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Abstract..  The  5G  Enhanced  Mobile  Broadband  (eMBB)  category  offers  faster  data  rates,  network  capacity,  and  user

experiences than prior generations. This research aims to boost the 5G uplink  User Equipment (UE)  user data transfer rate. We

use Python to build frameworks and analyze data. A 250-m-radius center-excited Picocell Base Station (PBS) is investigated to

support 15 clients. Cell-range Poisson distribution determines user position. All UEs send Channel State Information (CSI) to

the PBS, which evaluates signal  transmission channel conditions. The study uses Rayleigh, Rician, free space path, and long-

distance route loss models. This inquiry produces a channel state dataset  and then it is  formulated dataset is dynamic. For service-

specific requirements, UEs use K-means clustering. Clustering concatenates bandwidth, enhancing system efficiency and UE

sum rate. Observations from simulation findings. UEs are grouped by channel gain, achievable data rate, and minimum service-

required data rate. Users in cluster 3 achieve the highest cumulative rate of 9.09 Mbps after clustering with an average of 7.16

Mbps. Bandwidth concatenation increased system capacity, meeting each UEs service needs. After evaluating different clustering

models performance criteria, K-means remains the best algorithm for the framework. The methodology was carefully designed

to  satisfy  study  goals.  This  research  will  investigate  beamforming  and  dynamic  clustering  to  improve  user  fairness  and

performance.
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1. INTRODUCTION 

Fifth-generation (5G) wireless technology is the latest mobile 

communication standard. 5G builds on its predecessors to 

improve capacity, decrease latency, speed up data transfer, and 

support a large number of networked devices. [1]. This cutting-

edge technology can alter transportation, healthcare, 

telecommunications, and entertainment, as well as improve 

user experiences through faster downloads and uninterrupted 

connectivity [2]. 

5G technologies limited global coverage, which benefits 

metropolitan areas, is one of its main drawbacks [3]. Remote 

places may not get 5G for years. Although 5G technologies 

limit transfer speeds to 100 Mbps, they offer rapid download 

rates, marking a significant improvement over 4G. Mobile 

phone battery technology must also improve for 5G to work. 

5G supports many use cases, including Massive Machin Type 

Communication (mMTC), Enhanced Mobile Broadband 

(eMBB), and Ultra Reliable Low Latency Communication 

(URLLC), are the most popular services. 

Sum rates are the maximum data rates available to all users in 

an area at the same time. This essential parameter affects 

network capacity and user experience. 5G optimises spectrum 

efficiency, interference control, and resource allocation to 

maximise the total rate. This enhancement speeds up data rates,  

lowers latency, and improves bandwidth-intensive applications 

like UHD video streaming, Virtual Reality (VR), Augmented 

 Reality (AR), and Internet of Things (IoT). To efficiently serve 

many customers and supply varied services with reliability, we 

need high sum rates [4]. 

Sum rate is critical in 5G as a performance indicator that 

accurately captures communication systems total data 

throughput, especially in multi-user scenarios. Maximising the 

overall rate enhances network capacity and throughput [5]. 5G 

networks can handle more users and provide higher data rates 

by optimising resource allocation to optimise the total rate, 

increasing Quality of Service (QoS) metrics like latency and 

reliability. Sum rate optimisation ensures network adaptation in 

dynamic communication contexts [6]. However, complex 

optimisation methods and advanced interference control 

solutions make it challenging to achieve the greatest data 

transfer speeds in 5G networks. Sum rate optimization's 

susceptibility to channel fluctuations and performance measure 

concessions may make stability and scalability in large 

networks difficult. Despite these challenges, sum rate 

optimisation research and development emphasise the need to 

improve 5G communication systems [7]. 

The 5G service category of eMBB offers faster data rates, 

network capacity, and user experiences than prior generations. 

It aims to achieve speeds of multiple gigabits per second. This 

speeds up the transfer of huge files, HD videos, and data-

intensive applications. It decreases the duration of data transfer 

between the user device and the network server. Online gaming, 
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VR, AR, and interactive multimedia services have data rate 

requirements [8]. 

5G networks can accommodate several users accessing and 

transmitting data without sacrificing performance. 5G uses 

sophisticated modulation, massive MIMO, beamforming, and 

spectrum sharing to maximise spectral efficiency [9]. This 

optimises frequency spectrum use, enhancing network capacity 

and data throughput for improved eMBB services. 

High-speed data transmission is in demand, so modern 

communication systems must optimize sum rates, which 

indicate data throughput. Heuristics and inflexible resource 

allocation algorithms may not fully leverage dynamic and 

complicated communication settings [10]. Machine Learning 

(ML) can optimise communication system components by 

utilising data-driven insights to enhance sum rates [11]. 

Channel prediction is machine learning's specialty. ML models 

can predict channel conditions based on historical data. These 

models anticipate path loss, fading, and interference to optimise 

transmission parameters for channel stability and sum rates 

[12]. Based on real-time feedback and optimisation goals, the 

algorithms can dynamically distribute bandwidth, power, and 

time periods. Intelligent resource allocation lets ML-driven 

systems get the highest sum rates while also being fair and 

efficient in network environments that are very dynamic and 

different [13]. Advanced machine learning can optimise 

channel prediction, resource allocation, interference control, 

and modulation methods to boost communication system total 

rates [14]. 

The main objective of this research is to investigate the 

throughput of users using ML models such as K-Means, 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN), and Gaussian Mixture Model (GMM), with the aid 

of clustering. This is achieved by calculating the silhouette 

score and the Davies Bouldin Index (DBI). 

The remaining sections of the paper are summarized as follows: 

Section 2 delves into current research on enhancing throughput 

in 5G networks, while Section 3 explores the current status of 

the proposed effort and technique. Section 4 discusses the 

simulation circumstances, then proceeds to an investigation of 

clustering using ML models. Finally, Section 5 summarizes the 

outcomes of the scenarios studied before and after clustering, as 

well as the future scope. 

2. LITERATURE SURVEY 

The authors in [15] introduced an approach that utilises 

unsupervised machine learning and conditional independence 

tests (CITs) to detect network performance trends based on 

data. We assessed the technique by utilising crowdsourcing data 

from 5G UEs and a dataset from a Long-Term Evolution (LTE) 

network, using the K-Means clustering algorithm. The findings 

indicated that the uplink throughput, as assessed, had the 

greatest impact on the observed performance patterns. The LTE 

dataset also demonstrated a link between the amount of 

signalling resources assigned in the Physical Uplink Control 

Channel (PUCCH) and the uplink data transfer rate of the user 

equipment. Deep learning algorithms specifically designed for 

analysing time-series data will expand the technique in the 

future. 

In [16], the authors presented a scheduling technique for full-

duplex wireless networks that uses reinforcement learning for 

clustering users to optimise the allocation of network radio 

resources. The algorithm does not require user-to-user channel 

estimation. The study introduced a reinforcement learning 

method for scheduling in OFDMA wireless networks, with the 

goal of simplifying the scheduling process and improving 

spectral efficiency. The algorithm exhibited exceptional 

performance in scenarios involving the clustering of user 

equipment. The approach fails to address inter-cell 

interferences and instead concentrates solely on single-cell 

situations. Future research will focus on situations involving 

multiple cells and scheduling techniques. 

The authors of [17] came up with a better K-means clustering 

method that uses Non-Orthogonal Multiple Access (NOMA) 

for 5G cellular wireless networks. The algorithm's objective is 

to achieve balance between the overall network throughput and 

fairness among devices, compared to the Random-Access 

Channel (RACH) in LTE. Designate the devices with higher 

channel gain as cluster heads to enhance the overall network 

throughput. The research work has outperformed typical K-

means by achieving a higher sum throughput in the network. 

We apply the algorithm iteratively to the remaining network to 

obtain the optimal solution for the cluster formation problem. 

In [18], the authors have studied user clustering and power 

allocation schemes based on reinforcement learning for the 

NOMA system. The authors employ the Q-learning technique 

to optimise power allocation and maximise the aggregate data 

rate. The authors deploy the K-means algorithm to cluster users 

based on channel gain, thereby aiding in data rate maximization 

Extensive simulations confirm that the developed Q-learning 

technique with user clustering performs better than other 

scenarios, achieving the highest sum data rate. Additionally, it 

is capable of overcoming several NOMA constraints, such as 

transmission power budget limitations and minimum user data 

rate requirements. 

In [19], the authors have worked on enhancing user capacity 

and optimizing power allocation, taking into account the 

subchannel assignment constraints in wireless networks. The 

authors have calculated channel data using the Shannon 

capacity formula and employed multiple linear regression 

models. We have generated test data to predict the sub-

channels' capacity and use it to solve optimisation models. The 

model used linear regression equations as constraints, while 

treating power and capacity as variables. The study also 

investigated the enhancement of wireless networks by 

allocating distinct network segments to users in order to predict 

network performance. 

In [20], the authors have examined the application of ML 

algorithms in green cellular networks for optimising Quality of 

Services (QoS), signal traffic load, and energy efficiency. The 

work additionally addressed the concept of Coordinated 

Transceiver Multipoint (CoMP) in TE-Advanced networks, 

which enhances network coverage and improves data rate. The 

study explored the power efficiency of green cellular 
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communication while considering quality of service (QoS) 

constraints. It also highlights the power levels required for 

transmitting bits and analyses the relationship between power 

consumption and latency caused by bandwidth limitations. The 

paper also addressed the trade-off between energy efficiency 

and spectral efficiency for cellular networks. 

The authors of [21] suggested a new way to group users in the 

downlink of the 5G NOMA system that uses artificial neural 

networks (ANN) to get the most out of the system while 

keeping complexity low. The authors train the ANN model 

using a historical dataset, which includes transmitting powers, 

channel gains, and user cluster information of NOMA users. 

After that, the model is validated to find the best hyper-

parameters. This keeps the model from overfitting and lets us 

accurately predict how clusters will grow. The simulation 

results of an ANN-based user clustering framework outperform 

traditional orthogonal multiple access (OMA) techniques, 

achieving optimal throughput performance in comparison to the 

Brute force method while maintaining an acceptable level of 

clustering complexity. 

In [22], the authors presented a rapid-learning system called 

extreme learning machine-based user clustering (ELM-UC). 

The authors designed this scheme to operate in NOMA 

environments, quickly estimating the optimal formation of user 

clusters based on their channel gains and powers. The ELM 

design is well-suited for UC optimisation, as it operates as a 

predictor using significant input data. ELM-UC methodology 

delivers performance that is almost ideal when compared to the 

brute-force search (B-FS) method. Furthermore, it surpasses 

existing clustering strategies such as ANN-UC and dynamic 

user clustering (DUC). The offered ELM-UC scheme aims to 

address the issue of extended learning times in neural network-

based UC schemes. It achieves this by solving the output 

weights in a single step, eliminating the necessity for a time-

consuming backpropagation learning process. 

The above literature discusses different system models with 

constraints to improve 5G sum rate through user clustering, 

power optimisation, beam forming, and other ML algorithms. 

However, the research work has limitations, such as 

considering a single fading environment and not specifying the 

exact system scenario for deployment. 

To overcome these restrictions, the proposed system scenario 

incorporates a real-time visible pico-cell base station in a 

hexagonal cell. Examined multiple channel conditions and path 

loss models during dataset construction to match real signal 

propagation channel circumstances. We studied performance 

indicators for several models to find the optimal clustering 

algorithm. This research not only attempts to improve the 5G 

sum rate through user clustering, but also to meet the service 

needs of all eMBB users in the cell, which is novel. 

3. PROPOSED METHODOLOGY 

This section discusses the deployment of a picocell system and 

the creation of a tailored dataset. It details the steps for 

computing channel parameters for users and analysing channel 

capacity to meet service-specific requirements, aiming to 

enhance the sum rate via user clustering algorithms. The 

chapter covers model construction and assesses the 

effectiveness of clustering in addressing diverse service needs. 

It aims to demonstrate the proposed methodology efficacy in 

optimizing system performance and ensuring seamless service 

delivery through careful examination and comparative analysis. 

Figure 1 presents the block diagram of the proposed ML-based 

throughput enhancement system. 

3.1. System Model 

Deploying the Picocell system with 15 users creates the 

operational environment for future data collection, analysis, and 

optimization. It places the work in a real-world context, 

allowing for practical insights and outcomes. 

The dataset construction is crucial as it provides the raw data 

needed for analysis and optimization. By computing channel 

parameters for each user, it captures diverse real-world channel 

conditions. This extensive dataset forms the basis for analysis, 

enabling informed decision-making and optimisation strategies. 

The CSI equations analyse free space, log-distance path loss, 

Rayleigh, and Rician fading channels [23]. The model 

calculates SINR, communication quality metric, after channel 

gain. Using SINR values, the model calculates each user 

channel capacity, which is the maximum data rate under certain 

conditions. 

The pathloss can be shown as  

𝐹𝑆𝑃𝐿 = 20 ∗ log10 (
4𝜋𝑑

𝜆
)    () 

𝐿𝐷𝑃𝐿 = 20 ∗ 𝑙𝑜𝑔10 (
4𝜋

𝜆
((

𝑑

𝑑0
)

𝑛

)   () 

where 𝑑0 is the reference distance, FSPL is the Free Space Path 

Loss [24], LDPL is the Log Distance Path Loss [24], 𝜆 is the 

wavelength and then n is the path loss exponent. 

The Rayleigh Channel can be calculated as shown in the 

equation 3 

𝑓(𝑥) =
𝑥

𝜎2 ⅇ (
−𝑥2

2𝜎2)    () 

The Rician Channel can be calculated as shown in the equation 

𝑓(𝑥: 𝐾) =
2(k+1)

𝑘
ⅇ−𝑘−1𝐼0√𝑘(𝑘 + 1)𝑥  (4) 

where x being a signal power, 𝜎 is the Standard deviation, k is 

the cluster size and K is the Normal Distribution. The channel 

gain can be calculated and SINR 

 

Fig.1. Block Diagram of the Proposed work 
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𝐻 = 10
−𝛼

20⁄ ∗ 𝛽     (5) 

𝛤 =  10𝑙𝑜𝑔10 {
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑛𝑐𝑒+𝑃𝑛𝑜𝑖𝑠𝑒
}   (6) 

The Capacity can be calculated as  

𝐶 = 𝐵𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅)    (7) 

where α is the Pathloss Component, β be the Signal Power, C is 

the Capacity of the user, SINR be the Signal to Interference plus 

Noise Ratio and B is the Bandwidth. 

The system model closely interconnects the derived parameters, 

namely channel gain, SINR, capacity, and sum rate. Channel 

gain, determined by path loss and fading factors, directly 

influences SINR. With respect to interference and noise, the 

strength of the received signal increases, resulting in a higher 

SINR value. SINR, in turn, plays a pivotal role in calculating 

channel capacity, following Shannon's capacity formula, where 

higher SINR values lead to increased capacity. The individual 

capacities of user channels, influenced by their respective SINR 

values, collectively contribute to the overall sum rate of the 

system. So, changes in channel gain can affect SINR and 

capacity calculations, which in turn affect the sum rate by 

changing the total data rate of all users in the system. The Sum 

Rate can be calculated as 

 𝑅𝑠𝑢𝑚 = ∑ 𝑐𝑖𝑁

𝑖=1
 () 

where, 𝑅𝑠𝑢𝑚 is Sum Rate and 𝑐𝑖 be the Capacity of the users 

varies from 1 to N. Furthermore, the model extends its analysis 

to encompass the collective performance of all users within the 

picocell through sum rate calculation. This computation 

aggregates individual capacities to provide insights into the 

system's overall capacity. This systematic approach ensures a 

thorough understanding of the system behaviour under diverse 

channel scenarios, laying the groundwork for subsequent 

analysis and sum rate enhancement. 

3.2. Channel Capacity Analysis. 

Analysing channel capacity and fixing service requirements is 

critical for ensuring that the system meets users demands and 

expectations. This research optimizes the system's ability to 

deliver high-quality communication services by assessing 

channel capacity and aligning it with service-specific 

requirements. This step sets clearly defined performance 

benchmarks and objectives for the optimization process. 

According to 3GPP standards [25], Table 1 tabulates the 

minimum data rate required for the services considered under 

the eMBB application.  

TABLE 1. eMBB Service requirements 

Services Specifications 

 

 

Audio 

Data rate 64 Kbps 

Channel Stereo 

Sample Rate 44 KHz 

Format MP3 

 Data rate 1.5 Mbps 

Video Call Resolution 720p 

Video Compression Standard H265 

 

Video HD 

Data rate 5 Mbps 

Resolution 1080p 

Video Compression Standard H265 

 

Each UE is assigned a fixed service that is demanded by them 

and their minimum required data rate ranging from 0.064 Mbps 

to 5 Mbps. 

Resource allocation and system optimization depend on 

choosing the best ML technique for user clustering. We chose 

k-means clustering over density-based scanning (DB-Scan) and 

the Gaussian mixture model (GMM) because it groups users 

quickly based on channel characteristics, which makes the best 

use of resources and improves system performance. This 

decision sets the stage for model building. This research 

implements user clustering using machine learning algorithms, 

particularly k-means clustering, with the aim of improving the 

sum rate. The suggested study used K-means, DB-scan, and 

GMM ML techniques to cluster users. The study uses machine 

learning performance evaluation metrics such as silhouette 

scores and Davies Bouldin indices to select between these 

models. This proves that K-means is the best clustering 

algorithm for the database. 

3.3. Model Construction and Sum Rate Analysis. 

Model building is essential for turning raw data into actionable 

insights. User clustering using Channel State Information (CSI) 

data reveals channel condition trends. This allows targeted 

tuning. This phase lays the groundwork for optimizing system 

performance and sum rate. 

 

Fig.2. Working of K-means based user Clustering 
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Figure 2 depicts the flowchart for the workings of the K-means 

clustering algorithm in the proposed system scenario. 

Where k denotes the number of clusters (k = 3), Ci is the 

computed capacity of each user, and Cs is the required capacity 

for specific services. We position the users into a cluster by 

maintaining the computed cluster capacity above the required 

data rate. 

Evaluating the achieved sum rate before and after clustering 

provides a quantitative measure of the effectiveness of the 

optimization strategy and by comparing system performance 

metrics, the project assesses the impact of user clustering on 

overall system throughput. This comparative analysis adheres 

to excellent decision-making and optimization efforts, guiding 

future enhancements and improvements. 

Meeting service-specific requirements is paramount for 

ensuring user satisfaction and system usability. This research 

work aims to meet the service demands of all eMBB users in 

the hexagonal cell. By prioritizing the allocation of system 

capacity toward meeting these requirements, it ensures an 

optimal user experience across diverse communication 

modalities. This focus on service quality and user satisfaction 

underscores the commitment to delivering practical and 

impactful outcomes. 

4. RESULTS AND DISCUSSION 

These simulation settings are customized to match real-world 

conditions and it can be performed using Python. Our analysis 

also includes key performance metrics derived from 

comprehensive simulations. This detailed analysis compares 

system performance both before and after clustering. Clustering 

methods show advantages by enhancing system performance. 

We also provide a comprehensive review of user clustering 

machine learning algorithms. 

4.1. Simulation Parameters.  

Deploying the Picocell system with 15 users creates the 

operational environment for future data collection, analysis, and 

optimization. It places the work in a real-world context, 

allowing for practical insights and outcomes. Table 2 tabulates 

the considerations for this research. 

TABLE 2. Simulation Parameters 

S. No Parameters Values 

1 Number of UEs 15 

2 Cell Type Pico Cell (100-250 m) 

3 Path Loss Free Space and Log Distance 

4 Fading Channels Rayleigh and Rician 

5 Number of Pico BS 1 

6 Carrier Frequency 6 GHz 

7 Bandwidth 10 MHz 

8 Transmit Power 30 dBm 

4.2. Performance metrics.   

This study calculates the capacity and sum rate for each UE in 

the system under consideration. For the system scenario, we 

obtain the following simulation parameters for the free-space 

Rayleigh fading channel. Table 3 and 4 computes the channel 

gain, SINR and Sum rate. 

The channel gain influences the signal strength, coverage, and 

throughput of the user equipment (UEs), ensuring the QoS in 

the simulated environment. SINR is then used by determining 

the performance and capacity of the 5G networks to calculate 

the sum rate of the users, and Table 3 shows the results of the 

channel gain and SINR value; it achieves a moderated SINR 

value of 5dB to 12dB, making it suitable for mobile broadband 

users. 

The sum rate determines the network overall capacity; it's 

performed by maintaining QoS to improve user experience and 

make better use of available resources, and as shown in Table 

4, it achieves roughly 2 Gbps for mobile users. 

TABLE 3. Computation of Channel gain and SINR 

UE ID Distance (m) Channel Gain SINR (Watt) 

1 131 2.29826E-05 0.007524608 

2 137 7.10471E-05 0.003667752 

3 147 1.97082E-05 0.017823362 

4 155 3.18995E-05 0.007800755 

5 137 4.55325E-05 0.000531125 

6 162 2.26961E-05 0.011070093 

7 138 4.79879E-05 0.01448357 

8 147 4.93726E-05 0.02258521 

9 158 3.08838E-05 0.00573407 

10 145 5.22657E-05 0.004169871 

11 156 2.70481E-05 0.013023036 

12 134 5.2124E-05 0.011908173 

13 141 8.57054E-05 0.016861267 

14 159 3.06909E-05 0.007925278 

15 145 3.13109E-05 0.004908504 

TABLE 4. Computation of User Sum rate 

UE ID Distance (m) SINR (Watt) Sum Rate (Gbps) 

1 131 0.007524608 1.08 

2 137 0.003667752 0.52 

3 147 0.017823362 2.54 

4 155 0.007800755 1.12 

5 137 0.000531125 0.07 

6 162 0.011070093 1.58 

7 138 0.01448357 2.07 

8 147 0.02258521 3.22 

9 158 0.00573407 0.82 

10 145 0.004169871 0.06 

11 156 0.013023036 1.36 

12 134 0.011908173 1.70 

13 141 0.016861267 2.41 

14 159 0.007925278 1.13 

15 145 0.004908504 0.07 

4.3. Performance analysis.   

This section includes an analysis of performance metrics, 

specifically the sum rate and ML model evaluation metrics. 

This includes comparing the sum rate before and after 
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clustering, as well as comparing three different ML models to 

select the most suitable model for user clustering. 

Table 5 lists each users system capacity, along with the 

minimum capacity needed to meet the service-specific 

throughput requirements for that user. Among fifteen users, 

nine users met their minimum service requirements, whereas 

the remaining UEs were not able to satisfy the minimum service 

requirement. Only sixty percent of the users were able to meet 

the requirements. 

TABLE 5. Capacity of the System before clustering 

UE 

ID 

Distanc

e (m) 

Throughput 

Before 

Clustering 

Service 

Demanded 

Minimum 

Service 

Required  

Service 

Met 

1 131 1.08 Audio 0.064 Yes 

2 137 0.52 Audio 0.064 Yes 

3 147 2.54 Video Call 1.5 Yes 

4 155 1.12 Video_Hd 5 No 

5 137 0.07 Audio 0.064 Yes 

6 162 1.58 Video Call 1.5 Yes 

7 138 2.07 Video_Hd 5 No 

8 147 3.22 Video Call 1.5 Yes 

9 158 0.82 Audio 0.064 Yes 

10 145 0.06 Video Call 1.5 No 

11 156 1.36 Video Call 1.5 No 

12 134 1.70 Video Call 1.5 Yes 

13 141 2.41 Audio 0.064 Yes 

14 159 1.13 Video_Hd 5 No 

15 145 0.07 Video Call 1.5 No 

 

Figure 3 displays the UEs that belong to each cluster after 

clustering, along with their coordinates in the picocell. Different 

shapes denote UEs belonging to three different clusters. 

Figure 4 represents a unique cluster of users, classified based 

bandwidth and SINR, calculates the total rate. Therefore, 

clusters with higher sum-rate bars indicate superior network 

performance in meeting the service requirements of UEs inside 

such clusters. Furthermore, we compute the average throughput 

for all clusters to be 7.16 Mbps. 

Picocells are used after clustering to optimize network 

performance. They achieve this by improving the user 

experience, enhancing user capacity to prevent interference, 

and ultimately enhancing the quality of service for consumers 

through throughput enhancement. 

Figure 5 shows which cluster the UE belongs to and its distance 

from the BS. 

The distances within the cluster, which comprises three users, 

are much closer than the other clusters. Cluster 1 has smaller 

distances; this means the cluster members are likely to be close 

or far apart depending on the distances given. Cluster 2 is 

located on the opposite side, and the distance between it and the 

other two clusters is significantly smaller than that of Cluster 1 

and significantly larger than that of Cluster Such an approach 

could potentially detect trends in user distances, as well as 

investigate aspects such as user behavior, regional distribution, 

and future network construction. 

 

Fig.3. Picocell scenario after Clustering 

 

 

Fig.4. Capacity after cluster formation 

 

 

Fig.5. Distance of user inside picocell 
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Figure 6 depicts the maximum achievable capacity for each 

cluster (k) and the minimum required capacity (P) for that 

cluster to satisfy every UE service-specific requirement. 

The combined SINR values for each cluster are given, 

providing information on the signal quality that users in these 

clusters experience. Aggregate SINR for each cluster: [0.053, 

0.032, 0.063] 

When approaching the first base station, the throughput after 

clustering proves just 4.70 Mbps—about a factor of two lower 

than what it is without base stations routing information into 

place. As the distance from the base station increases, after 

clustering, throughput seems relatively stable an effect that 

suggests improving longer distances. Clustering maintains high 

throughput within a specific range or across all ranges. Even at 

the further distance of 156 meters, throughput is still 9.09 Mbps, 

which is quite good for video calls and HD video streaming. 

After clustering, the throughput reaches its peak in the process, 

maintaining or surpassing the minimum service for all users, 

regardless of their distance from the base station. 

TABLE 6. Capacity of the System after clustering 

UE 

ID 

Distanc

e (m) 

Throughput 

After 

Clustering 

Service 

Demanded 

Minimum 

Service 

Required  

Service 

Met 

1 131 4.70 Audio 0.064 Yes 

2 137 4.70 Audio 0.064 Yes 

3 147 9.09 Video Call 1.5 Yes 

4 155 9.09 Video_Hd 5 Yes 

5 137 4.70 Audio 0.064 Yes 

6 162 9.09 Video Call 1.5 Yes 

7 138 7.71 Video_Hd 5 Yes 

8 147 7.71 Video Call 1.5 Yes 

9 158 9.09 Audio 0.064 Yes 

10 145 4.70 Video Call 1.5 Yes 

11 156 9.09 Video Call 1.5 Yes 

12 134 4.70 Video Call 1.5 Yes 

13 141 7.71 Audio 0.064 Yes 

14 159 9.09 Video_Hd 5 Yes 

15 145 4.70 Video Call 1.5 Yes 

Hence, picocell clustering has likely enhanced and relayed the 

capabilities of the network and suppressed interference, thus 

allowing users, even if they are situated a maximum of 156 

meters away, to receive a very high throughput that satisfies 

their service requirements. 

Table 6 illustrates how the capacity after clustering enables 

each user to meet their service requirements, as the minimum 

required throughput is less than the obtained capacity after 

clustering. This ensures that clustering increases the overall 

system capacity, thereby enhancing the throughput of the entire 

system and meeting service-specific needs for every single user. 

4.4. ML model comparison 

We test different ML models for user clustering. We use the 

silhouette score and Davies-Bouldin index. We test all 

clustering models, including k-means, DBSCAN, and Gaussian 

Mixture Models (GMM), to divide UEs into clusters. 

Higher silhouette ratings indicate more distinct clusters and 

levels of cohesiveness and separation. However, the Davies-

Bouldin index evaluates cluster separation by comparing 

cluster centroids and diameters; lower values indicate better 

clustering. A careful analysis and comparison of these measures 

across multiple clustering models reveals each technique's 

subtle pros and cons. 

Table 7 shows that the k-means algorithm outperforms the other 

two models by obtaining better evaluation scores for both 

metrics. 

TABLE 7. Clustering performance of ML models 

S. No ML Model Silhouette Score Davies Bouldin 

Index 

1 K-means 0.343 0.8144 

2 DBSCAN 0.196 2.006 

3 GMM 0.285 1.0598 

5. CONCLUSIONS 

To conclude the system deployment scenario, we examined 

four different channel scenarios, each involving combinations 

of fading channels and path loss models. We developed a 

thorough dataset with 15 users, each distinguished by specific 

channel parameters and service requirements tailored to their 

unique needs. The demonstration of the K-means machine 

learning method for user clustering showed encouraging results 

in optimizing system efficiency, improving the overall sum 

rate, and fulfilling user service requirements. 

In the future, researchers may focus on using advanced machine 

learning techniques, such as Extreme Learning Machines 

(ELM), K-means, convolutional neural networks (CNNs), and 

deep neural networks (DNNs), to compare how well different 

methods work. Additionally, explore beamforming systems 

that focus on improving signal delivery to individual users. 

Real-time feedback on Quality of Service (QoS) can guide the 

implementation of dynamic user clustering processes. This will 

lead to ongoing enhancements in network performance and user 

satisfaction. 

 

 

Fig.6. Maximum achievable capacity for each cluster 
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