
68t h e m a g a z i n e
o f t h e p a s

4/84/2024

Software
Longevity

B a r t o s z W a l t e r

Institute of Computing Science,
Poznań University of Technology

Poznań Supercomputing and Networking Center

A s the well-known saying goes, health is
something we don’t appreciate until we

lose it. Old age, reflecting the cumulative effects of
past events, neglect, and illness, often brings this wis-
dom into sharp focus – albeit usually a bit too late.
Can we take this advice to heart earlier, when it can
still make a difference? We all certainly try in one way

Bartosz Walter,
PhD, DSc

works at the Institute
of Computing Science

at the Poznań University
of Technology

and the Poznań
Supercomputing and

Networking Center.
His research focuses on
software evolution and

code maintenance
methods.

He is passionate
about sharing science

with the public.
bartosz.walter

@cs.put.poznan.pl

DOI: 10.24425/academiaPAS.2024.152936

or another. In the pursuit of lasting health and youth,
we aim to delay aging through exercise, healthy eat-
ing, and maintaining a so-called healthy lifestyle, or
by undergoing various rehabilitative therapies. While
these measures cannot eliminate aging, they can help
us stay active for many years. In this sense, our health
depends on our ability to combat aging. As long as
we have the strength and resources to continue, we
remain healthy and capable.

Aging and the natural decline of function do not
apply to just human health; they are universal to all
living organisms. But interestingly, this approach to
the concept of ”health” can also be applied beyond
humans and other organisms, to include objects
and the products of human activity. For instance,
buildings are designed and constructed for specific

Just like living organisms, software undergoes ”aging”
and requires regular maintenance to stay functional

and adaptable.

SH
U

T
TE

R
S

TO
C

K
 G

EN
ER

A
TO

R
 A

I

 INSIGHT Computer Science

69 t h e m a g a z i n e
o f t h e p a s
4/84/2024

purposes (residential, functional, decorative), but
throughout their lifetimes, they are often adapted,
renovated, or reconstructed. A building remains
functional as long as it meets current needs or can
be modified to do so. When its adaptation becomes
impossible, the building ”dies,” in a sense, much like
living organisms do.

While the process of aging varies widely, one con-
stant remains: health depends on the ability to adapt
to change. In biology, this means resilience against
disease, the capacity to regenerate worn-out organs,
and proactive measures against aging. In fields such
as construction engineering or mechanics, this means
preventing wear and tear while maintaining the ability
to adopt new functions or retain existing capabilities.

Aging Programs
This concept of aging can also usefully be applied
in what might be an unexpected domain: computer
software development. At first glance, it might seem
absurd: sure, a computer can age, a printer can break
down, or a monitor can wear out, but how can a pro-
gram – essentially a sequence of instructions executed
by a machine – grow “old”? Software can grow out-
dated or ill-adapted to contemporary requirements,
but there’s more to it than that. Software itself is also
subject to degradation over time, in a process known
as software aging.

Every program inevitably contains bugs that need
fixing, and users frequently request enhancements
or new features. Additionally, software often glitches
after the operating system updates, requiring adjust-
ments to restore functionality. Every modification
to a program, no matter for what reason, introduces
a potential for damage – whether through accumu-
lating fixes, deviations from the original design, or
the risk of new bugs emerging while existing ones
are being addressed. This means that every program
change comes with a certain ”bill to pay,” including
both direct costs (coding, testing, and deployment)
and indirect costs (every fix or new feature makes
future modifications more challenging or even impos-
sible). To counteract this, developers must smooth out
changes and eliminate ”scars,” which requires addi-
tional effort. This is similar to rehabilitation after
invasive surgury: while it may be optional in some
cases, skipping it may often compromise one’s quality
of life or even longevity.

Just like one has to take care of one’s own wellbe-
ing, the health of buildings and software also require
a certain upkeep. Neglecting this maintenance results
in something called technical debt – a term program-
mers use for unresolved issues that accumulate over
time. Like financial debt, technical debt doesn’t dis-
appear on its own; it demands repayment, often in
the form of additional maintenance hours. While

manageable in moderation, excessive technical debt
can lead to a ”debt spiral,” where most resources get
spent on maintaining old rather than developing new
software. At some point, the program becomes unable
to adapt to new changes, and ultimately ”dies.”

Preventative Screening
To stay confident about your personal health, you
could choose to undergo regular advanced tests to
monitor for any and all signs that your health balance
is shifting. However, this approach is expensive and
not especially practical for most people. Alternatively,
one might resign to the idea that aging is inevitable
and simply accept it. A more pragmatic approach lies
in finding a middle ground – one that balances the
benefits of proactive monitoring with the realities
of cost and convenience. In medicine, this is where
screening tests come into play. These tests focus on
identifying affordable and relatively simple-to-detect
indicators, even if they aren’t always perfectly specific
and can sometimes produce misleading results.

The same applies to software: instead of subjecting
it to constant analysis and thorough review, we can
focus on certain specific symptoms known to be likely
to lead to trouble and a rapid increase in technical
debt. Currently, we are aware of several dozen such
symptoms. They concern, for example, module com-
plexity, opaque structures, highly repetitive code, or
a strong dependency on other components that could
”infect” neighboring modules with errors. But how do
we actually know that such features are risky? We use
the same methods as modern evidence-based medi-
cine: collecting data on the effectiveness of specific
“treatments” and analyzing it statistically. As a result,
we can predict future challenges with reasonable accu-
racy – though always with statistical caveats.

Much like human health conditions, not every
issue in software programs demands an immediate
response. In most cases, simply monitoring their
status is sufficient to prevent unpleasant surprises.
This approach enables effective management of
a program’s health at a relatively low cost, ensuring
it continues to serve and satisfy its users for years to
come. ■

Much like human health conditions,
not every issue in software programs
demands an immediate response.

Further reading:

Król K., Code Decay, Software
Erosion, and Software
Entropy. 2019. homeproject.pl

Parnas DL., Software
Aging. Proceedings of the 16th
International Conference on
Software Engineering (ICSE ‘94),
1994.

