recall [36]. 

       F1-Score=2(PrecisionxRecall)/(Precision+Recall)     (5) 

4.6. K-fold cross-validation 

K-fold is a cross-validation method in which we iterate k 

times over a dataset. In standard k-fold cross-validation, we 

partition the data into k subsets called folds. Then, the 

algorithm is iteratively trained on k-1 folds while using the 

remaining fold as the test set (called the "holdout fold") [37]. 

The literature chooses the most suitable k values as 3, 5, and 

10. Cross-validation is used to prevent overfitting problems 

[38].  

 

4.7. Cohen’s kappa statistic 

The kappa statistic measures how well two different assessors 

or tests agree with each other. The formula for Cohen's kappa 

statistic (κ) is as follows [39]: 

κ  = ( Accuracy - Pe)/(1 - Pe)                                       (6) 

where, 

               (7) 

4.8. Area under the curve (AUC) 

The ROC is a probability curve, and the area under the AUC 

represents the degree or measure of separability. As the area 

under the curve increases, the discrimination performance 

between classes increases [40]. Formally, the formula for 

calculating AUC is 

                       𝐴𝑈𝐶 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
                                      (8) 

5. EXPERIMENTAL ANALYSIS AND RESULTS 

The experimental environment is defined as follows. All 

network models in this experiment are based on deep learning 

frameworks, and each model trial was conducted using a 

computer with 12th Gen Intel(R) Core(TM) i7-12650H 2.30 

GHz, Windows 11 Pro operating system, 16 GB memory, and 

NVIDIA GeForce RTX 4060 Laptop GPU. The experiments 

were completed using the MATLAB program. 

Parameter settings are as follows. The networks in this 

experiment used the same parameter settings. In the data set, 

the learning rate was set to 0.001, the minibatch size to 128, 

and the number of epochs to 250. In order to minimize the 

amount of error between the output value produced by the 

Model Network and the actual value, the categorical cross-

entropy function was adjusted using the ADAM (Adaptive 

Moment Estimation) algorithm. In this way, the desired goal 

was tried to be achieved by minimizing the difference between 

the output value produced by the model and the actual value. 

Data input images were randomly trained in all modeling with 

80% training, 5% validation, and 15% testing rates. Figure 11 

shows the Accuracy and Loss graphs for the elbow (a) and 

finger (b) parts. 
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(a) 

 

 
(b) 

 
Fig.11. Training Progress for the elbow (a) and finger (b) parts. 

 

In training, 1534 healthy and 1630 anomaly images were used 

for the elbow part of the MURA radiography dataset. 

Confusion matrices of the test data obtained using the 

AlexNet, DenseNet, ParallelDenseNet, and PPDN models are 

shown in Tables 4, 5, 6, and 7, respectively. 
 

TABLE 4. Elbow part AlexNet confusion matrix 
 

 

For the elbow part AlexNet model, out of 246 images labeled 

as an anomaly, 191 were successful (TP), and 55 were 

unsuccessful (FN). Of the 229 images labeled healthy, 54 gave 

unsuccessful (FP) results, and 175 gave successful (TN) 

results. 

 
TABLE 5. Elbow part DenseNet confusion matrix 
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For the elbow part DenseNet model, out of 197 images labeled 

as an anomaly, 161 were successful (TP), and 36 were 

unsuccessful (FN). Of the 278 images labeled as healthy, 84 

gave unsuccessful (FP) results, and 194 gave successful (TN) 

results. 

 
TABLE 6. Elbow part Parallel DenseNet confusion matrix 

 

 
 

For the elbow part of the Parallel DenseNet model, out of 200 

images labeled as an anomaly, 167 were successful (TP), and 

33 were unsuccessful (FN). Out of the 275 images labeled 

healthy, 78 gave unsuccessful (FP) results, and 197 gave 

successful (TN) results. 
 

TABLE 7. Elbow part PPDN confusion matrix 

 

 

For the elbow part PPDN model, out of 214 images labeled as 

an anomaly, 179 were successful (TP), and 35 were 

unsuccessful (FN). Out of the 261 images labeled as healthy, 

66 gave unsuccessful (FP) results, and 195 gave successful 

(TN) results. Figure 12 shows the ROC curve plot for the 

elbow part trained with the PPDN model. 

 

Fig.12. ROC curve for the elbow part with the PPDN model. 

 

Table 8 shows the performances of four deep-learning models 

for the elbow part. 

 
TABLE 8. Comparative performances of deep learning models for the elbow part 

 
Models Accuracy 

(%) 

Recall 

(%)  

Specificity 

(%) 

Precision 

(%) 

F1-Score  

(%) 

Kappa 

Score 

5-fold 

Accuracy 

(%) 

AUC Training 

time for 

models  

(min) 

AlexNet  77,05 77,64 76,42 77,96 77,80 0,5405 75,81 0,84720 51 

DenseNet 74,74 81,73 69,78 65,71 72,85 0,4974 73,10 0,83063 175 

Paralel DenseNet 76,63 83,50 71,64 68,16 75,06 0,5350 75,45 0,83972 678 

PPDN 78,74 83,64 74,71 73,06 78,00 0,5761 77,95 0,87773 886 

 

According to Table 8, the highest accuracy rate (78,74%) was 

seen in the PPDN model, and the lowest accuracy rates were 

seen in the DenseNet (74,74%) and Parallel DenseNet 

(76,63%) models. On the other hand, although the AlexNet 

model (77,05%) gives more successful results than the 

DenseNet and Parallel DenseNet models, it has a lower 

accuracy rate than the PPDN model. In their study using the 

AlexNet model, Yang and Ding classified the elbow part with 

an accuracy rate of 72,39% [41]. In their study, Karthik and 

Kamath classified the elbow part using the AlexNet model 

with an accuracy rate of 78,67% [42]. These values are close 

to the 77,05% value obtained as a result of the analysis in this 

study. The Kappa statistic value of 0,5761 was obtained in the 

PPDN model is more successful than all models. In the 

analyses performed with the 5-fold cross-validation method, 

the PPDN model outperformed the other models with an 

accuracy of 77.95%. The AUC value of 0,87773 was obtained 

in the PPDN model, which is more successful than all models. 

In training, 1965 healthy and 1938 anomaly images were used 

for the finger part of the MURA radiography dataset. 

Confusion matrices of the test data obtained using the 

AlexNet, DenseNet, Parallel DenseNet, and PPDN models are 

shown in Table 9, Table 10, Table 11, and Table 12, 

respectively. 
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TABLE 9. Finger part AlexNet confusion matrix 
 

 
 

For the finger part AlexNet model, out of 348 images labeled 

as an anomaly, 224 were successful (TP), and 124 were 

unsuccessful (FN). Of the 238 images labeled healthy, 67 gave 

unsuccessful (FP) results, and 171 gave successful (TN) 

results. 

 
TABLE 10. Finger part DenseNet confusion matrix 

 

 
 

For the finger part DenseNet model, out of 266 images labeled 

as an anomaly, 183 were successful (TP), and 83 were 

unsuccessful (FN). Out of the 320 images labeled as healthy, 

108 gave unsuccessful (FP) results, and 212 gave successful 

(TN) results. 

 
TABLE 11. Finger part Parallel DenseNet confusion matrix 

 

 
 

For the finger part Parallel DenseNet model, out of 299 

images labeled as an anomaly, 204 were successful (TP), and 

95 were unsuccessful (FN). Of the 287 images labeled healthy, 

87 gave unsuccessful (FP) results, and 200 gave successful 

(TN) results. 
 
 
 
 
 
 

TABLE 12. Finger part PPDN confusion matrix 
 

 
 

For the finger part PPDN model, out of 245 images labeled as 

an anomaly, 180 were successful (TP), and 65 were 

unsuccessful (FN). Of the 341 images labeled healthy, 111 

gave unsuccessful (FP) results, and 230 gave successful (TN) 

results. Figure 13 shows the ROC curve plot for the finger part 

trained with the PPDN model. 

 

Fig.13. ROC curve for the finger part with the PPDN model. 

 

Table 13 shows the performances of four deep-learning 

models for the finger part. According to Table 13, the highest 

accuracy rate (69,97%) was seen in the PPDN model, and the 

lowest accuracy rates were seen in the DenseNet (67,41%) and 

AlexNet (67,41%) models. On the other hand, although the 

Parallel DenseNet model (68,94%) gives more successful 

results than the DenseNet and AlexNet models, it has a lower 

accuracy rate than the PPDN model. A high accuracy of the 

PPDN model means that the number of correct predictions is 

high, but the F1 score may decrease when the FP or FN is 

high. This is often the case with imbalanced data sets or 

classification problems. Accuracy is the ratio of correctly 

classified instances to all instances, while the F1 score takes 

into account the imbalance between classes and focuses more 

on the agreement of precision and recall values. Especially 

when there is a large difference in the number of positive and 

negative samples, the model can achieve a high accuracy by 

biasing towards the majority class. 
 
 
 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11 

TABLE 13. Comparative performances of deep learning models for the finger part 
 

Models Accuracy 

(%) 

Recall 

(%)  

Specificity 

(%) 

Precision 

(%) 

F1-Score  

(%) 

Kappa 

Score 

5-fold 

Accuracy 

(%) 

AUC Training 

time for 

models  

(min) 

AlexNet  67,41 64,37 71,85 76,98 70,11 0,3490 65,17 0,73784 66 

DenseNet 67,41 68,80 66,25 62,89 65,71 0,3477 65,32 0,70846 220 

Paralel DenseNet 68,94 68,23 69,69 70,10 69,15 0,3789 67,89 0,75951 926 

PPDN 69,97 73,47 67,45 61,86 67,16 0,3986 68,92 0,80599 1125 

 

However, in this case, the F1 score may be low because the 

model fails to correctly predict the minority class samples 

[43]. 

In their study using the AlexNet model, Yang and Ding 

classified the finger part with an accuracy rate of 70,57% [41]. 

In their study, Karthik and Kamath classified the finger part 

using the AlexNet model with an accuracy rate of 71,13%. 

[42]. These values are close to the 67,41% value obtained due 

to the analysis using the AlexNet model in this study. 

The Kappa statistic value of 0,3986 obtained in the PPDN 

model is more successful than all models. In the analyses 

performed with the 5-fold cross-validation method, the PPDN 

model outperformed the other models with an accuracy of 

68,92%, which was more successful than all models. The 

AUC value of 0,80599 obtained in the PPDN model is more 

successful than all models. 

In deep learning, hyperparameter tuning may not be necessary 

due to good results with default or simple settings, time and 

cost limitations, and problem complexity [44]. Considering the 

dataset's size and the performance metrics results, no 

hyperparameter tuning was made to compare the PPDN 

model's effect with the classical DenseNet and AlexNet 

models. 

6. CONCLUSION AND DISCUSSION 

The elbow and finger X-ray images from the MURA data set 

were categorized as healthy or anomalous using CNN models 

in deep learning. Shortening the treatment period by early 

diagnosis of musculoskeletal system disease is essential. The 

classical DenseNet model was developed in this study, and the 

test results were compared with those of other models. 

According to the results obtained, it is expected to positively 

contribute to the decision-making process regarding 

diagnosing musculoskeletal diseases. The proposed method 

offers significant advantages in matters such as test accuracy 

rate and personnel workload. As a result of the statistical 

analysis made for the elbow part, The highest test accuracy 

rate (78,74%) was seen in the PPDN model, and the lowest 

accuracy rates were seen in the DenseNet (74,74%) and 

Parallel DenseNet (76,63%) models. On the other hand, the 

AlexNet model (77,05%) achieved more successful results 

than the DenseNet and Parallel DenseNet models. As a result 

of the statistical analysis made for the finger part, The highest 

test accuracy rate (69,97%) was seen in the PPDN model, and 

the lowest accuracy rates were seen in the DenseNet (67,41%) 

and AlexNet (67,41%) models. In addition, for the finger part, 

the Parallel DenseNet model (68,94%) achieved more 

successful results than the DenseNet and AlexNet models. It is  

 

 

 

common for finger fractures to be difficult to diagnose and 

sometimes overlooked by doctors. Some fractures may not be 

clearly visible on radiographs and may be misdiagnosed. For 

example, hairline fractures or small calcifications may be 

more difficult to detect on finger images.  Such fractures can 

lead to complications if ignored and may require re-evaluation 

for treatment. Some finger joint dislocations can also be 

misdiagnosed without x-rays, simply due to swelling, and may 

not be considered a serious ligament injury.  Therefore, the 

accuracy values obtained in the finger section are relatively 

low [45, 46]. For the finger part, the test accuracy value of the 

classical DenseNet model used in the study by Harini et al. 

(49.67%) while the test accuracy value of the PPDN model, 

which is the DenseNet model developed in our study, is 

(69.97%). For the elbow part, the test accuracy value of the 

classical DenseNet model in the study by Cheng et al. [9] is 

(62,68%). In contrast, the test accuracy value of the PPDN 

model, which is the DenseNet model developed in our study, 

is (78,74%). In the study conducted by S. Lysdahlgaard [10] 

for the elbow part, the validation and test accuracy values for 

all DenseNet variants are below our study's test accuracy 

result values. When Kappa statistic value measurements, 5-

fold cross-validation accuracy values, and AUC values are 

compared, the PPDN model is more successful than the 

classical DenseNet model for both elbow and finger parts. We 

propose the PPDN model developed in our study based on the 

results obtained, as the feature extraction process works better 

than the classical DenseNet model. The disadvantage of the 

PPDN model is that the training time is longer than that of 

other models. The successful results obtained in the test 

accuracy rates of the PPDN model are beneficial for the early 

diagnosis of musculoskeletal disorders in different datasets 

and for integrating the proposed method into computer-aided 

software systems used in hospitals in future studies. However, 

in future studies, X-ray images obtained by radiologists 

focusing on anomaly areas can be improved methodologically 

and technically. 
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