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CONTROL, INFORMATICS AND ROBOTICS

Nonholonomic motion planning with special
restrictions on the end and via points

of the control function
Joanna RATAJCZAK ∗

Department of Cybernetics and Robotics, Wrocław University of Science and Technology, Wrocław, Poland

Abstract. This paper introduces a new modification to the motion planning algorithm of nonholonomic robotic systems using the endogenous
configuration space approach which allows imposing restrictions on control functions. The end and via points define the values which the control
function should take in a predefined time, either at the beginning, the end or during the motion time horizon. Such a modification can be used
to set the values of the control function, which usually are of velocity-like type, to be physically realizable. The constraints are introduced to
the algorithm through the extension of the Jacobian. The efficiency of the presented method is shown with the computer simulation results for a
nonholonomic space manipulator. A modified Jacobian motion planning algorithm is used for planning consisting of a sequence of two subtasks.
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1. INTRODUCTION

The pure motion planning problem of a nonholonomic system
is to determine the control function that acts on the system
in such a way that it performs the desired motion. In many
cases, especially practical ones, this approach is insufficient and
additional tasks or constraints need to be added to successfully
solve a given problem.

In this article, we present an algorithm that is able to solve the
motion planning problem, namely the resulting control function
leads the robotic system to the desired point, and in addition,
the control function takes the desired values at specific time
instants.

The motivation of this paper arises from practical require-
ments.

Usually, the local motion planning for the robot moving in the
presence of obstacles is more effective than the solution returned
by global planners. For local motion planners, the global motion
may be composed as a sequence of movements, i.e., the final
configuration from the previous planning becomes the initial
configuration for the current one. In that case, the problem of
control discontinuity on the transition segment can easily arise.
This is very troublesome and not desirable in terms of practi-
cal applications. The proposed modified algorithm ensures that
class C0 or C1 controls are obtained even when planning a se-
quence of movements.

On the other hand, very often, the initial values of the state
vector, the velocities and also the accelerations of the nonholo-
nomic robotic system are determined by the simulation scenario.
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Usually, the system composed of the robot together with the con-
troller is defined throughout the ordinary differential equations
(ODEs), which should be solved to obtain the solution of the
planning problem. If one has the kinematics model of the non-
holonomic robot that is defined as the first-order ODEs, then as
initial values we can set only the state variables (e.g., that define
the position/orientation of the robot), and it is impossible to set
the initial velocities and accelerations. If the model is expanded
by the dynamics, so the system is expressed as second-order
ODEs, then the velocities at the beginning could be defined by
the initial conditions. Nevertheless, it is still impossible to set
the initial accelerations. If we assume that the controls in the
kinematics model are velocity-like, and in the dynamics have
the sense of acceleration then our idea to define in advance
the end points of the control function will allow us to set the
initial values of velocity or acceleration to meet the physical
requirements.

It is worth mentioning that the proposed modification of the
Jacobian motion planning algorithm is more general, and pro-
vides the possibility of setting prescribed values of control func-
tion at arbitrary points in time. So, in general, this algorithm
allows us to set the control values at the beginning, the end, and
any other specific point during the motion.

To sum up, the main contribution of this paper is a modifi-
cation of the Jacobian motion planning algorithm based on the
endogenous configuration space approach that introduces the
restrictions into the resultant control function at specified time
instants.

The algorithm is derived within the endogenous configuration
space approach [1]. The modification is defined by the extension
of the Jacobian [2] constituting a kind of the egalitarian two-
task approach [3]. The endogenous configuration space was
previously used to successfully solve both unconstrained [4]

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 2, p. e153427, 2025 1

https://orcid.org/0000-0002-4573-0053
mailto:joanna.ratajczak@pwr.edu.pl


J. Ratajczak

and constrained [5, 6] motion planning problems, and could be
even enrolled in trajectory reproduction task [7].

The introduced algorithm is originally dedicated to planning
the motion of a nonholonomic robotic system where there is
a need to constrain the control functions. To illustrate the effi-
ciency of our proposition, the presented approach will be used
to plan the motion of a free-floating space manipulator. Such a
problem, namely the motion planning of a space manipulator
was already studied in the literature. One can find some dif-
ferent approaches to unconstrained motion planning problem
in [8–11], as well as to an approach with constraints [12–14].
Usually, the motion planning phase is followed by the control
stage, some more information about the control methods for
space manipulators can be found in e.g., [15–17]. Space manip-
ulators controlled not only by joints but also by reaction wheels
or thrusters have also become increasingly popular in recent
research [18–20].

The remaining part of the paper is as follows. The problem
statement and Jacobian motion planning algorithm are charac-
terized in Section 2. In Section 3, the idea of the algorithm
using the extended Jacobian is introduced. Section 4 describes a
modification of the algorithm that introduces constraints on the
control functions. Simulation results are included in Section 5.
The paper is summarized in Section 6.

2. PROBLEM STATEMENT

We are dealing with a nonholonomic robotic system described
by the control-affine system

¤𝑞 = 𝑓 (𝑞) +𝐺 (𝑞)𝑢 = 𝑓 (𝑞) +
𝑚∑︁
𝑖=1

𝑔𝑖 (𝑞)𝑢𝑖 ,

𝑦 = 𝑘 (𝑞),
(1)

where 𝑞 ∈ R𝑛 is the vector of generalized coordinates, 𝑢 ∈ R𝑚

denotes the control variable, 𝑓 (𝑞) is the drift vector, 𝐺 (𝑞) is
the control matrix, 𝑦 ∈ R𝑟 describes the task space vector and
𝑘 (𝑞) is the output function. Let 𝑇 > 0 denote a control time
horizon. The control functions in system (1) will be chosen as
Lebesgue square integrable functions 𝐿2

𝑚 [0,𝑇] of time on the
interval [0,𝑇]. The space of such selected control functions will
be called an endogenous configuration space U ∋ 𝑢(·) [21]. The
trajectory of system (1), resulting from the initial state 𝑞(0) and
control 𝑢(·), is denoted by 𝑞(𝑡) = 𝜑𝑞0 ,𝑡 (𝑢(·)), where 𝜑𝑞0 ,𝑡 (𝑢(·))
is a flow of the system (1), initialized at 𝑞0 and driven by 𝑢(·).

The presented problem of motion planning with additional
constraints on the control function relies on a combination of
proper motion planning along with the ability to impose the
prescribed values of the control function (and its derivatives) in
a particular time moment, so in fact there are two subtasks.

The solution to such a defined problem, with two equal sub-
tasks, will be a control function which drives the system (1)
from an initial state 𝑞0 to a desired value of output 𝑦(𝑇) = 𝑦𝑑 ,
at the end of time interval 𝑇 . Moreover, the resultant control
function should preserve the additional constraints:

𝑢(𝑡𝑘) = 𝑤𝑘 , for 𝑘 = 1,2, . . . , 𝑐𝑤 ,

for the control function, and

d𝑢(𝑡𝑘)
d𝑡

= 𝑑𝑘 , for 𝑘 = 1,2, . . . , 𝑐𝑑 ,

for its derivative. 𝑡𝑘 denotes the time instance, 𝑤𝑘 and 𝑑𝑘 are
constant values. So the whole main motion planning problem
may be written symbolically as


𝑞0 = 𝑞(0)

𝑢∗ ( ·)
−−−−→ 𝑦(𝑇) = 𝑦𝑑 ,

𝑢∗ (𝑡𝑘) = 𝑤𝑘 = const. 𝑤𝑘 ∈ R𝑚,

d𝑢∗ (𝑡𝑘)
d𝑡

= 𝑑𝑘 = const. 𝑑𝑘 ∈ R𝑚,

(2)

where 𝑢∗ (·) is a resultant control function. When the time in-
stance 𝑡𝑘 in (2) is 𝑡𝑘 = 0 it refers to as initial point, when 𝑡𝑘 = 𝑇

it is an end point, and any other value 0 < 𝑡𝑘 < 𝑇 is called the
via point.

3. MOTION PLANNING ALGORITHM WITH EXTENSION
FUNCTIONS

As we already mentioned, the above problem is composed of two
equally significant subtasks, so the motion planning algorithm
will be derived utilizing the extended Jacobian.

3.1. Preliminaries

So, let us define the end point map as

K𝑞0 ,𝑇 (𝑢(·)) = 𝑘 (𝑞(𝑇)) = 𝑦(𝑇) (3)

which determines the output of system (1) at the time 𝑇 . By
differentiation (using Gâteaux derivative) the end point map (3)
with respect to 𝑢(·), we arrive with the Jacobian of system (1)
of the form

𝐽𝑞0 ,𝑇 (𝑢(·)) = DK𝑞0 ,𝑇 (𝑢(·)) =
d

d𝜗

�����
𝛼=0

K𝑞0 ,𝑇 (𝑢(·) +𝛼𝑣(·)), (4)

where 𝑣(𝑡) is a variation of 𝑢(𝑡) and 𝜗 ∈ R is an independent
variable orthogonal to 𝑡. The careful computation of the deriva-
tive equation (4), led us to a linear variational system associated
with (1) of the form [21]{

¤𝜉 (𝑡) = 𝐴(𝑡)𝜉 (𝑡) +𝐵(𝑡)𝑣(𝑡),
𝜂(𝑡) = 𝐶 (𝑡)𝜉 (𝑡).

(5)

The linear system (5) is actually a linear approximation
to system (1) along the control-state pair (𝑢(𝑡), 𝑞(𝑡)). It
is well-known that the matrices are defined as 𝐴(𝑡) =
𝜕 ( 𝑓 (𝑞(𝑡)) +𝐺 (𝑞(𝑡))𝑢(𝑡))

𝜕𝑞
, 𝐵(𝑡) = 𝜕 ( 𝑓 (𝑞(𝑡)) +𝐺 (𝑞(𝑡))𝑢(𝑡))

𝜕𝑢
=

𝐺 (𝑞(𝑡)), 𝐶 (𝑡) = 𝜕𝑘 (𝑞(𝑡))
𝜕𝑞

.
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The explicit form of the Jacobian (4), may be obtained as a
solution of linear equation (5), following [22],

𝐽𝑞0 ,𝑇 (𝑢(·))𝑣(·) =
𝑇∫

0

Φ(𝑇, 𝑡)𝐵(𝑡)𝑣(𝑡) d𝑡, (6)

where Φ(𝑡, 𝑠) is a fundamental matrix of (5) and solves the

partial differential equation
𝜕Φ(𝑡, 𝑠)

𝜕𝑡
= 𝐴(𝑡)Φ(𝑡, 𝑠) with initial

conditions Φ(𝑠, 𝑠) = 𝐼𝑛.

3.2. Algorithm derivation

To obtain the solution of the motion planning problem, the
sought control function, we chose in the endogenous configura-
tion space a smooth curve 𝑢𝜗 (·) parameterized by 𝜗 ∈ R pass-
ing an initial configuration (predefined initial controls) 𝑢𝜗=0 (·).
Along this curve, we propose the motion planning error as

𝑒(𝜗) = K𝑞0 ,𝑇 (𝑢𝜗 (·)) − 𝑦𝑑 , (7)

which should decrease exponentially

d𝑒(𝜗)
d𝜗

= −𝛾𝑒(𝜗), (8)

along 𝜗 with a decay rate 𝛾 ∈ R. Combining (7) and (8) with (4)
we arrive with Ważewski–Davidenko equation

𝐽𝑞0 ,𝑇 (𝑢𝜗 (·))𝑣𝜗 (·) = −𝛾𝑒(𝜗). (9)

To solve (9) we may use any right Jacobian inverse. In addition,
we may observe, that as long as the dimension of endogenous
configuration space is greater than the dimension of the task
space we may extend the Jacobian with a number of extension
functions of the form, e.g., equality constraints,

𝑓𝑖 (𝑢𝜗 (·)) = 0, (10)

formulating the extended Jacobian

J𝑞0 ,𝑇 (𝑢𝜗 (·))𝑣𝜗 (·) =



𝐽𝑞0 ,𝑇 (𝑢𝜗 (·))
d 𝑓1 (𝑢𝜗)

d𝜗
...

d 𝑓𝑖 (𝑢𝜗)
d𝜗
...


𝑣𝜗 (·). (11)

It is worth mentioning that functions (10) may be treated as
the augmenting kinematics functions. Additionally, to be able
to solve (9) with the extended Jacobian, we need also to extend
the error to the form

e(𝜗) =


𝑒(𝜗)

0
...

 .

Because the dimension of the endogenous configuration space
is greater than the dimension of the task space, to enrol the ex-
tended Jacobian equation (11) to solve (9) we need to introduce
the pseudoinverse(

J#
𝑞0 ,𝑇

(𝑢𝜗 (·))𝜂
)
(𝑡) = J∗𝑞0 ,𝑇

(𝑢𝜗 (·))G𝑞0 ,𝑇 (𝑢𝜗 (·)), (12)

where J∗
𝑞0 ,𝑇

(𝑢𝜗 (·)) is an adjoint Jacobian [21] and

G𝑞0 ,𝑇 (𝑢𝜗 (·)) = J𝑞0 ,𝑇 (𝑢𝜗 (·))J∗𝑞0 ,𝑇
(𝑢𝜗 (·)) (13)

is a Gram matrix. Using the inverse equation (12) in (9) we
obtain as a solution a dynamical system

𝑣𝜗 (·) =
d𝑢𝜗 (·)

d𝜗
= −𝛾

(
J#
𝑞0 ,𝑇

(𝑢𝜗 (·))e(𝜗)
)
(·), (14)

with an arbitrarily chosen initial condition 𝑢𝜗=0 (·). The solution,
namely the control function 𝑢∗ (·) that drives the system (1) from
initial configuration 𝑞0 do the desired output value 𝑦𝑑 in time
𝑡 ∈ [0,𝑇], is the limit 𝑢∗ (·) = lim𝜗→∞ 𝑢𝜗 (·) of the resultant
trajectory of (14). Moreover, the obtained control function 𝑢∗ (·)
keeps all the extension functions 𝑓𝑖 (𝑢𝜗 (·)) values close to zero.

3.3. Finite-dimensional approach

The endogenous configuration space U is an infinite-
dimensional function space. For practical reasons, to simplify
the implementation aspects we shall employ a parametric rep-
resentation of the control function. In this case, we assume that
the control function is a finite-dimensional function defined by
the truncated orthogonal series

𝑢𝑖 (𝜆, 𝑡) =
𝑝𝑖∑︁
𝑗=1

𝜆𝑖 𝑗𝜙𝑖 𝑗 (𝑡) = 𝑃𝑏𝑖 (𝑡)𝜆𝑖 , 𝑃𝑏𝑖 = [𝜙𝑖1, 𝜙𝑖2, . . . , 𝜙𝑖 𝑝𝑖 ],

where 𝑝𝑖 denotes the basis function number of particular control
function 𝑢𝑖 whose 𝜆𝑖 is a control parameter vector. This means
that the whole control function 𝑢(𝜆, 𝑡) of system (1) can be
rewritten as

𝑢(𝜆, 𝑡) = 𝑃(𝑡)𝜆, (15)

where 𝑃(𝑡) = diag{𝑃𝑏1 (𝑡), 𝑃𝑏2 (𝑡), . . . , 𝑃𝑏𝑚 (𝑡)} is a diagonal ma-
trix built of 𝑚 vectors 𝑃𝑏𝑖 (𝑡) and 𝜆 ∈ R𝑠 denotes a collectible
control parameters vector. So, the total number of control pa-
rameters is equal to 𝑠 =

∑𝑚
𝑖=1 𝑝𝑖 . Such defined controls be-

long to a finite-dimensional endogenous configuration space
Ũ = R𝑠 . Following the line of reasoning, we introduce a finite-
dimensional end point map as

K̃𝑞0 ,𝑇 (𝜆) = K𝑞0 ,𝑇 (𝑢(𝜆, ·)) = 𝑘 (𝜑𝑞0 ,𝑇 (𝑢(𝜆, ·))). (16)

Obviously, the parametric representation of the control func-
tions, (15), induces also the parametric version of control func-
tion variations

𝑣𝜗 (𝜆, ·) =
d𝑢𝜗 (𝜆, ·)

d𝜗
=

d𝑃(𝑡)𝜆𝜗

d𝜗
= 𝑃(𝑡) d𝜆𝜗

d𝜗
= 𝑃(𝑡)𝜇.
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As it was in the infinite-dimensional case, the differentiation of
the end point map (16) yields a finite-dimensional variational
system {

¤𝜉 (𝑡) = 𝐴𝜆 (𝑡)𝜉 (𝑡) +𝐵𝜆 (𝑡)𝑣(𝑡),
𝜂(𝑡) = 𝐶𝜆 (𝑡)𝜉 (𝑡),

(17)

whose matrices are defined analogously to matrices from (5).
The solution of equation (17) formulates the finite-dimensional
Jacobian

𝐽𝑞0 ,𝑇 (𝜆) =𝐶𝜆 (𝑇)𝜉 (𝑇) =𝐶𝜆 (𝑇)
𝑇∫

0

Φ𝜆 (𝑡, 𝑠)𝐵𝜆 (𝑠)𝑃(𝑠) d𝑠. (18)

Please observe, that in the finite-dimensional case, the Jaco-
bian (18) is a linear operator acting between Euclidean spaces,
so it is a matrix.

Having the parametric version of the end point map (16) and
the Jacobian (18) we can define the motion planning problem
which consists in finding a control function 𝑢∗ = 𝑢(𝜆∗, ·) satis-
fying

𝑦(𝑇) = K̃𝑞0 ,𝑇 (𝜆∗) = 𝑦𝑑 .

To solve this problem we proceed similarly to the infinite-
dimensional case. We choose in Ũ a smooth curve 𝜆(𝜗) ∈ R𝑠 ,
parameterized by 𝜗 ∈ R, passing through certain initial control
𝜆𝜗=0. Next, we define the motion planning error

�̃�(𝜗) = K̃𝑞0 ,𝑇 (𝜆(𝜗)) − 𝑦𝑑 ,

and require it to decrease exponentially along this curve

d�̃�(𝜗)
d𝜗

= −𝛾�̃�(𝜗), 𝛾 > 0,

which leads us again to Ważewski–Davidenko equation

𝐽𝑞0 ,𝑇 (𝜆𝜗)𝜇𝜗 = −𝛾�̃�(𝜗).

Likewise the infinite-dimensional case, we introduce a set of ex-
tension functions 𝑓𝑖 (𝜆𝜗) = 0, 𝑖 = 1,2, . . . , 𝑘 . However, this time,
the total number of them is limited by the difference 𝑘 = 𝑠− 𝑛.
Nevertheless, we define a priori the number 𝑠 of control pa-
rameters in (15), so we can freely expand the parametrization as
needed. This allows us to collect the finite-dimensional extended
Jacobian (as a matrix)

J̃𝑞0 ,𝑇 (𝜆𝜗)𝜇𝜗 =



𝐽𝑞0 ,𝑇 (𝜆𝜗)
d 𝑓1 (𝜆𝜗)

d𝜗
...

d 𝑓𝑘 (𝜆𝜗)
d𝜗


𝜇𝜗 (19)

and the corresponding extended error ẽ(𝜗) = (�̃�(𝜗),0, . . . ,0).
Finally, enrolling the above derivation together with the Ja-

cobian matrix pseudoinverse, we may constitute the finite-

dimensional motion planning algorithm as a differential equa-
tion

d𝜆𝜗

d𝜗
= −𝛾J̃#

𝑞0 ,𝑇
(𝜆𝜗 )̃e(𝜗). (20)

Then the sought control function which solves the motion plan-
ning problem and fulfills the constraints is equal to 𝑢∗ (𝑡) =
𝑃(𝑡)𝜆∗

𝜗
, where 𝜆∗

𝜗
is obtained as lim𝜗→∞𝜆𝜗 of a resultant tra-

jectory of equation (20).
In fact we cannot fully control the evolution of the solution

𝑢(𝑡) along the independent variable 𝜗 ∈ R of the Jacobian algo-
rithm (20). For this reason, the obtained control is often imprac-
tical, e.g. its amplitude overshoots technical limits or the initial
control 𝑢(𝑡 = 0) takes a nonzero value which may be hard to ob-
tain in practical realizations. To overcome these disadvantages
we will carefully define the extension functions.

4. MAINTAINING RESTRICTIONS

The approach presented in this paper tries to alleviate the above
disadvantage yet along with solving the motion planning prob-
lem. The improved algorithm allows us to prescribe the begin-
ning point, the end point and the via points in the resultant
control function. As it was in the previous chapter, we again
introduce the approach in the infinite-dimensional case and then
propose the finite-dimensional implementation.

Let the control function constraints 𝑢𝜗 (𝑡𝑘) = 𝑤𝑘 = const.,
𝑡𝑘 ∈ [0,𝑇], 𝑤𝑘 ∈ R𝑚 and 𝑘 = 1,2, . . . , 𝑐𝑤 , where 𝑐𝑤 denotes the
number of predefined control points. If 𝑡𝑘 = 0 then we specify
the beginning point of the control function, for 𝑡𝑘 = 𝑇 we set
the end point, for all other cases we have via points. Due to the
construction of Jacobian algorithms, we cannot explicitly force
the control function to pass through the points that we have
specified. However, we can introduce the algorithm modification
preserving

d𝑢𝜗 (𝑡𝑘)
d𝜗

= 𝑣𝜗 (𝑡𝑘) = 0 (21)

which together with a properly defined initial control function

𝑢𝜗=0 (𝑡𝑘) = 𝑤𝑘 , ∀𝑘 (22)

provides a resultant control function 𝑢∗ (𝑡𝑘) = 𝑤𝑘 with via point.
Additionally, we are interested not only in the control value

itself but also in the derivative (slope, velocity) of the control
function in point 𝑢𝜗 (𝑡𝑘). So we want to fulfill also the condition
d𝑢𝜗 (𝑡𝑘)

d𝑡
= 𝑑𝑘 = const., 𝑡𝑘 ∈ [0,𝑇], 𝑑𝑘 ∈ R𝑚 and 𝑘 = 1,2, . . . , 𝑐𝑑 ,

where this time 𝑐𝑑 denotes the number of predefined control
first derivatives. Again, the modified algorithm that preserves

d
d𝜗

d𝑢𝜗 (𝑡𝑘)
d𝑡

=
d𝑣𝜗 (𝑡𝑘)

d𝑡
= 0 (23)

along with carefully selected initial condition

d𝑢𝜗=0 (𝑡𝑘)
d𝑡

= 𝑑𝑘 , ∀𝑘 (24)
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will provide a resultant control function whose derivative
d𝑢∗ (𝑡𝑘)/d𝑡 = 𝑑𝑘 . The functions (22) and (24) formulate algo-
rithm constraints, namely the extension functions (10). And
consequently, the extended Jacobian (11) may be constructed
using their derivatives with respect to 𝜗, equations (21) and (23).

4.1. Finite-dimensional approach

Introducing the parameterized control function according
to (15), we may derive the explicit formulas for the extension
functions. Next, we introduce the above-mentioned modifica-
tion to algorithm (20) using the extended Jacobian technique.
The control restrictions on its values and first derivatives take
the finite-dimensional form

𝑢𝜗 (𝜆𝜗 , 𝑡𝑘) = 𝑃(𝑡𝑘)𝜆𝜗 = 𝑤𝑘 ,
d𝑢𝜗 (𝜆𝜗 , 𝑡𝑘)

d𝑡
=

d𝑃(𝑡𝑘)
d𝑡

𝜆𝜗 = 𝑑𝑘 .

The differentiation of them with respect to 𝜗 yields in the ex-
tension functions

𝑃(𝑡𝑘)𝜇𝜗 = 0,
d𝑃(𝑡𝑘)

d𝑡
𝜇𝜗 = 0.

Now we are ready to formulate the extended Jacobian
J̃𝑞0 ,𝑇 (𝜆𝜗) as

J̃𝑞0 ,𝑇 (𝜆𝜗)𝜇𝜗 =



𝐽𝑞0 ,𝑇 (𝜆𝜗)
𝑃(𝑡1)
...

𝑃(𝑡𝑐𝑤 )
d𝑃(𝑡1)

d𝑡
...

d𝑃(𝑡𝑐𝑑 )
d𝑡



𝜇𝜗 =

[
𝐽𝑞0 ,𝑇 (𝜆𝜗)

Ψ

]
𝜇𝜗 , (25)

where Ψ collects all the extension functions, together with the
extended error ẽ(𝜗) = (�̃�(𝜗),0, . . . ,0) ∈ R𝑟+𝑚𝑐𝑤+𝑚𝑐𝑑 . This fi-
nally led us to the motion planning algorithm with the constraints
on control function defined as

d𝜆𝜗

d𝜗
= −𝛾J̃#

𝑞0 ,𝑇
(𝜆𝜗 )̃e(𝜗) (26)

where J̃#
𝑞0 ,𝑇

(𝜆𝜗) is the right pseudoinverse of the Jacobian ma-
trix (25). The Jacobian motion planning algorithm (26) returns
as a limit lim𝜗→∞𝜆𝜗 the parameterized control function which
solves the motion planning problem and simultaneously takes
desired values and derivatives at given points. The initial con-
ditions for 𝜆𝜗=0 should fulfill the following

Ψ𝜆𝜗=0 =
[
𝑤1 · · · 𝑤𝑐𝑤 𝑑1 · · · 𝑑𝑐𝑑

]𝑇
. (27)

The above derivation of the algorithm can be easily expanded
to even higher-order control derivatives to influence the smooth-
ness of the control function.

5. SIMULATIONS RESULTS

To illustrate the performance of the motion planning algorithm
we have chosen as a test bed the 2 DoF planar space manipulator
mounted on the free-floating base, depicted in Fig. 1. The space
robot has been inspired by the space manipulator designed in the
Space Research Center of the Polish Academy of Sciences [23].

X

Y

Yb

Xb

x

y

y

x

φ

θ1

θ2

d1

d2

l1,m1

l2,m2

(xe, ye)

Fig. 1. 2DoF space manipulator

Note that the proposed method can be applied to the motion
planning of any robotic system whose equations of motion can
be represented by a control-affine system. It is possible to solve
the motion planning problem for a spatial (3D) space manipula-
tor, and the proposed model of a planar space manipulator has
been chosen for simplicity.

To derive the dynamics of the space manipulator described by
the generalized coordinates 𝑞 = (𝑥, �̄�, 𝜙, 𝜃1, 𝜃2)𝑇 , we shall start
with the Lagrangian

𝐿 (𝑞, ¤̄𝑞) = 1
2

A
(
¤̄𝑥2 + ¤̄𝑦2

)
+ 1

2
I ¤𝜙2 + 1

2
B

( ¤𝜙+ ¤𝜃1
)2

+ 1
2

C
( ¤𝜙+ ¤𝜃12

)2 +Dcos𝜃2
( ¤𝜙+ ¤𝜃1

) ( ¤𝜙+ ¤𝜃12
)
,

where 𝑥, �̄� are the barycentric coordinates of the manipulator
[24], 𝜙 is the orientation of base, 𝜃1, 𝜃2 are manipulator joint
angles, I is the moment of the inertia of the base and constant
parameters A, B, C, D are as follows [25]

A = 𝑀 +𝑚12 , B =
𝑚1𝑚2 (𝑙1 − 𝑑1)2 +𝑀 (𝑚1𝑑

2
1 +𝑚2𝑙

2
1)

𝑀 +𝑚12
,

C =
(𝑀 +𝑚1)𝑚2𝑑

2
2

𝑀 +𝑚12
, D =

𝑚1𝑚2 (𝑙1 − 𝑑1)𝑑2 +𝑀𝑚2𝑙1𝑑2
𝑀 +𝑚12

.

Because the manipulator is moving in space we neglect the
action of gravity.

From the Euler–Lagrange equations of motion of the space
manipulator, it follows that the independence of the Lagrangian
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of 𝑥, �̄� yields the conservation of the linear momenta

A ¤̄𝑥 = const, A ¤̄𝑦 = const.

Thus, the center of mass of the manipulator moves uniformly and
rectilinearly in space, and the 𝑥 and �̄� changes are independent
of the other coordinates.

The conservation of the angular momentum leads to the affine
Pfaffian constraint

A (𝑞) ¤𝑞 = F(𝜃2) ¤𝜙+G(𝜃2) ¤𝜃1 +H(𝜃2) ¤𝜃2 = p, (28)

p denotes the constant conserved angular momentum, F(𝜃2) =
I +B +C + 2Dcos𝜃2, G(𝜃2) = B +C + 2Dcos𝜃2, H(𝜃2) = C +
Dcos𝜃2. Based on the Pfaffian constraint (28) the dynamics of
the space manipulator in form of equation (1) can be obtained.
The drift vector field is computed as 𝑓 (𝑞) = A # (𝑎)p, where
A # (𝑞) is the right inverse of A (𝑞), and the control matrix
fulfills A (𝑞)𝐺 (𝑞) = 0. Finally, the equation of motion of the
space manipulator gets the following representation

©«
¤𝜙
¤𝜃1
¤𝜃2

ª®®¬ =
©«

p
F(𝜃2)

0
0

ª®®®¬+

−G(𝜃2)

F(𝜃2)
−H(𝜃2)

F(𝜃2)
1 0
0 1


(
𝑢1

𝑢2

)
. (29)

Since, as we mentioned earlier, the 𝑥 and �̄� changes inde-
pendently of the other coordinates, we will focus on the model
described by (29) with the coordinates 𝑞 = (𝜙, 𝜃1, 𝜃2)𝑇 .

Now, for comparison purposes, we shall solve the motion
planning problem for the space manipulator described in form
of equation (29). The task is formulated as follows. Starting
from the initial position 𝑞0 = 𝑞(𝑡0 = 0) = ( 𝜋8 ,−

𝜋
6 ,

𝜋
6 ), move to

the desired mid-position 𝑦1 = 𝑞(𝑡1 =𝑇 = 20) =
(
0,0, 𝜋8

)
and then

to the final point 𝑦 𝑓 = 𝑞(𝑡2 = 2𝑇 = 40) =
(
𝜋
8 ,−

𝜋
8 ,

𝜋
6
)
. It may be

observed that in this case the output function 𝑦 = 𝑘 (𝑞) = 𝑞, and
the task itself can be viewed as a gluing together of two move-
ments with a time horizon of 𝑇 = 20 for each movement. To
show the efficiency of the proposed approach, we shall solve
this task in three scenarios. First, we apply the Jacobian motion
planning algorithm without any restrictions on control func-
tions. In the second scenario, we use the Jacobian motion plan-
ning algorithm to solve rest-to-rest motion which means that the
control functions at the beginning and the end of the motion
are equal to zero 𝑢(0) = 𝑢(2𝑇) = 0. What is more, the control
function should be continuous throughout the motion, so the
control should be a function of class C0. Last but not least, the
task should be solved with the assumption of the rest-to-rest

motion, with
d𝑢(𝑡)

d𝑡

���
𝑡=0

= 0.01, and with the emphasis on the
continuity of the first derivative, especially at the connection

point
d𝑢(𝑡)

d𝑡

���
𝑡=𝑡1

. It is worth noting that satisfying the continuity
condition for the first derivative of the control function gives a
certain smoothness, namely the class C1.

In all cases the right pseudoinverse Jacobian is used, the algo-
rithm error decay rate 𝛾 = 0.02, and the value of the conserved
angular momentum p = 0.

Because we have set the conditions that 𝑢(0) = 0 and 𝑢(2𝑇) =
0, which means that we want the joint velocities to be equal
to zero at time 𝑡 = 0 and 𝑡 = 2𝑇 , it is necessary to select an
appropriate collection of orthogonal functions for representing
the control function. In the case when only 𝑢(0) = 𝑢(𝑇), and
therefore without any other restrictions on via points of control
functions, the controls may be expressed in terms of a widely
used Fourier series. In our case, we must ensure that also the
constraints for via points are met. So, to obtain the continuity
of the control function and its derivative, it is required to use
a suitable collection of orthogonal functions. For this purpose,
we have chosen the Legendre polynomials. The values of the
vector 𝜆0 for the initial control functions 𝑢0 = 0 are obtained as
a solution of the equation (27) using Moore–Penrose’s inverse.

The solution of the task for all three scenarios together with
the resultant control functions are presented in Figs. 2–8. Also,
Figs. 9–11 are included to better demonstrate the continuity of
the derivative of the control functions. As can be seen in the
figures, the motion planning problem is correctly solved for all
three cases.

0 10 20 30 40
−2

−1

0

1

2

t

q(
t)

ϕ(t) θ1(t) θ2(t)

Fig. 2. The trajectories of 𝑞(𝑡) – the first scenario
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−2

−1

0

1

·10−2

t

q̇(
t)

ϕ̇(t) θ̇1(t) θ̇2(t)

Fig. 3. The trajectories of ¤𝑞(𝑡) – the first scenario

In Fig. 2, Fig. 4 and Fig. 9 it can be seen that although the task
has been successfully solved, the trajectories 𝑞(𝑡) are continuous
but at the sticking point 𝑞(𝑡 = 𝑡1 = 𝑇) they are not differentiable,
as can also be seen in Fig. 3. Since no constraints have been
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imposed on the control functions, the values of the controls at
the beginning and end of the motion are not zero and, therefore,
the velocities of the joint variables are not either. Moreover, nei-
ther the controls nor their derivatives are continuous, Fig. 4 and
Fig. 9. As a rule, continuity is not maintained when this property
does not need to be fulfilled. The simulation results show that
the assumptions of the second scenario are met. The trajecto-
ries 𝑞(𝑡) are continuous and differentiable, Fig. 5, the resulting
control functions are continuous, Fig. 6, but not differentiable,
Fig. 10. So only the control functions of class C0 are reachable.
In the third scenario, the trajectories 𝑞(𝑡) are continuous and
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)

u1(t) u2(t)

Fig. 4. The resultant control functions 𝑢(𝑡) – the first scenario
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Fig. 5. The trajectories of 𝑞(𝑡) – the second scenario
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Fig. 6. The resultant control functions 𝑢(𝑡) – the second scenario
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Fig. 7. The trajectories of 𝑞(𝑡) – the third scenario
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Fig. 8. The resultant control functions 𝑢(𝑡) – the third scenario
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Fig. 9. The resultant derivative of the control functions ¤𝑢(𝑡)
– the first scenario

differentiable, and the continuously differentiable up to order 1
controls are guaranteed (the class C1), Fig. 8 and Fig. 11.

It is important to highlight that the last scenario presents a
viable solution to a real problem. With the proposed method,
we can define not only the initial, intermediate and final states
but also the initial and final velocities and accelerations, all
while using first-order ordinary differential equations (ODEs)
of motion. Additionally, this approach ensures the continuity
and differentiability of the resulting control functions.
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Fig. 10. The resultant derivative of the control functions ¤𝑢(𝑡)
– the second scenario
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Fig. 11. The resultant derivative of the control functions ¤𝑢(𝑡)
– the third scenario

6. CONCLUSIONS

In this paper, a method for preserving specific restrictions on
control functions for nonholonomic motion planning is pre-
sented. A proposed modification of the endogenous configu-
ration space approach successfully solves the motion planning
problem together with preserving the requirements for the pre-
scribed end point (via point) in the control function. The ef-
ficiency of this approach is illustrated with simulation results
for the space manipulator. This method can be used when, for
some reason, the control function (or its derivative) must take
on specific values at specific moments in time, for example, a
motion planning task is to be solved in an environment full of
obstacles or is divided into several subtasks. It is well-known
that ensuring continuity of controls plays an important role in
practical applications, and this method provides that.

On the other hand, when using the original (unconstrained)
motion planning Jacobian algorithm based on the endogenous
configuration space approach, the initial conditions for the con-
trol functions cannot be determined in advance. It makes it hard
to compare motion planning solutions for nonholonomic robotic
systems expressed in different forms (e.g., the original one and
its normal form) or to compare the performance of various algo-
rithms. The presented method is a helpful tool for dealing with
such a drawback and makes the comparison more reliable.
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