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Abstract. Our paper presents a nonparametric data-driven technique that can enhance the accuracy of robot kinematics models by reducing 
geometric and nongeometric inaccuracies. We propose this approach based on the theory of singular maps and the Large Dense Diffeomorphic 
Metric Mapping (LDDMM) framework, which has been developed in the field of Computational Anatomy. This framework can be thought of 
as a method for identifying nonlinear static models that encode a priori knowledge as a nominal model that we deform using diffeomorphisms. 
To tackle the kinematic calibration problem, we implement Calibration by Diffeomorphisms and obtain a solution using an image registration 
formalism. We evaluate our approach via simulations on double pendulum robot models, which account for both geometric and nongeometric 
discrepancies. The simulations demonstrate an improvement in the precision of the kinematics results for both types of inaccuracies. Addition- 
ally, we discuss the potential application of physical experiments. Our approach provides a fresh perspective on robot kinematics calibration
using Calibration by Diffeomorphisms, and it has the potential to address inaccuracies caused by unknown or difficult-to-model phenomena.
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1. INTRODUCTION

The robotic manipulators’ repeatability, accuracy and preci-
sion are the features that give them a raison detre in the indus-
trial realm. The main factor for robots being precise and accu-
rate is the correctness of their mathematical model of kinemat-
ics embedded in the controllers software. These models usu-
ally rely on common modelling methods, such as the Denavit-
Hartenberg or the Product of Exponentials method, covering
standard serial robot geometries. As it may be expected, the
kinematics model of the actual robot usually differs from the
one created in the design, thus affecting the precision and ac-
curacy. This drives one to enhance the nominal kinematics.

According to the literature [1], the process of refinement of
the performance of the kinematics model is referred to as a
robot kinematics calibration problem. The problem may be
described as follows. Having a real robot and the ability to
perform some measurements on it, propose a reformulation of
the known nominal kinematics that will be closer to the actual
kinematics in some predefined criterion.

In general, the robot kinematics is represented as a map
k : X × P −→ Y having the admissible joints position x ∈ X
and model parameters p ∈ P as arguments, taking the pose of
the end-effector as values y ∈ Y . A typical set of parameters
is the one that follows the Denavit-Hartenberg algorithm and
governs the geometry of the robot, although it is not the only
possible one. Simply speaking, the set of parameters may be
broader depending on the details of the modelling process.

Following [2, 3], it can be seen that the most significant
step of the robot kinematics calibration is the one that employs
model identification algorithms. A widely spread approach is
the so-called parametric calibration. The idea behind it relies
on looking for a new set of model parameters better describing
the robot’s kinematics. The standard procedure exploits the
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measurements (xi,yi) of the joints’ position and correspond-
ing end-effector poses to obtain finer values of the parame-
ters p, minimising the mean squared error. Despite good the-
oretical and practical results, such an approach has its draw-
backs. Specifically speaking, for exact calibration, the method
requires knowledge of the complete model of the robot kine-
matics (structures, formulas etc.), which in practice is difficult
to achieve.

Discrepancies appearing in robot models may be grouped
into: geometric and non-geometric inaccuracies. The first one
is sourced in the variations of geometric parameters, while the
second one is caused by phenomena that are unknown or hard
to model, e.g. a joint compliance, with the last one seeming to
be an unbreakable wall for a parametric approach. Usually, in
such a case non-parmetric approaches are used in model iden-
tification. To the best knowledge of the authors, aside from
employing neural networks [4, 5, 6, 7], the non-parametric ap-
proaches did not bring enough attention to the robotic society.

An alternative approach and possible remedy for the men-
tioned pitfalls is to restate the calibration problem in a different
mathematical framework requiring milder assumptions. Such
an attempt has been made in the paper [8], developing so-called
Calibration by Diffeomorphisms. That work set the problem of
robot calibration in terms of the differential equivalence of the
singular maps. Despite fruitful theoretical results, the paper
lacks a practical implementation of the findings due to diffi-
culties in computing diffeomorphisms. Currently, the develop-
ment of computational methods for diffeomorphic transforma-
tions in Computational Anatomy unveils new opportunities for
revisiting the approach proposed in [8] that allows us to design
a data-driven method for robot calibration problems alternative
to machine learning. Indeed, the presented method is an alter-
native to classical Machine Learning, but nevertheless it can
also be considered as a type of learning process. Based on the
collected measurements (data-driven), we iteratively propose
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new and better kinematics (learning). In contrast to Machine
Learning, our process converges to an optimal solution in a
known number of iterations. Finally, the results can be easily
generalised to areas not covered by the measurements.

The robot calibration problem is known in the robotic lit-
erature and has been extensively studied since the end of the
last century [2, 9, 10]. Nowadays, this topic is an attractive
and meaningful research field – a relatively large number of
appearing scientific papers are devoted to the calibration of in-
dustrial robots [11, 12, 13, 14, 15, 16, 17], and investigations
in other applications appear, for example, in the calibration
of the surgical robots, [18]. In [19, 20], the so-called elasto-
geometrical calibration method has been introduced. Accord-
ing to [21], it is necessary to use a two-step method to ad-
dress the differences between the end-effector position and ori-
entation discrepancies. In the study [22], the authors delved
even deeper into the calibration process and analysed the un-
certainty of its results. They were able to determine how pa-
rameter uncertainty affects position uncertainty. These find-
ings may provide suggestions for optimal measurement con-
ditions. In reference [23], the authors employ the formula
for the Product of the Exponentials instead of the traditional
Denavit-Hartenberg algorithm for modelling the kinematics. It
was done to leverage the modelling method’s benefits in the
calibration process. The introduction of Finite and Instanta-
neous Screw Theory allows the authors of [24] to define the
unique calibration method for serial and parallel manipulators.
Finally, other research is focused on the measurement aspects
of calibration. Laser trackers, optical CMMs (Coordinate Mea-
suring Machines), or single and multiple cameras are typically
considered [25].

Our research is focused on the fundamentals of the calibra-
tion problem. We introduce a new and distinct data-driven
approach to kinematics calibration that in fact may be used
for objects different than robot kinematics. It might be seen
as method for identification nonlinear static model in which
the apriori knowledge is encoded as ’nominal model’ that we
would like to deform by diffeomorphisms. In terms of block-
structured systems proposed calibration model is similar to
Wiener-Hammerstein models, but all of the blocks are (possi-
bly) nonlinear, the central block is the one we incorporate the
appriori knowledge (nominal model) and the first and last are
diffeomorphisms. At this stage of research, we do not provide
physical experiments. The goal is to develop a computational
framework for calibration by diffeomorphisms making further
experiments on the robots possible. Some preliminary research
was recently published locally in [26].

After the introductory words, we state the main contribution
of this paper, which is threefold:

1. discussion about the idea of Calibration by Diffeomor-
phisms, [8], and necessary modifications for numerical im-
plementation.

2. introduction of a novel, data-driven, non-parametric kine-
matics calibration algorithm, drawing upon the Calibration
by Diffeomorphisms concept.

3. a fusion of the numerical algorithms from the Computational

Anatomy, [27], with the Calibration by Diffeomorphisms
methodology.

The composition of this paper is as follows. The next sec-
tion, 2, recalls theoretical fundamentals and results of the Cal-
ibration by Diffeomorphisms. Afterwards in section 3, the
problem of robot kinematics calibration by diffeomorphisms
is restated in terms of Large Deformation Diffeomorphic Map-
ping (LDDMM) framework. The implementational details
have been derived in section 4. Section 5 evaluates the the-
oretical results through simulation for calibration of a double
pendulum (an RR manipulator) with both geometric and non-
geometric inaccuracies. Finally, the discussion of the results
concludes the paper with section 6.

2. CALIBRATION BY DIFFEOMORPHISMS

The Calibration by Diffeomorphisms mentioned above has
been proposed in [8] as a theoretical framework for solving
the kinematic calibration problem. As the author points out,
the motive for the work was to set the theoretical fundamen-
tals for a rather practical problem that would allow one to an-
swer whether or not a correction for a given kinematics model
could be computed. That aim drove him to settle the calibra-
tion problem in terms of the singularity theory (theory of stable
mappings).

Before we introduce the main concepts of Calibration by
Diffeomorphisms we shall consider the objects of our inter-
ests and define the kinematics calibration problem. A general
n-degree-of-freedom rigid manipulator consists of r unlimited
revolute joints and the n− r prismatic joints. The internal/joint
space X of such a manipulator may be identified with a smooth
manifold X = Rn−r × T r, where T r denotes r−dimensional
torus. This space (manifold) may be interpreted as the space
of the admissible joint positions. The standard way of repre-
senting manipulator kinematics is to assign for each joint po-
sition (element of X) a pose of the manipulator’s end-effector
(position and orientation expressed in a coordinate frame of a
manipulator’s fixed base). The external space Y of admissi-
ble poses is a smooth manifold and subgroup of the SE(3) Lie
group. Having defined the internal and external space, we can
describe the kinematics as a smooth map

k : X −→ Y.

If we fix the internal and external spaces, k may be consid-
ered as an element of C∞ (X ,Y ) – the set of smooth mappings
between those manifolds. Finally, with the kinematics map-
ping defined, the calibration problem can be stated as follows,
given nominal kinematics k, find a calibrating transformations
that applied to k would produce the actual kinematics k′, with
k,k′ ∈C∞ (X ,Y ).

The calibration by diffeomorphism exploits two concepts
of singularity theory: LR-equivalence and structural stabil-
ity [28]. The first one states that two maps k,k′ ∈ C∞ (X ,Y )
are equivalent if there exist diffeomorphisms ϕ ∈ Diff(X) and
ψ ∈ Diff(Y ) that ψ ◦ k ◦ϕ−1 = k′. The latter one yields that a
smooth map k is structurally stable if any k′ in the neighbour-
hood of k is LR-equivalent to k. Let us denote k as nominal
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kinematics – the known one, and defined by the model and k′

as actual kinematics – the real, unknown one. Then according
to [8] we can restate the robot kinematics calibration problem
in terms of Calibration by Diffeomorphisms.

Let nominal kinematics k and actual kinematics k′ be smooth
maps, i.e k,k′ ∈ C∞ (X ,Y ), then k can be calibrated to k′ if
there exists calibrating transformations ϕ ∈ Diff(X) and ψ ∈
Diff(Y ) such that

ψ ◦ k ◦ϕ
−1 = k′,

It can be seen that the definition of calibration by diffeomor-
phism follows directly from the LR-equivalence. Let us look
closely at the two diffeomorphisms acting on the appropriate
spaces. If we slightly abuse the notation, then ϕ : X −→ X ′

and ψ : Y −→ Y ′, where X ′ and Y ′ denote the diffeomorphi-
cally transformed spaces. They retain the nominal topology
but obviously can change the geometry. We are now ready to
compose the following commutative diagram

X Y

X ′ Y ′

k

ϕ ψ

k′

. (1)

As we can see, the idea behind this is to deform the domain
and the image of the nominal kinematics so that the resulting
one aligns with the kinematics of the real robot.

Nevertheless, one would like to know whether such calibrat-
ing transformation exists. The answer to this question follows
directly from the property of structural stability, i.e., the cal-
ibrating transformations exist for structurally stable nominal
kinematics. Several classes of structurally stable maps have
been discovered in the theory of stable mappings. The work [8]
presents some of the results and adapts them to the scope of
kinematics calibration.

Tchoń in [8] introduces a method for computing so-called
affine calibrating transformations yielding explicit expressions
for the diffeomorphisms. This approach assumes that the nom-
inal kinematics k is subject exclusively to small parametric
variations u (u ∈ Rs being a variation of the model parame-
ters p ∈ Rs), and the diffeomorphisms can be expressed affine
in u, i.e., ψ(y) = y+ ∂ψ(y)

∂y

∣∣
u=0 u, ϕ(x) = x+ ∂ϕ(x)

∂x

∣∣
u=0 u.

In this paper, we consider the problem of calibration by dif-
feomorphism without constraining ourselves to small discrep-
ancies of the model and affine form of the diffeomorphisms.
The methodology for that case follows directly from homo-
topic stability [28] that states: for proper nominal kinematics k,
there exists a one-dimensional family, parametrized by ϑ ∈ R
of calibrating transformations ϕϑ ∈Diff(X) and ψϑ ∈Diff(Y )
with ϕ0 = ϕϑ |ϑ=0 = idX , ψ0 = ψϑ |ϑ=0 = idY , such that actual
kinematics kϑ takes the form

kϑ (x) = ψϑ ◦ k ◦ϕ
−1
ϑ

(x). (2)

It states the existence of a one-parameter family of cali-
brating transformations depending on the parameter ϑ ∈ R
and is the entry-point of our deliberation. Unfortunately, it

says barely anything about how to compute the calibrating dif-
feomorphisms. However, similar problems have been widely
studied in the past decades, for example, in Computational
Anatomy [27, 29]. One of its results is the so-called Large
Deformation Diffeomorphic Metric Mapping framework that
allows one to solve the image registration problem [27]. An
adaptation of its brilliant mathematical machinery we intro-
duce in the subsequent section.

3. MAIN RESULT

Relying on the unified abstract framework originally devoted
to image registration, we may formally address the main prob-
lem of robot calibration. Let us define the space of objects V ,
on which a group of diffeomorphisms will act, as the space
C∞(X ,Y ) of smooth mappings between the internal space X
and the external space Y . Since we are addressing the problem
of calibrating the robot’s kinematics, and kinematics is inher-
ently a smooth mapping between X and Y , we will consider
the space V to consist of such kinematic mappings. Thus, we
will denote it as a space of kinematics. In this setting, we con-
strain ourselves to the robot kinematics that may be expressed
in coordinates, i.e., Y = Rm. We identify configuration space
with n-dimensional Euclidean space X = Rn, so a kinematics
is a map

k : X ' Rn −→ Y ' Rm, (3)

and seemingly k ∈ V ' C∞(Rn,Rm). On the other hand, to
be consistent with the calibration by diffeomorphisms, we
shall set the group of transformation G to be G = Diff(X)×
Diff(Y ) ' Diff(Rn)×Diff(Rm) . Unfortunately, we have to
take a different approach due to numerical implementation
issues. Instead of dealing with a whole group G, we shall
stick to a subgroup that arises as a flow of appropriate ordi-
nary differential equations (ODEs). It is done by consider-
ing a group of diffeomorphisms emerging from the admissible
space of vector fields. The broadly described details can be
found in [29]. The procedure of building such groups boils
down to the choice of the space of vector fields V that is
admissible (continuously embedded in C1

0
(
Rd ,Rd

)
, continu-

ously differentiable vector fields on Rd that tend to 0 at in-
finity), then the group of diffeomorphisms DiffV is the set
of diffeomorphisms being flows from time 0 to 1 of the vec-
tor fields from that space. In this case elements of DiffV in-
herit smoothness properties from V . Thus, we shall choose
the space H∞ – intersection of all Sobolev space. Finally, we
get G = DiffV (X)×DiffW (Y ) consisting of diffeomorphisms
emerging as a flow of the vector fields living in the product
space V ×W ' H∞(X ,Rn)×H∞(Y,Rm), i.e.{

∂ϕϑ

∂ϑ
= vϑ (ϕϑ ) , ϕ0 = idX ,

∂ψϑ

∂ϑ
= wϑ (ψϑ ) , ψ0 = idY ,

(4)

for gϑ = (ϕϑ ,ψϑ ) ∈ G and uϑ = (vϑ ,wϑ ) ∈ V ×W .

Having specified the group G, we may discuss the action
of G on V . It is defined in the following way. Let g =
(ϕ,ψ), g ∈G, and k ∈V then g ·k = ψ ◦k◦ϕ−1. It is easy to
check that the action is a left action. Finally, we can formulate
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the calibration by diffeomorphisms problem in the LDDMM
framework [29]. In that terms the calibration problem substan-
tiate as a variational optimization problem

min
u

E(u) =
1
2

∫ 1

0
‖uϑ‖2

V ×W dϑ +
1

2σ2 ‖g1 · k0− k‖2
V , (5)

subject to
∂gϑ

∂ϑ
= uϑ ·gϑ , g0 = e, (6)

where uϑ = (vϑ ,wϑ ) ∈ V ×W , uϑ · gϑ = (vϑ (ϕϑ ),wϑ (ψϑ ))
and g1 = (ϕ1,ψ1) ∈ G is the endpoint map of the differential
equation above. The norm in the functional (5) are induced
from the inner products. The first one takes the form

〈u1,u2〉V ×W = 〈v1,v2〉V + 〈w1,w2〉W , (7)

where ui =(vi,wi)∈V ×W and the inner products on the right
hand side are the inner products for the appropriate admissible
vector space, i.e.,

〈v1,v2〉V =
∫

Rn
v>1 (x)LV v2(x)dx, v1,v2 ∈ V , (8)

with LV being a positive definite, self-adjoint, differential op-
erator, analogous definition holds for 〈·, ·〉W . For the case of
the space of kinematics we choose L2 inner product

〈k1,k2〉V =
∫

Rn
k>1 (x)k2(x)dx, ki ∈V. (9)

According to [30], if the vector field uϑ is the solution of
the problem (5), the Euler-Poincaré reduction may be applied
to simplify the problem to the following one

min
P0

E(P0) =
1
2
‖u0(P0)‖2

V ×W +
1

2σ2 ‖k1− k‖2
V , (10)

subject to
∂kϑ

∂ϑ
= wϑ (kϑ )−Dkϑ · vϑ ,

∂Pϑ

∂ϑ
=−(Dwϑ (kϑ ))

>Pϑ −div(Pϑ v>
ϑ
),

LV vϑ = Dk>
ϑ

Pϑ ,

LW wϑ = Pϑ ,

(11)

where k1 is defined as the solution of the system of equations,
D is a differential operator with respect to the spatial argument
of a mapping, i.e., Dk(x) = ∂xk(x), and div denotes the diver-
gence operator, for rank-2 tensor A = A(x), f = div(A), results
in f j = ∑i

∂Ai j

∂xi
. The differential equations (11) are the evolu-

tion equations on the cotangent bundle T ∗V of the kinematics
space V .

In fact, the problem stated above is a two-point boundary
value problem and may be rephrased as follows: find the ini-
tial momenta P0, such that the system of differential equations
from above satisfies kt=0 = k0 and

P1 +
∂

∂k1

1
2σ2 ‖k1− k‖2

V = 0. (12)

A common approach is solving of such a problem with the
shooting method employing the adjoint equations or just with
the appropriate numerical optimisation methods.

The solution to the optimization problem (10) solves our
calibration problem. Indeed, starting with the nominal kine-
matics and the optimal initial momenta we can evolve the nom-
inal kinematics to the actual one through the equations (11).
The main pitfall of such a formulation is that we have to pro-
vide actual kinematics to calculate the value of the cost func-
tional for each step of the optimisation process. Unfortunately,
the actual kinematics is not known and we would like to re-
trive that model. What we are sure about the actual kinematics
is that it is available to us only by a finite number of measure-
ments. Due to that, we shall consider the relaxed problem,
which we will do in the following section.

4. IMPLEMENTATION

As we pointed out in the previous section, the actual kinemat-
ics is not available to us in terms of mapping. We are able
to sample the kinematics by taking the measurements at cer-
tain points in the internal and external space. This observa-
tion pushes us to consider the relaxed problem that takes into
account this inconvenience. Keeping this in mind, let us for-
malise the notion of measurements.

The robot’s nominal kinematics (kinematics model) k0 is
given as a map (3) and we assume that we get this relation,
e.g., by a standard Denavit-Hartenberg algorithm. Let k be
the kinematics of the actual robot – the one we are look-
ing for. We expect that k is available to us only by mea-
surements. From a practical viewpoint, the measurements
are treated as the collections of N pairs of the joint positions
and their corresponding end-effector positions. We denote
them as x = (x1, ...,xN), xi ∈ Rn and y =

(
k(x1), ...,k(xN)

)
=

(y1, ...,yN), yi ∈ Rm, respectively. So having these collec-
tions of measurements x and y, the goal is to find diffeomor-
phisms ψ and ϕ transforming the nominal kinematics that re-
sembles the real one, i.e.

ψ ◦ k0 ◦ϕ
−1 = k. (13)

Formulating the energy functional in relaxed manner in-
volves considering the error between nominal and actual kine-
matics at specific measurement points, rather than across the
entire domain. Yet, despite this adjustment, the problem re-
mains infinite-dimensional, requiring a numerical solution. By
utilising reproducing kernels from Reproducing Kernel Hilbert
Spaces to parameterise vector fields, we can overcome the
technical hurdles previously encountered. This widely ac-
cepted approach immerses the problem into an RKHS [29],
effectively reducing the problem from an infinite-dimensional
to a finite-dimensional one based on the number of measure-
ments taken. According to the Moore-Aronszajn theorem (see,
e.g, [31]), every correctly defined kernel K simultaneously de-
fines a corresponding RKHS. So, by a proper kernel choice, we
select an adequate RKHS that enforces appropriate smoothness
on vector fields. On the other hand this mapping can be built
directly from the bijective and self-adjoint differential opera-
tors, [29], in such a case, for the differential operator L the
reproducing kernel K is the inverse of that operator K = L−1.
Looking closely at the spaces of the vector fields V and W
both are Hilbert spaces equipped with the inner products and
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differential operators LV ,LW being the dual operators at the
same time. So, from now on, we assume that the vector fields
vϑ ∈ V and wϑ ∈W belong to a proper RKHS, V or W , with
the kernels KV ,KW corresponding to the operators LV ,LW .
According to the [32], if one’s choice of the differential op-
erator is

L = ∑
β∈Nn

0

1
2|β |∏n

j=1(β j)
D2β ,

the corresponding kernel is the widely used Gauss kernel

K(x,y) = (2π)−
n
2 e−

‖x−y‖
2 , x,y ∈ Rn.

The RKHS distinguishes itself from Hilbert space in that it
possesses a reproducing kernel. It admits us to interpolate the
vector fields (4) in an arbitrary location based on

vϑ (x) =
∫

X
KV (x,ξ )α(ϑ ,ξ )dξ , for α(ϑ ,ξ ) ∈ Rm,

wϑ (y) =
∫

Y
KW (y,η)β (ϑ ,η)dη , for β (ϑ ,η) ∈ Rm,

(14)

where KV (x,ξ ) and KW (y,η) denotes the reproducing kernels
for V and W , and α(ϑ ,ξ ) and β (ϑ ,η) are vectors in Rm com-
ing from the construction of the reproducing kernels for the
spaces consisting of multi-dimensional vector fields (more de-
tailed explanation in [29]), they may be interpreted as a sort of
suitable weighting coefficients

vϑ (x) =
N

∑
i=1

KV (x,ξi)αi(ϑ),

wϑ (y) =
N

∑
i=1

KW (y,ηi)βi(ϑ).

(15)

Keeping that in mind, we formulate the relaxed calibration by
diffeomorphisms as follows. For given nominal kinematics k0
and the measurements (xi,yi), i = 1, . . . ,N taken from the ac-
tual kinematics k (k,k0 ∈V ), find P0 ∈V ∗ that minimises

E(P0)=
1
2

N

∑
i, j=1

P>0 (xi)Dk0(xi)KV (xi,x j)Dk0(x j)
>P0(x j)

+
1
2

N

∑
i, j=1

P>0 (xi)KW (k0(xi),k0(x j))P0(x j)

+
1

2σ2

N

∑
i=1
‖k1(xi)− yi‖2

2 , (16)

where k1(xi) is defined as the solution of the system of equa-
tions

∂kϑ (xi)
∂ϑ

= wϑ (kϑ (xi))−Dkϑ (xi) · vϑ (xi),
∂Pi

ϑ

∂ϑ
=−(Dwϑ (kϑ (xi)))

>Pi
ϑ
−div(Pi

ϑ
v>

ϑ
(xi)),

vϑ (xi) = ∑
N
j KV (xi,x j)Dkϑ (x j)

>P j
ϑ
,

wϑ (yi) = ∑
N
j KW (yi,y j)P

j
ϑ
,

(17)

evaluated at the point t = 1.
One should notice that the Jacobian of the current kinemat-

ics kϑ is needed at every evaluation of the differential equation.
Unfortunately, we cannot compute it analytically. Instead, let

us look at the evolution of that Jacobian along the evolution
curve. It is easy to check that Dkϑ = Dψϑ Dk0Dϕ

−1
ϑ

is a solu-
tion to the following differential equation

∂Dkϑ

∂ϑ
= Dwϑ (kϑ )Dkϑ −Dkϑ Dvϑ (18)

being a type of Sylvester differential equation. Evaluation of
(18) for a certain point xi yields

∂Dk(xi)

∂ϑ
= Dwϑ (kϑ (xi))Dkϑ (xi)−Dkϑ (xi)Dvϑ (xi). (19)

Thus, supplementing the set of equations (17) with (19) is suf-
ficient to find the initial momenta P0 using on of the numer-
ical optimisation procedure. We need to look for P0 once per
robot and a data set of measurements (once per calibration pro-
cess). Once the solution we can compute the actual kinematics,
namely the relation between task space variables y, and an ar-
bitrary value of joint variables ξ , with the following

∂kϑ (ξ )
∂ϑ

= wϑ (kϑ (ξ ))−Dkϑ (ξ ) · vϑ (ξ ),
∂Dk(ξ )

dt = Dw(kϑ (ξ ))Dkϑ (ξ )−Dkϑ (ξ )Dv(ξ ),
vϑ (ξ ) = ∑

N
j KV (ξ ,x j)Dkϑ (x j)

>P j
ϑ
,

wϑ (kϑ (ξ )) = ∑
N
j KW (kϑ (ξ )),kϑ (x j))P

j
ϑ
,

(20)

where Pi
ϑ

and kϑ (xi) can be obtained and reused from the solu-
tion of the previous system of equations for the measurement
points xi. Finally, the kinematics relation is given by

y = k1(ξ ), (21)

where k1(ξ ) is a value of a resultant trajectory kϑ (ξ ) of (20) at
point ϑ = 1 for a given configuration ξ . The presented calibra-
tion may be outlined as, from our calibration process (offline)
we at least determine the vector fields vϑ (x) and wϑ (y) and
may interpret them with corresponding kernel KV and KW . So
the solution, the actual kinematics k1 is the value of the tra-
jectory kϑ of (20) in point ϑ = 1. The idea behind the first
equation in (20) is depicted in Fig. 1. As can be seen, as the
ϑ increases, the mapping kϑ (xi), continuously maps a point
xi from the internal space X into a point kϑ (xi) in the exter-
nal space Y . For ϑ = 0, we arrive at the point resulting from
nominal kinematics, and for ϑ = 1 the computation yields with
the point k1(xi) (calibrated kinematics) which coincides, as ex-
pected, with the measurements. By utilizing the concept of
reproducing kernels, we can similarly determine the outcome
of calibrated kinematics for any point that does not align with
the measurement using (20).

The computational flow of the entire calibration procedure
is illustrated in Fig. 2 for clarity, while the pseudocode for the
algorithm is provided in Listings 1 and 2.

Summarising the introduced approach and applying it into a
classical calibration procedure, we follow four steps outlined
in [2]. Firstly, we start with a first-guess model of nominal
kinematics (3). It can be a standard model attained through
the Denavit-Hartenberg algorithm. There is no requirement to
consider some prior knowledge of phenomena different from
kinematics (bends, joint compliance, etc.). In the second step,
we collect N independent pairs of (x,y) measurements con-
figuration and the corresponding pose of the end-effector. The
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xi
x j

∂

∂ϑ
kϑ (xi)

k0(xi) k0(x j)

k1(xi) k1(x j)
k0

kϑl

kϑl+1

k1ϑ

X Y

Fig. 1. Actual kinematics computation.

Algorithm 1 LR calibration, offline part

Require:
X = (x1, . . . ,xN),Y = (kr(x1), . . . ,kr(xN)) . Sets of
N measurements of configurations and corresponding end-
effector poses,
k,KV ,KW ,σ . Nominal kinematics, reproducing kernels
for V and W spaces, regularization coefficient,
µ,ε,max_iter . step size, optimization tolerance, number
of iterations
function LR_CALIBRATION(X ,Y,k,KV ,KW ,σ ,ε,max_iter)

Initialize P0 = (P1
0 , . . . ,P

N
0 )← 0

Set iteration counter k← 0
while i < max_iter do

Solve ODEs (17) along ϑ ∈ (0,1)
Compute gradient of (12), i.e., ∇P0
if ‖∇P0‖< ε then

break . Convergence criteria met
end if
Update the momenta P0← P0−µ∇P0
Increment iteration counter i← i+1

end while
return (X ,P0,k,KV ,KW ) . Tuple encoding the

calibrated kinematics
end function

Algorithm 2 LR calibration, online part

Require:
ξ . Point for evaluation of the calibrated kinematics
(X ,P0,k,KV ,KW ) . Tuple encoding the calibrated
kinematics, returned from the offline part

function EVALUATE(ξ ,X ,P0,k,KV ,KW )
Solve ODEs (20) with (16) along ϑ ∈ (0,1)
return (k1(ξ ),Dk1(ξ )) . Calibrated kinematics

and its Jacobian at given point ξ , obtained as the endpoint
value of (20)
end function

third step involves a reformulation of the identification pro-
cedure to the introduced one that based on diffeomorphic de-
formation (13), contrary to the original approach proposed in
[2, 1, 3] and many others. This reformulation leads us to LD-
DMM and to the dynamical system driving the calibration pro-
cess that can be numerically solved with given initial condi-

tions. Finally, the last calibration step, the implementation,
can be achieved through equation (21).

5. SIMULATION RESULTS

The efficiency of the Calibration by Diffeomorphisms, pre-
sented in previous sections, will be evaluated through simu-
lation results. We have chosen an RR manipulator as our simu-
lational testbed to accomplish that. The schematic diagram of
the selected robot has been depicted in Fig. 3. The values of
the link lengths in the considered robot are set to l1 = 1 and
l2 = 0.5, whilst the nominal kinematics model of an RR robot
has been obtained via the standard Denavit-Hartenberg proce-
dure. Thus, the kinematics in coordinates takes the form(

y1

y2

)
=

(
l1 cos(x1)+ l2 cos(x1 + x2)

l1 sin(x1)+ l2 sin(x1 + x2)

)
, (22)

where y = (y1,y2) ∈ R2 is a vector in task space representing
the position of the end-effector, and x = (x1,x2) ∈ T 2 ' R2 de-
notes a joint space vector collecting angles of a first and second
joint respectively (see Fig. 3).

To perform the robot calibration, we need to generate a
dataset of measurements, namely the pairs (xi,yri) for i =
1, . . . ,N of a real robot joint positions xi corresponding with
the end-effector positions yri . For this reason, we introduce
new kinematics reflecting the actual manipulator kinematics.
The desired (real) kinematic relationship is expressed by

yr = kr(x), (23)

which we design according to the elastostatic model proposed
in [33], with additional discrepancies introduced in link lengths
and robot base position. We assume this relationship is un-
known and remains hidden during the calibration process. It
serves only as a measurement source and a benchmark for the
result assessment. We will refer to the relationship (23) as the
desired (real) kinematics, as opposed to the actual kinematics
delivered from the calibration algorithm.

In the real manipulator kinematics (23), we have introduced
three types of disturbances. Firstly we changed the link lengths
by around 10%. Secondly, we add an offset of the base mount-
ing point location, that could be interpreted as a misaligned
base coordinate system. Finally, the third disturbance involved
bending, stretching, and shrinking of the links. We assume that
the links of the manipulator can bend according to the influence
of gravity. One should notice that we deal only with the static
kinematics model. So the robot acceleration is not considered
and does not affect link bending. It is easy to imagine that the
end-effector position can vary significantly depending on the
elasticity parameter.

To calibrate the manipulator based on the introduced theory,
we need an initial kinematics relation as a starting point. It is
helpful to compare the real (unknown) kinematics to the initial
one. Figure 4 shows the comparison presenting the position of
the end-effector of the nominal manipulator and the real one
at a few configurations – the same for each manipulator. One
can notice from Figure 4 that discrepancies in the end-effector
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∂kϑ(xi)

∂ϑ = wϑ(kϑ(xi))−Dkϑ(xi) · vϑ(xi),
∂P i

ϑ

∂ϑ = −(Dwϑ(kϑ(xi)))
>P i

ϑ − div(P i
ϑv

>
ϑ (xi)),

vϑ(xi) =
∑N

j KV (xi, xj)Dkϑ(xj)
>P j

ϑ,

wϑ(yi) =
∑N

j KW(yi, yj)P
j
ϑ,


∂kϑ(ξ)

∂ϑ = wϑ(kϑ(ξ))−Dkϑ(ξ) · vϑ(ξ),
∂Dk(ξ)

dt = Dw(kϑ(ξ))Dkϑ(ξ)−Dkϑ(ξ)Dv(ξ),

vϑ(ξ) =
∑N

j KV (ξ, xj)Dkϑ(xj)
>P j

ϑ,

wϑ(kϑ(ξ)) =
∑N

j KW(kϑ(ξ)), kϑ(xj))P
j
ϑ,

(xi, yi)

k0(x)

y = k1(ξ)

ξ

kϑ(x), Pϑ

offline – learning phase online – operation phase

Fig. 2. Computation flow of the Calibration by Diffeomorphisms.

Y1

Y2

l1

l2

y1

y2

x1

x2

Fig. 3. Schematic diagram of the RR manipulator.

position can be relatively considerable and, according to intro-
duced disturbances, can vary along the workspace.

Having our testbed established, we can specify the Calibra-
tion by diffeomorphism problem to the RR manipulator case.
Fig. 5 presents a specific instance of a diagram (1) for our
testbed (RR manipulator). Now we can show the topologies
of the corresponding spaces X (inner space) and Y (external
space). While our model is an RR manipulator, the inner (joint)
space is a torus T 2. The external (task) space is a subspace of
an R2 and depends on the link lengths. In the presented sce-
nario, the manipulator work range forms an annulus. Also, we

Y1

Y2

Fig. 4. The initial and the real manipulator poses comparison.

y1

y2

y1

y2

k0

ψφ

k1

Fig. 5. Calibration by diffeomorphism for RR manipulator.

may observe the influence of the resultant diffeomorphisms.
The effect of the ϕ diffeomorphism is to distort, in a proper
way, the geometry of the x space while preserving its topology
and differential structure. Analogously, the diffeomorphism ψ

transforms diffeomorphically the y space. After such transfor-
mation, the proper composition of diffeomorphisms with the
initial kinematics k0 as in (13) produces the sought relation of
actual kinematics k1.

Proceeding to the simulational part, we have to find initial
momenta Pi

0 such that its value, under the evolution through
the equation, at time t = 1 satisfy the boundary constraint
Pi

1 =−
∂

∂k1(xi)
1

2σ2 ‖k1(xi)− k2(xi)‖2
2. Further, we obtain the ac-

tual kinematics by (21) under (20). We perform the compu-
tation by the Matlab built-in algebraic and differential equa-
tion solvers using the Kernel Operations (KeOps) library [34],
supplying Matlab with functions for efficient calculations of
kernel-related operations. The library allows one for easy
computation on GPU. Nonetheless, we have not used yet
those capabilities in the simulations. As kernel functions,
we chose a Gaussian kernel and a positive kernel properly
defined on the torus, [35]. Thus, KW = exp

(
− |x−y|2

a

)
and
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Fig. 6. The real versus nominal kinematics.

KV = γ exp(b1(cos(xi− yi)−1)+b2(cos(x2− y2)−1)). The
value of the parameters for KV have been set to b1 = 1.0186,
b2 = 1.0186, whereas for KW = K(x,y) to a = 1.0270. The
role of the weight parameter γ in the KV kernel is to enforce
the preference between the ϕ and ψ diffeomorphisms and in
the simulation took the value γ = 8, the regularization param-
eter σ = 100. The real kinematics have been sampled with
256 measurements taken from a grid defined on configurational
space.

The simulation results of the whole calibration process are
depicted in Figures 6–12. For comparison purposes, each fig-
ure demonstrates the state before and after calibration concern-
ing the desired one in both cases.

Plots in Figure 6 visualise the uncalibrated kinematics. The
surfaces represent the real kinematics expressed by (23), and
the colour maps the logarithm of absolute value of the discrep-
ancy between (23) and the nominal (22) kinematics. One can
notice that we start from relatively large errors that are mostly
around 0.1 to 0.15 length units.

Contrary to the Figure 6, figure 7 depict the actual (final)
kinematics acquired from our method. Once again, the surface
presents the respective y1 and y2 components of the real kine-
matics (23), while this time, the colour indicates the resultant
errors log |yri−yai | along each task space coordinate. It may be
concluded from the collection of figures 6–7 that our method
reduces the discrepancy between the actual and the real kine-
matics by 4-5 orders of magnitude.

Figures 8 and 9 provide us with another comparative analy-
sis. This time, we draw a whole workspace of the RR manipu-
lator by sweeping the two joint variables on the full range. In
both Figures, the red mesh represents the real (desired) kine-
matics, while the blue one indicates nominal or actual kinemat-
ics – respectively to the Figures. The calibration error becomes
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Fig. 7. The real versus actual kinematics.
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−1

1

2

y1

y2

Fig. 8. The grid in workspace comparison between kr and kn.

lower when the two task space grids coincide. One can observe
that the grid generated with the actual kinematics (Figure 9) is
closer to the desired (real) one than the nominal grid presented
in Figure 8. Since the already presented simulational results
have been prepared for the regular grid of joint variables and
may not be objective enough, we have performed other simula-
tions for randomly drawn configurations. Upon that, we drew
a set of 3000 uniformly distributed samples of joint variables
and determined their corresponding task space values. We are
going to discuss the results in both qualitative and quantitative
manner.

Let us start with the qualitative analysis. Figures 10 and
11 present the heatmap of calibration error distribution in the
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Fig. 9. The grid in workspace comparison between kr and ka.

workspace. As in the previous Figures, they exhibit errors
before and after the calibration procedure, i.e., for the initial
(nominal) and final (actual) kinematics.

Please keep in mind that the colour still is in the logarithm
scale for convenience, and once again, one should notice that
we reduce the error by more than three orders of magnitude. It
is also worth noting that we achieve slightly higher error values
at the border of the workspace when the manipulator is in its
singular position.

Quantitative analysis can be performed with the help of his-
tograms in Figure 12. These histograms indicate that the aver-
age error value has shifted significantly after calibration by at
least three orders of magnitude.

Summarizing, the simulation results demonstrate that our in-
novative method for calibration of robot kinematics is an effec-
tive way to achieve a more accurate kinematics relationship.
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Fig. 10. Calibration error ‖yr− yn‖ heatmap.

The accuracy of the presented results can be further improved
by increasing the computation precision and taking a more ex-
tensive set of measurement points.

We are conscious of the computational aspects of the pro-
posed solution. The most time demanding part is to solve a
system of equations (17), which takes around 470 second on
the 12 core, 3.8 GHz CPU processor. Considering that the
system of equations (17) is solved only once, the result is re-
markable.

We are aware that the efficiency of the presented calibra-
tion method is confirmed simulatively only. One of our future
goals is to establish the experimental stand. However, this task
is quite challenging, particularly on the mechanical part, since
our approach can deal with a large spectrum of discrepancies,
even the unpredictive ones, so it is hard to design and build the
hardware that will be able to imitate the selected phenomenon
in a desired way. Nevertheless, we look to perform experi-
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Fig. 11. Calibration error ‖yr− ya‖ heatmap.
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Fig. 12. Frequency of occurrence of values of ‖yr− ya‖ and ‖yr− yn‖.
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ments in the future.

6. CONCLUSIONS

Based on the presented content, it can be concluded that the
proposed approach to robot calibration has effectively solved
the stated problem. Therefore, one may consider our method
of Calibration by Diffeomorphisms as a promising utility for
robot kinematics calibration or even for a broader class of
model identification problems, specifically when the source
of the discrepancies is unknown or hard to model. The effi-
ciency of the presented approach has been depicted with sim-
ulation results. Moreover, it is possible to further enhance the
method’s accuracy simply by using more measured data and
calculating the diffeomorphisms accordingly.

It is important to emphasize that the presented approach of
Calibration by Diffeomorphisms requires the same level (or
even less) of prior knowledge as the classical approach. The
reference model it works with, can be the first-guess model,
for example, one determined with a Denavit-Hartenberg pro-
cedure. Forasmuch as it is relatively challenging to discover
and model the existing phenomena that influence the discrep-
ancies between the kinematics relation and reality, the intro-
duced method may be a remedy for that. Worth mentioning is
that the methodology combines theoretical and empirical ap-
proaches. It seems to be well-balanced between exact model-
ing and inferring model from data, preserving essential prop-
erties of the robot kinematics, i.e. topological and differential
structure. Nonetheless, for the sake of the infancy of the pre-
sented method, there are still research issues to address that we
would like to spell out and, what follows, highlight our future
research goals.

• In the current state, the method works with kinematics ex-
pressed in the coordinates; hence the problem arises when
we deal with kinematics taking values in the SE(3) or the
other space with geometric structures different from Eu-
clidean. To overcome that, we should generalize the ap-
proach considering these cases. An optimistic perspective
for solving the problem is given by the research [36] fo-
cusing, among others, on designing stable vector fields on
the Lie groups. It is expected that some of their ideas may
be successfully incorporated into Calibration by Diffeomor-
phisms.

• Another urgent issue to consider is to investigate how to in-
crease the accuracy and computational efficiency of the al-
gorithm. Specifically, increasing the dimensions of the task
and joint space or the accuracy of the solution inevitably de-
mands more measurement samples, which drives us to the
curse of dimensionality. One of the enhancements is to use
GPUs for computational purposes. This path seems to be
a symptomatic solution and relatively easy to implement.
More fruitful appear to reformulate or simplify the problem
by introducing constraints, for example, on the vector fields.

• A distinct area of investigation is reproducing kernel func-
tions. Currently used Gaussian kernels pretend to be a rea-
sonable first choice because they allow us to reproduce the
vector fields with a demanded degree of smoothness; how-

ever, it is worth considering alternate functions to already
used ones. It would be tremendous to answer the question of
what kernel function should be used in robotics applications.
Other kernel-related issues to solve concern the parameters
and procedure of choosing their values. For now, their val-
ues are determined based on the researcher’s experience. A
suitable objective method would simplify the usage.

• A selection of the measurement points offers some oppor-
tunity for exploration as well. It should be worth determin-
ing how the number of measurement and their distribution
in the joint/task space influence the accuracy and computa-
tion time. Simply speaking, we should find the answer to
the question: How should the measurements be taken to im-
prove the accuracy and computation time? We expect some
clues for this issue may be found in [37].

• An innovative and promising idea is to leverage introduced
methods and diffeomorphometry along with its metric stud-
ies of shapes to develop a holistic framework for the predic-
tive maintenance of robots and machines.

• Last but not least is the approach validation by physical ex-
periment with a real manipulator. As has been mentioned,
the most challenging part is to design and build the hard-
ware that allows for the introduction of the phenomena in
a controlled way and makes it possible to test our method
against them.
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robotyki, A. Mazur and C. Zieliński, Eds. Ofi-
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