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Abstract. Image recognition is one of the essential branches of computer vision and has significant theoretical and practical importance. This
study aims to enhance a deep learning model, DenseNet, by incorporating parallel structures using X-ray images from the MURA (musculoskeletal
radiographs) dataset. X-ray images of the elbow and finger are analyzed using AlexNet, DenseNet, parallel DenseNet, and proposed parallel
DenseNet (PPDN) deep learning models for anomaly detection, and the results are compared. For the elbow, 1534 healthy and 1630 anomaly
X-ray images; for the finger, 1965 healthy and 1938 anomaly X-ray images were used to train the deep learning models. As a result of the
statistical analysis, the most successful model with the test accuracy value for the elbow part was the suggested PPDN model (78.74%). The next
successful model for the elbow part was AlexNet (77.05%). The most successful model for the finger part was again the PPDN model (69.97%),
and the next successful model was the parallel DenseNet model for the finger part (68.94%). In anomaly detection of musculoskeletal elbow and
finger X-ray images, the PPDN model is more successful than the classical DenseNet and AlexNet models in terms of test accuracy.
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1. INTRODUCTION

Musculoskeletal disorders are injuries or pain that occur in
the human musculoskeletal system, including ligaments, joints,
nerves, tendons, muscles, and structures supporting the neck,
limbs, and back. Patients suffer from chronic pain and various
limitations in mobility, dexterity, and functional abilities [1].
Musculoskeletal radiographic images are an essential tool in the
diagnosis of anomalies. Usually, when a patient has an accident
or a fracture is suspected, the patient goes to the emergency
room, where his or her doctor first performs a fracture exami-
nation, and radiographs are taken to detect fractures. The mis-
classification rate of X-ray images in the emergency department
is due to the rapid taking of images by the emergency room
doctor classifying the X-ray images, and if the doctor is not
sufficiently experienced, this may lead to errors. Consequently,
various anomalies including fractures, hardware, degenerative
joint disease, lesions, and subluxations may be missed depend-
ing on the doctor’s experience [1, 2]. An automatic classifier to
help doctors classify X-ray images can significantly reduce the
error rate [3], with deep learning as a critical tool in categorizing
medical images.

Deep learning algorithms make life easier for radiologists
and orthopedic surgeons by providing faster and more accurate
real-time findings [4]. Therefore, deep learning has recently
become one of the most potent and impressive learning models
for image pattern recognition and classification problems [5].
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Two points are important in deep learning. The first is that the
data should have an extensive collection labeled; the second is
to find the appropriate deep-learning approach to interpret the
data accurately [6].

1.1. Related work

Examining studies aimed at musculoskeletal diagnosis revealed
that deep learning techniques and patient X-ray image datasets
were usually applied. Liang and Gu in studies propose a novel
multi-network architecture consisting of a multi-scale convolu-
tion neural network (MSCNN) with a fully connected graph
convolution network (GCN), named MSCNN-GCN, for the
detection of musculoskeletal abnormalities via musculoskele-
tal radiographs. The model effectiveness was validated us-
ing the MURA dataset, comparing it to radiologists’ perfor-
mance and three popular CNN models (DenseNet169, CapsNet,
and MSCNN) [7]. Harini et al. compared the training results
with deep learning models; Inception V3, Xception, VGG-19,
DenseNet169, and MobileNet using the MURA dataset (hand,
wrist, and shoulder) and showed that the performance of the
VGG-19 model was the lowest [8]. Cheng et al. used the mask-
ing method they proposed on the input images obtained from the
MURA data set (hand, finger, wrist, forearm, elbow, humerus,
and shoulder) as input data. They compared them with the
DenseNet model and achieved more successful results in their
proposed model [9]. Lysdahlgaard, using elbow and wrist X-
ray images in the MURA dataset, obtained analysis results with
derivatives of VGG, ResNet, DenseNet, Xception, and Inception
models. Successful results for the elbow part were obtained with
test accuracy values between 64% and 73% with the DenseNet
model. With test accuracy scores of 84% using the VGG model,

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 2, p. e153233, 2025 1

https://orcid.org/0000-0002-9543-4076
https://orcid.org/0000-0002-5075-9504
mailto:selahattin.guclu@dpu.edu.tr


S. Güçlü, D. Özdemir, and H.M. Saraoğlu

the wrist portion produced successful results [10]. Solovoya
and Solovyov analyzed the kappa statistic results obtained from
training the DenseNet169 model on the entire MURA dataset.
The highest kappa value, 0.942, was achieved for the wrist com-
ponent, while the lowest, 0.395, was observed for the finger
component [11]. Kandel et al. used VGG, ResNet, DenseNet,
Xception, and Inception deep learning models to analyze the
X-ray images in the MURA dataset using various statistical
methods and a different algorithm, and the results were com-
pared [12]. Mondol et al. designed a model combining VGG-19
architecture and ResNet-50 architecture to detect musculoskele-
tal anomalies in the MURA dataset. The model, which they call
(CADx), was trained on four parts of the MURA dataset: elbow,
finger, humerus, and wrist. They stated that the CADx model
performed better than the classical VGG-19 and ResNet-50 ar-
chitecture [13]. Morra et al. considered a multi-stage transfer
learning approach for medical image analysis. They combined
color information extraction with transfer learning and used
different classification models such as ResNet and DenseNet.
They achieved successful results in the classification of medical
images using deep-learning models with color features [14].

Studies in the literature have shown that the DenseNet deep
learning model has achieved successful results in musculoskele-
tal disorders. Although deep learning methods utilizing parallel
layers have been employed in the literature, performance anal-
ysis regarding the increase in the number of parallel layers and
layer count in datasets with a large number of X-ray images, such
as the MURA dataset, still needs to be improved. In this study,
it was predicted from the literature that the parallel and multi-
layered architecture would increase the accuracy performance
and was tested by applying it to the DenseNet architecture. This
study analyzed the performance of the test accuracy values of
the layers of the DenseNet deep learning model in parallel con-
nection and compared them with AlexNet. This study proposes
to apply the PPDN model in a way that makes it possible to de-
tect musculoskeletal system anomalies in MURA dataset X-ray
images compared to the classical DenseNet model.

This study is structured as follows: Section 2 covers deep
learning models and related technical procedures. Section 3
presents the proposed models along with their processes. Per-
formance metrics are detailed in Section 4, and Section 5 dis-
cusses the experimental analysis and results. Finally, Section 6
provides conclusions, discussion points, and recommendations.

2. METHODOLOGY

2.1. Deep learning

Deep learning is a subset of the field of machine learning that
deals with creating deep artificial neural networks inspired by
biological neural networks in the human brain [15]. Deep learn-
ing has become crucial in healthcare, significantly enhancing
diagnostic accuracy, personalized treatment, and predictive an-
alytics. Deep learning models can assist healthcare professionals
in early disease detection, reducing errors, and optimizing pa-
tient outcomes by analyzing complex medical data such as med-
ical imaging, genomics, and patient records. For this reason,

deep neural networks outperform shallow machine learning al-
gorithms in most applications where text, image, video, speech,
and audio data need to be processed [16]. We can classify deep
learning architectures as recurrent neural networks (RNN), con-
volutional neural networks (CNN), generative adversarial net-
works (GAN), autoencoders (AE), hybrid architectures (HA),
and deep belief networks (DBN) [17].

2.2. Models

Convolutional neural network (CNN) stands at the forefront of
representative algorithms for image recognition through a neu-
ral network [18]. Recent studies have shown that convolutional
neural networks have become deeper and deeper to obtain more
accurate results [19]. This study used popular DenseNet and
AlexNet deep learning methods to train CNN with a dataset.

2.2.1. AlexNet model

AlexNet deep learning architecture is the first convolutional neu-
ral network to participate in the ImageNet competition held in
2012. It outperformed all previous low-depth algorithms with
an accuracy rate of 84.6% in image classification. Since then,
CNNs have become the most advanced algorithm in image clas-
sification [19]. AlexNet architecture: It has 650 000 neurons,
60 000 000 parameters, five convolution layers, and three dense
layers. Two innovations made in AlexNet were using the ReLU
activation function instead of the sigmoid activation function
and the dropout method to overcome the overfitting problem
that this deep architecture can cause. The main advantage of this
network is that the training process is computationally efficient
compared to other networks. On the other hand, the AlexNet
deep learning method needs to be deeper to capture complex
features from images [18, 19]. Figure 1 shows the architecture
of the AlexNet deep learning model.

Fig. 1. The architecture of the AlexNet deep learning model [20]

2.2.2. DenseNet model

Dense blocks were first proposed by Gao Huang et al. (2016).
The model refers to densely connected convolutional networks.
DenseNet is inspired by ResNet, but the authors propose using
dense blocks instead of residual links [17, 21]. The DenseNet
model is a novel CNN designed for image classification. It is
crafted to operate through dense blocks, utilizing densely con-
nected layers, enabling intensive processing. Dense blocks fa-
cilitate information sharing by establishing dense connections
between layers. These connections ensure enhanced informa-
tion flow, utilizing the densely interconnected layers in the
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model [22]. The input of the DenseNet model consists of an
RGB image with dimensions defined as 1 (batch size), 3 (chan-
nels), 224 (height), and 224 (width) [23, 24]. This entry goes
through a pile of interconnected features. This stack consists
of combined attributes by combining the output of all previous
layers with further layers. This form of connection is the main
idea of DenseNet models. For example, the input of a layer
X3 = H3( [X0, X1, X2]) consists of the outputs of previous
layers, such as X2, X1, X0, and the original input. These in-
puts are combined to create a single deep feature map with the
exact spatial resolution but a different number of filters. Contin-
uously connecting successive dense blocks will eventually lead
to profound entrances. The architecture is divided into dense
blocks using all consecutive layers in each block. This performs
a shrinking process to reduce the depth of the feature map while

using one-by-one convolution in successive layers to preserve
spatial resolution. After this process, max pooling is used to
reduce the feature map size [23]. Several types of DenseNet
exist, including DenseNet-121, DenseNet-169, DenseNet-201,
and DenseNet-264. The numbers next to DenseNet types re-
fer to the number of layers; for example, DenseNet-264 has
264 layers [25]. DenseNets require fewer parameters than tra-
ditional CNNs because there are no redundant feature maps. If
we analyze the structure of DenseNets, the feature map sizes
remain constant in blocks with different filters. This feature
helps optimize the number of parameters while increasing the
learning ability of the network [26]. Since architectures dif-
fer according to DenseNet types, these differences are shown
in Table 1. Figure 2 shows the architecture of the DenseNet
model.

Table 1
DenseNet architectures (each “conv” layer shown in the table corresponds to the sequence BN (batch normalization)-ReLU-Conv (convolution),

respectively [27])

Layers Output size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264

Convolution 112×112 7×7 conv, stride 2

Pooling 56×56 3×3 max pool, stride 2

Dense Block-1 56×56 1×1 conv
3×3 conv ×6 1×1 conv

3×3 conv ×6 1×1 conv
3×3 conv ×6 1×1 conv

3×3 conv ×6

Transition Layer-1
56×56 1×1 conv

28×28 2×2 average pool, stride 2

Dense Block-2 28×28 1×1 conv
3×3 conv ×12 1×1 conv

3×3 conv ×12 1×1 conv
3×3 conv ×12 1×1 conv

3×3 conv ×12

Transition Layer-2
28×28 1×1 conv

14×14 2×2 average pool, stride 2

Dense Block-3 14×14 1×1 conv
3×3 conv ×24 1×1 conv

3×3 conv ×32 1×1 conv
3×3 conv ×48 1×1 conv

3×3 conv ×64

Transition Layer-3
14×14 1×1 conv

7×7 2×2 average pool, stride 2

Dense Block-4 7×7 1×1 conv
3×3 conv ×16 1×1 conv

3×3 conv ×32 1×1 conv
3×3 conv ×32 1×1 conv

3×3 conv ×48

Classification Layer
1×1 7×7 global average pool

1000D fully-connected, softma×

Fig. 2. The architecture of the DenseNet deep learning model [28]
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Figure 3 shows the DenseNet block expansion architecture.

Fig. 3. DenseNet block expansion [25]

Figure 4 shows the DenseNet Transition layer expansion ar-
chitecture.

Fig. 4. DenseNet Transition layer expansion [25]

The MURA dataset X-ray images were analyzed using
DenseNet-264, a classical DenseNet model.

3. PROPOSED MODELS AND PROCESSES

The task of the Dense Block module, which is the main module
of the DenseNet model, is to extract features from images. Nev-
ertheless, this module has room for optimization as the arrange-
ment of various functional layers may need to be revised. Us-
ing different parallel structures in the CrodenseNet architecture
achieved better results in diagnosing COVID-19 disease [29].

Yin et al. obtained promising results using parallel layers on the
classical DenseNet model using the CIFAR 10 and CIFAR 100
datasets, so in this study, the DenseNet deep learning method
was developed by adding parallel blocks by deleting or adding
some layers and adjusting the convolution layer. In contrast to
Yin et al., who used three blocks by reducing the number of
classic DenseNet blocks, four blocks were utilized in this study.
When additional convolutional layers are superimposed on top
of each other, with a larger receptive field in terms of size, it can
lead to the extraction of richer features and higher computational
efficiency. In contrast to Yin et al., in the developed DenseNet
deep learning models, a 3×3 convolution layer was used instead
of 1×1 to capture and extract features in larger areas. The 3×3
convolution layer processes each pixel in a 3×3 window around
itself and its neighbors. Additionally, DenseNet processes input
features through the dense block module and employs only a sin-
gle convolutional kernel for feature extraction. This inevitably
results in a uniform structure, making it susceptible to potential
loss of information in the image [18]. To take full advantage
of the existing features and not add too many parameters, a
new dilated convolution block based on the dilated convolution
method is designed in parallel. Then, multipath Dense blocks
are connected to combine various feature maps from different
channels. This helps model the feature compatibility of chan-
nels and perform powerful feature extraction. In this study, to
develop the DenseNet model, a deep learning model using X-ray
images from the MURA dataset, a parallel DenseNet model was
first developed by adding Dense blocks parallel to the classical
DenseNet architecture. By parallelizing the DenseNet architec-
ture, better results are obtained in classification [18,29]. By op-
timizing this developed parallel DenseNet architecture, the pro-
posed parallel DenseNet model was developed. The DenseNet
models used in the study are used for image recognition after
training. Moreover, the accuracy of this image recognition is ob-
tained by comparing the results with the labels of the test images.

3.1. Parallel DenseNet model

In the parallel DenseNet model, the layers and repetition num-
bers of the classical DenseNet-264 model were used precisely.
The transition layer is the same as shown in Fig. 4. The archi-
tecture of the parallel DenseNet deep learning model is shown
in Fig. 5. The dense block expansion is shown in Fig. 3.

Fig. 5. The architecture of the DenseNet deep learning model [28]
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As seen in Fig. 5, based on the classical DenseNet architec-
ture, Dense blocks with the same layers and features, connected
in parallel to the classical Dense blocks, have been added. The
number of classic DenseNet blocks is four, as shown in Fig. 2.
These block numbers can be increased and decreased [18]. In
the analyses performed with three blocks, the number of blocks
was chosen as four since there was a performance decrease in the
test accuracy value at an accuracy value of 10%. Parallel blocks
were connected with Transition layers, which have the same
properties as classical DenseNet. As a result of the parallel con-
nections, the feature extraction process is performed after the in-
herent structure of Dense blocks concatenates the feature maps.
The ‘Pooling’ and ‘Full Connection’ layers are connected in the
last layer, and the ‘Anomaly–Healthy’ classification is made.

3.2. Proposed parallel DenseNet (PPDN) model

In the PPDN model, the layers and repetition numbers of the
classical DenseNet-264 model were used precisely. The tran-
sition layer is the same as shown in Fig. 4. In the proposed
model, the architecture shown in Fig. 6 was created by connect-
ing discrete Density blocks in parallel to the developed Density
blocks. Classic DenseNet architecture consists of successively

added layers. Parallel blocks were connected with Transition
layers, which have the same properties as classical DenseNet.
In the PPDN architecture, Dense blocks combine feature maps
from different channels to help the feature extraction process
(see Fig. 6).

The improved DenseNet block expansion is shown in Fig. 7.
As shown in Fig. 7, in the improved DenseNet block ex-

pansion, unlike the classical DenseNet block (Fig. 3), convolu-
tion layers are used as 3× 3 instead of 1× 1 so as not to lose
the information in the image. Unlike the classic Dense block,
batch normalization-ReLU-Conv (convolution) layers have been
added, respectively. The discrete DenseNet block expansion is
shown in Fig. 8.

In the PPDN architecture, the parallel connected discrete
DenseNet block expansion is shown in Fig. 8. Unlike the clas-
sical Dense block (Fig. 3), convolution layers are used as 3×3
instead of 1×1 so as not to lose information in the image.

Unlike the classic Dense block, a batch normalization layer
was added for the normalization process. Before the classi-
fication layer, unlike the classical DenseNet architecture, the
‘Anomaly-Healthy’ classification is made using batch norma-
lization-ReLU-Conv (convolution) and dropout layers.

Fig. 6. The architecture of the proposed parallel DenseNet deep learning model

Fig. 7. Improved DenseNet block expansion Fig. 8. Discrete DenseNet block expansion
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3.3. Dataset and image preprocessing

The dataset features and source used in the study are as fol-
lows. The MURA dataset was collected from HIPAA (Health
Insurance Portability and Accountability Act) compliant images
from Stanford Hospital’s Picture Archive and Communication
System (PACS). MURA is a large radiography dataset contain-
ing 14 863 musculoskeletal studies and a total of 40 561 multi-
view radiographic images of 12 173 patients between 2001 and
2012. This is one of the most extensive publicly available ra-
diographic image datasets. The dataset was manually labeled as
healthy or an anomaly by radiologists. The dataset consists of
9045 healthy and 5818 anomalies. It includes the radiographic
study of the musculoskeletal system of the humerus, shoulder,
forearm, elbow, wrist, finger, and hand [6, 30]. Table 2 shows
the distribution of the dataset.

Table 2
Distribution of Stanford MURA dataset for upper body studies [31]

Part
Train Validation

Healthy Anomaly Healthy Anomaly

Elbow 2925 2006 234 230

Finger 3138 1968 214 247

Hand 4059 1484 271 189

Humerus 673 599 148 140

Forearm 1164 661 150 151

Shoulder 4211 4168 285 278

Wrist 5765 3987 364 295

Anomaly detection is a binary classification task that deter-
mines whether a study is healthy or an anomaly. Determining
whether a radiographic study is healthy, or an anomaly is critical;
it can eliminate the requirement for patients to undergo further
diagnostic tests, procedures, and interventions. Anomalies in-
clude fractures, hardware, degenerative joint diseases, lesions,
and subluxations [32]. Figures 9 and 10 show the X-ray images
for the elbow and finger parts of the MURA dataset.

Fig. 9. MURA dataset elbow part (a) healthy, (b) anomaly example

The original dimensions of the images in the MURA dataset
are not fixed and vary between 512× 512 pixels and 97× 512
pixels. The file extension of the images is ‘.png’ [12]. Since the
input data in deep learning must have the same pixel value, all

Fig. 10. MURA dataset finger part (a) healthy, (b) anomaly example

variable-size images were resized to 320×320 pixels [33]. After
this resizing, images with ‘.png’ extensions were centered by
trimming the excess edges or spaces, as shown in Figs. 9 and 10.
This process removes unnecessary or empty areas around the
edges to bring the image closer to the focal point or area of
interest. The bit depth of the images in the MURA dataset varies
between 8 and 24. To make the training in deep learning more
efficient, the bit depth of all input image data in the study was
converted to 8 [34]. The input image data was reproduced by
randomly rotating it horizontally and vertically between −30◦
and +30◦ and reflecting it on both axes [1]. In addition, the
input image data was increased by scaling the input image data
between 0.9 and 1.1 [35].

The number of radiography data used in experimental analy-
ses is shown in Table 3.

Table 3
Summary of some studies using the MURA radiography dataset

Part Healthy Anomaly

In this study Elbow 1534 1630

Harini et al. [8] Elbow 2925 2006

Kumar and Cutsuridis [30] Elbow 162 160

In this study Finger 1965 1938

Harini et al. [8] Finger 3138 1968

Kumar and Cutsuridis [30] Finger 175 164

4. PERFORMANCE METRICS

Performance of modeling for healthy-anomaly detection in
MURA data set; evaluated using clinically meaningful statis-
tical measures such as accuracy, precision, recall, specificity,
F1-score, k-fold cross validation, Cohen’s kappa statistic and
area under the curve (AUC). These criteria are briefly defined
as follows:

4.1. Accuracy

It is a parameter that evaluates the capacity of a model by mea-
suring the proportion of correctly predicted cases out of the total
number of cases. It is expressed mathematically as:

Accuracy = (TP+TN)/(TP+FP+FN+TN), (1)
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where TP is the number of positive cases correctly predicted
by the model; TN is the number of negative cases correctly
predicted by the model; FP is the number of positive cases in-
correctly predicted by the model; FN refers to the number of
negative cases incorrectly predicted by the model. However, ac-
curacy may only sometimes be an excellent metric to evaluate
the performance of the model, especially in the case of asym-
metric data sets. Therefore, it is necessary to evaluate other
performance metrics to test the model.

4.2. Precision

The ratio of correctly predicted positive cases to total positive
cases. A high precision value is associated with a low FP rate.
Precision is calculated as follows:

Precision = TP/(TP+FP). (2)

4.3. Specificity

The ratio of correctly predicted negative observations to all true
negative observations

Specificity = TN/(FP+TN). (3)

4.4. Recall

Recall is a metric that shows how many trades we should predict
as positive we predict as positive

Recall = TP/(TP+FN). (4)

4.5. F1-Score

The F1 Score is measured primarily in the case of uneven class
distribution with many accurate negative observations. F1-score
provides a balance of precision and recall [36]

F1-Score = 2(Precision×Recall)/(Precision+Recall). (5)

4.6. k -fold cross-validation

𝑘-fold is a cross-validation method in which we iterate 𝑘 times
over a dataset. In standard 𝑘-fold cross-validation, we partition
the data into 𝑘 subsets called folds. Then, the algorithm is itera-
tively trained on 𝑘−1 folds while using the remaining fold as the
test set (called the ‘holdout fold’) [37]. The literature chooses
the most suitable 𝑘 values as 3, 5, and 10. Cross-validation is
used to prevent overfitting problems [38].

4.7. Cohen’s kappa statistic

The kappa statistic measures how well two different assessors
or tests agree with each other. The formula for Cohen’s kappa
statistic (𝜅) is as follows [39]:

𝜅 = (Accuracy−𝑃𝑒)/(1−𝑃𝑒), (6)

where

𝑃𝑒 =
(TP+FP) × (TP+FN) + (TN+FN) × (TN+FP)

(TP+TN+FP+FN)2 . (7)

4.8. Area under the curve (AUC)

The ROC is a probability curve, and the area under the AUC rep-
resents the degree or measure of separability. As the area under
the curve increases, the discrimination performance between
classes increases [40]. Formally, the formula for calculating
AUC is

AUC =

1∫
0

𝑓 (𝑥) d𝑥. (8)

5. EXPERIMENTAL ANALYSIS AND RESULTS

The experimental environment is defined as follows. All network
models in this experiment are based on deep learning frame-
works, and each model trial was conducted using a computer
with 12th Gen Intel(R) Core(TM) i7-12650H 2.30 GHz, Win-
dows 11 Pro operating system, 16 GB memory, and NVIDIA
GeForce RTX 4060 Laptop GPU. The experiments were com-
pleted using the MATLAB program.

Parameter settings are as follows. The networks in this ex-
periment used the same parameter settings. In the data set, the
learning rate was set to 0.001, the minibatch size to 128, and
the number of epochs to 250. To minimize the amount of er-
ror between the output value produced by the Model Network
and the actual value, the categorical cross-entropy function was
adjusted using the ADAM (adaptive moment estimation) algo-
rithm. In this way, the desired goal was tried to be achieved by
minimizing the difference between the output value produced
by the model and the actual value. Data input images were ran-
domly trained in all modeling with 80% training, 5% validation,
and 15% testing rates. Figure 11 shows the Accuracy and Loss
graphs for the elbow (a) and finger (b) parts.

In training, 1534 healthy and 1630 anomaly images were used
for the elbow part of the MURA radiography dataset. Confusion
matrices of the test data obtained using the AlexNet, DenseNet,
parallel DenseNet, and PPDN models are shown in Tables 4, 5,
6, and 7, respectively.

Table 4
Elbow part AlexNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
191 55 77.6%

40.2% 11.6% 22.4%

Healthy
54 175 76.4%

11.4% 36.8% 23.6%

78.0% 76.1% 77.1%
22.0% 23.9% 22.9%

Anomaly Healthy

Target Class

For the elbow part AlexNet model, out of 246 images la-
beled as an anomaly, 191 were successful (TP), and 55 were
unsuccessful (FN). Of the 229 images labeled healthy, 54 gave
unsuccessful (FP) results, and 175 gave successful (TN) results.
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Fig. 11. Training progress for the elbow (a) and finger (b) parts

Table 5
Elbow part DenseNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
161 36 81.7%

33.9% 7.6% 18.3%

Healthy
84 194 69.8%

17.7% 40.8% 30.2%

65.7% 84.3% 74.7%
34.3% 15.7% 25.3%

Anomaly Healthy

Target Class

For the elbow part DenseNet model, out of 197 images la-
beled as an anomaly, 161 were successful (TP), and 36 were

unsuccessful (FN). Out of the 278 images labeled as healthy, 84
gave unsuccessful (FP) results, and 194 gave successful (TN)
results.

Table 6
Elbow part parallel DenseNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
167 33 83.5%

35.2% 6.9% 16.5%

Healthy
78 197 71.6%

16.4% 41.5% 28.4%

68.2% 85.7% 76.6%
31.8% 14.3% 23.4%

Anomaly Healthy

Target Class
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For the elbow part of the parallel DenseNet model, out of 200
images labeled as an anomaly, 167 were successful (TP), and 33
were unsuccessful (FN). Out of the 275 images labeled healthy,
78 gave unsuccessful (FP) results, and 197 gave successful (TN)
results.

Table 7
Elbow part PPDN confusion matrix

O
ut

pu
tC

la
ss

Anomaly
179 35 83.6%

37.7% 7.4% 16.4%

Healthy
66 195 74.7%

13.9% 41.1% 25.3%

73.1% 84.8% 78.7%
26.9% 15.2% 21.3%

Anomaly Healthy

Target Class

For the elbow part PPDN model, out of 214 images labeled
as an anomaly, 179 were successful (TP), and 35 were unsuc-
cessful (FN). Out of the 261 images labeled as healthy, 66 gave
unsuccessful (FP) results, and 195 gave successful (TN) results.
Figure 12 shows the ROC curve plot for the elbow part trained
with the PPDN model.

Table 8 shows the performances of four deep-learning models
for the elbow part.

Fig. 12. ROC curve for the elbow part with the PPDN model

According to Table 8, the highest accuracy rate (78.74%) was
seen in the PPDN model, and the lowest accuracy rates were seen
in the DenseNet (74.74%) and parallel DenseNet (76.63%) mod-
els. On the other hand, although the AlexNet model (77.05%)
gives more successful results than the DenseNet and parallel
DenseNet models, it has a lower accuracy rate than the PPDN
model. In their study using the AlexNet model, Yang and Ding
classified the elbow part with an accuracy rate of 72.39% [41].
In their study, Karthik and Kamath classified the elbow part
using the AlexNet model with an accuracy rate of 78.67% [42].
These values are close to the 77.05% value obtained as a result
of the analysis in this study. The Kappa statistic value of 0.5761
obtained in the PPDN model is more successful than all mod-
els. In the analyses performed with the five-fold cross-validation
method, the PPDN model outperformed the other models with
an accuracy of 77.95%. The AUC value of 0.87773 was ob-
tained in the PPDN model, which is more successful than all
models.

In training, 1965 healthy and 1938 anomaly images were used
for the finger part of the MURA radiography dataset. Confusion
matrices of the test data obtained using the AlexNet, DenseNet,
parallel DenseNet, and PPDN models are shown in Tables 9–12,
respectively.

Table 9
Finger part AlexNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
224 124 64.4%

38.2% 21.2% 35.6%

Healthy
67 171 71.8%

11.4% 29.2% 28.2%

77.0% 58.0% 67.4%
23.0% 42.0% 32.6%

Anomaly Healthy

Target Class

For the finger part AlexNet model, out of 348 images labeled
as an anomaly, 224 were successful (TP), and 124 were unsuc-
cessful (FN). Out of the 238 images labeled healthy, 67 gave
unsuccessful (FP) results, and 171 gave successful (TN) results.

For the finger part DenseNet model, out of 266 images labeled
as an anomaly, 183 were successful (TP), and 83 were unsuc-
cessful (FN). Out of the 320 images labeled as healthy, 108 gave
unsuccessful (FP) results, and 212 gave successful (TN) results.

Table 8
Comparative performances of deep learning models for the elbow part

Models Accuracy
(%)

Recall
(%)

Specificity
(%)

Precision
(%)

F1-score
(%)

Kappa
score

Five-fold
accuracy

(%)
AUC

Training time
for models

(min)

AlexNet 77.05 77.64 76.42 77.96 77.80 0.5405 75.81 0.84720 51

DenseNet 74.74 81.73 69.78 65.71 72.85 0.4974 73.10 0.83063 175

Paralel DenseNet 76.63 83.50 71.64 68.16 75.06 0.5350 75.45 0.83972 678

PPDN 78.74 83.64 74.71 73.06 78.00 0.5761 77.95 0.87773 886
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Table 10
Finger part DenseNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
183 83 68.8%

31.2% 14.2% 31.2%

Healthy
108 212 66.2%

18.4% 36.2% 33.8%

62.9% 71.9% 67.4%
37.1% 28.1% 32.6%

Anomaly Healthy

Target Class

Table 11
Finger part parallel DenseNet confusion matrix

O
ut

pu
tC

la
ss

Anomaly
204 95 68.2%

34.8% 16.2% 31.8%

Healthy
87 200 69.7%

14.8% 34.1% 30.3%

70.1% 67.8% 68.9%
29.9% 32.2% 31.1%

Anomaly Healthy

Target Class

For the finger part parallel DenseNet model, out of 299 images
labeled as an anomaly, 204 were successful (TP), and 95 were
unsuccessful (FN). Out of the 287 images labeled healthy, 87
gave unsuccessful (FP) results, and 200 gave successful (TN)
results.

Table 12
Finger part PPDN confusion matrix

O
ut

pu
tC

la
ss

Anomaly
180 65 73.5%

30.7% 11.1% 26.5%

Healthy
111 230 67.4%

18.9% 39.2% 32.6%

61.9% 78.0% 70.0%
38.1% 22.0% 30.0%

Anomaly Healthy

Target Class

For the finger part PPDN model, out of 245 images labeled
as an anomaly, 180 were successful (TP), and 65 were unsuc-
cessful (FN). Out of the 341 images labeled healthy, 111 gave
unsuccessful (FP) results, and 230 gave successful (TN) results.
Figure 13 shows the ROC curve plot for the finger part trained
with the PPDN model.

Fig. 13. ROC curve for the finger part with the PPDN model

Table 13 shows the performances of four deep-learning mod-
els for the finger part. According to Table 13, the highest ac-
curacy rate (69.97%) was seen in the PPDN model, and the
lowest accuracy rates were seen in the DenseNet (67.41%) and
AlexNet (67.41%) models. On the other hand, although the par-
allel DenseNet model (68.94%) gives more successful results
than the DenseNet and AlexNet models, it has a lower accu-
racy rate than the PPDN model. A high accuracy of the PPDN
model means that the number of correct predictions is high, but
the F1 score may decrease when the FP or FN is high. This is
often the case with imbalanced data sets or classification prob-
lems. Accuracy is the ratio of correctly classified instances to
all instances, while the F1 score considers the imbalance be-
tween classes and focuses more on the agreement of precision
and recall values. The model can achieve a high accuracy by
biasing towards the majority class, especially when there is a
significant difference in the number of positive and negative
samples.

Table 13
Comparative performances of deep learning models for the finger part

Models Accuracy
(%)

Recall
(%)

Specificity
(%)

Precision
(%)

F1-score
(%)

Kappa
score

Five-fold
accuracy

(%)
AUC

Training time
for models

(min)

AlexNet 67.41 64.37 71.85 76.98 70.11 0.3490 65.17 0.73784 66

DenseNet 67.41 68.80 66.25 62.89 65.71 0.3477 65.32 0.70846 220

Paralel DenseNet 68.94 68.23 69.69 70.10 69.15 0.3789 67.89 0.75951 926

PPDN 69.97 73.47 67.45 61.86 67.16 0.3986 68.92 0.80599 1125
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6. CONCLUSION AND DISCUSSION
The elbow and finger X-ray images from the MURA data set
were categorized as healthy or anomalous using CNN models in
deep learning. Shortening the treatment period by early diagno-
sis of musculoskeletal system disease is essential. The classical
DenseNet model was developed in this study, and the test re-
sults were compared with those of other models. According to
the results obtained, it is expected to positively contribute to the
decision-making process regarding diagnosing musculoskele-
tal diseases. The proposed method offers significant advantages
in matters such as test accuracy rate and personnel workload.
As a result of the statistical analysis made for the elbow part,
The highest test accuracy rate (78.74%) was seen in the PPDN
model, and the lowest accuracy rates were seen in the DenseNet
(74.74%) and parallel DenseNet (76.63%) models. On the other
hand, the AlexNet model (77.05%) achieved more successful
results than the DenseNet and parallel DenseNet models. As a
result of the statistical analysis made for the finger part, The high-
est test accuracy rate (69.97%) was seen in the PPDN model, and
the lowest accuracy rates were seen in the DenseNet (67.41%)
and AlexNet (67.41%) models. In addition, for the finger part,
the parallel DenseNet model (68.94%) achieved more successful
results than the DenseNet and AlexNet models. It is common
for finger fractures to be difficult to diagnose and sometimes
overlooked by doctors. Some fractures may not be clearly vis-
ible on radiographs and may be misdiagnosed. For example,
hairline fractures or small calcifications may be more difficult
to detect in finger images. Such fractures can lead to compli-
cations if ignored and may require re-evaluation for treatment.
Some finger joint dislocations can also be misdiagnosed with-
out x-rays, simply due to swelling, and may not be considered
a serious ligament injury. Therefore, the accuracy values ob-
tained in the finger section are low [45, 46]. For the finger part,
the test accuracy value of the classical DenseNet model used
in the study by Harini et al. (49.67%) while the test accuracy
value of the PPDN model, which is the DenseNet model de-
veloped in our study, is (69.97%). For the elbow part, the test
accuracy value of the classical DenseNet model in the study by
Cheng et al. [9] is (62.68%). In contrast, the test accuracy value
of the PPDN model, which is the DenseNet model developed
in our study, is (78.74%). In the study conducted by Lysdahl-
gaard [10] for the elbow part, the validation and test accuracy
values for all DenseNet variants are below our study’s test accu-
racy result values. When Kappa statistic value measurements,
five-fold cross-validation accuracy values, and AUC values are
compared, the PPDN model is more successful than the classical
DenseNet model for both elbow and finger parts. We propose
the PPDN model developed in our study based on the results
obtained, as the feature extraction process works better than
the classical DenseNet model. The disadvantage of the PPDN
model is that the training time is longer than that of other mod-
els. The successful results obtained in the test accuracy rates of
the PPDN model are beneficial for the early diagnosis of muscu-
loskeletal disorders in different datasets and for integrating the
proposed method into computer-aided software systems used
in hospitals in future studies. However, in future studies, X-ray
images obtained by radiologists focusing on anomaly areas can
be improved methodologically and technically.
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