
Introduction

Since the beginning of the Industrial Revolution in the 18th 
century, fast economic expansion and population growth 
have resulted in a steady increase in global greenhouse gas 
emissions, intensifying the negative impacts of climate change. 
Consequently, reducing greenhouse gas emissions has become a 
central focus of global initiatives aimed at energy conservation 
and environmental sustainability. Accurate forecasting of 
carbon emissions is essential to provide policymakers with the 
insights needed to mitigate the greenhouse effect (Hsu et al., 
2022; Yin et al., 2022).

In past research, traditional time series forecasting and 
analysis methods, such as the ARIMA model, exponential 
smoothing method, moving average method, and trend analysis, 
were commonly used for time series data. Although machine 
learning has flourished with the advent of the big data era, how to 
use neural network models to predict small-sample time-series 
data sets has yet to be fully explored, especially for industrial 
greenhouse gas (CO2) emissions. The primary purpose of this 
research is to establish a time-series data prediction model that 
can accurately predict future greenhouse gas emissions. We will 
compare the prediction performance of different deep learning 
neural network models RNN, LSTM, GRU, and Transformer on 
small-sample time series data sets, adjust the model parameters, 
and further apply Genetic Algorithms for optimization. 

It is common to use time differencing before processing 
time series data. The value of each field in the data set is treated 

as a difference according to time, as introduced by Hyndman 
and Athanasopoulos (2018). The overall level of the time series 
can be eliminated over time, thereby stabilizing the mean value 
of the time series and eliminating or reducing the influence 
of trend and seasonality. The time series forecasting method 
is a technique with a long history of development. Traditional 
forecasting methods encompass the ARIMA model, exponential 
smoothing, moving averages, trend analysis, and more. Sen et 
al. (2016) employed ARIMA to predict energy consumption 
and greenhouse gas emissions in India.

In recent years, there has also been much literature 
on applying time-series analysis data to machine learning 
technology. For example, Fang et al. (2021) compared four 
machine learning models - Multiple Linear Regression (MLR), 
SVM, Back Propagation Artificial Neural Network (BPNN), 
and ground-based LiDAR Random Forest (RF) to predict 
PM2.5 concentrations in Beijing and concluded that the RF 
model had the highest accuracy. This method offers the benefit 
of both strong predictive performance and a relatively simple 
model structure (Szeląg et al., 2017). Sun and Liu (2016) 
published the least squares support vector machine (LSVM) 
method for the study of CO2 emissions in China and showed 
the LSVM method in their experiment. The prediction results 
are better than the logistic model, BPNN, and GM (1, 1) model.

In addition, some technicians build models based on a 
small amount of data and mathematical models. For example, 
Şahin (2019) published a paper using the linear and nonlinear 
rolling metabolic gray model in Turkey.
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With the rapid development of deep learning and neural 
networks in modern times, Rumelhart et al. (1986) published 
the concept of RNN back-propagation for neuron-type 
networks. It identifies important task features and captures 
regularities through internal hidden neurons by adjusting 
connection weights to minimize the difference between actual 
and desired outputs (Rumelhart et al., 1986). However, RNN 
has a serious problem of vanishing gradient problem. During 
back-propagation, the gradient gradually becomes smaller as 
the time step increases, causing earlier time steps to have less 
influence on the update of the model parameters.

Hochreiter and Schmidhuber (1997) proposed LSTM to 
improve RNN’s lack of long-term memory. Compared with 
traditional RNN, LSTM can better handle long sequence data 
because it introduces memory units and a gating mechanism, 
which can better capture long-term dependencies in sequence 
data (Hochreiter & Schmidhuber, 1997).

Riekstin et al. (2020) used the LSTM of the RNN 
series model to conduct time series research related to GHG 
emissions. The experimental results confirmed that the 
performance of LSTM is better than that of Support Vector 
Regression (SVR).

Compared to LSTM, the structure of GRU is simpler, as it 
only consists of two gates - the reset gate and the update gate. 
This not only reduces the number of parameters in the model 
but also makes it more straightforward to train.

AlKheder and Almusalam (2022) used the 
Intergovernmental Panel on Climate Change (IPCC) and the 
United States Environmental Protection Agency (USEPA) data 
set in the 2022 study, including Kuwait electricity production, 
shares of the annual energy resources, and carbon dioxide 
emissions, and compared SVM, ANN, and Deep Learning. For 
the prediction of carbon dioxide emissions, the experimental 
results show that DL prediction is the best.

In 2017, Vaswani et al. proposed attention mechanisms, 
which use a neural network model that is completely different 
from the traditional model design of the RNN series. Sequence 
modeling is realized through attention mechanisms, which 
can capture associations at sequence positions at any distance 
(Vaswani et al., 2017). Through the multi-head self-attention 
mechanism, the relationship between different positions in the 
sequence can be better captured. Here Transformer also leads 
the neural network model to the next stage.

A Genetic Algorithm is a heuristic algorithm that simulates 
biological evolution in nature. Simulating the mechanism of 
inheritance, exchange, and survival of the fittest gradually 
evolves to reach the optimal solution. When the Genetic 
Algorithm is applied in machine learning, the independent 
variables in the experiment can be within a reasonable range 
and gradually optimized through the genetic rules, so that the 
experimental independent variable combination can achieve 
the most suitable solution in the experimental environment. In 
the past literature, a well-known example of Genetic Algorithm 
is the Traveling Salesman Problem (TSP), published by Potvin 
(1996). Given the number of cities and the coordinates of each 
city on the map, solve the problem of starting from a certain 
city, passing through the shortest distance and path it takes for 
all other cities to return to the original city after exactly one 
time (Potvin, 1996). In a detailed introduction to GA, Mitchell 
(1998) showed how the Genetic Algorithm is applied to 

optimization problems, such as parameter adjustment, feature 
selection, and model structure design. 

Another widely used parameter optimization method is 
Grid Search. The method works by systematically searching 
all possible parameter combinations to ensure the likelihood 
of finding the best solution. However, the Grid Search method 
consumes much computing resources and time for models 
with many parameter combinations. A study by Alibrahim 
and Ludwig (2021) compared three approaches, including 
Genetic Algorithm, Grid Search, and Bayesian Algorithm 
hyperparameter optimization for the same problem. The 
research results show that the Genetic Algorithm performs 
excellently in similar experimental results.

Our research is crucial as it fills a gap in prior studies that 
have less frequently explored small-sample data sets. Given the 
constraints of data availability in forecasting, focusing on small 
data sets is a practical approach to tackling real-world issues. 
Developing a prediction model tailored for small data sets can 
also pave the way for innovative solutions to problems arising 
from data scarcity. By specifically delving into neural network 
models for industrial CO2 emissions with limited data, our study 
seeks to improve forecast reliability, thereby transforming how 
organization use small data sets for informed decisions. The 
projected CO2 emissions can serve as a guide in shaping policies, 
devising conservation strategies, and implementing effective 
emission reduction tactics, considering the significant impact of 
industrial emissions on the overall emissions landscape.

Methodology

Research Object
The Energy Information Administration (EIA) reports that 
Texas is the primary region for crude oil and natural gas 
production in the United States and has the highest level of 
industrial energy consumption (EIA, 2022).

Based on historical data from 1990 to 2020, Texas has 
consistently exhibited the highest average annual greenhouse 
gas emissions among all states in the US over the past 30 years. 
Consequently, this study has selected Texas as the primary 
research focus. 

According to EIA statistics, the production of crude oil in 
the United States has continued to rise in recent years. From 
the perspective of the industrial sector, including refineries and 
petrochemical plants in Texas, the percentage of carbon dioxide 
emissions generated by crude oil production is as high as more 
than half of the total emissions in Texas, and the overall energy 
consumption is as high as 23% of the country.

It can be seen that Texas Field’s crude oil production 
averaged 1,104.11 thousand barrels per day from 2001 to 2010. 
Between 2018 and 2022, oil production steadily increased, 
reaching an average of 4,833.93 thousand barrels per day.

In the part of natural gas extraction, Texas Natural Gas 
Gross withdraw that the production continues to increase, and 
these production increase factors will cause Texas to become 
the state with the highest carbon emissions in the industrial 
sector. This study believes there is a need for an accurate 
prediction, and the continuous supervision and control model 
helps decision-making units on carbon reduction targets 
achieve a balance between crude oil and natural gas production 
and greenhouse gas emissions control.
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Data set
In the use of data sets, this study uses the public data set of 
Inventory of U.S. Greenhouse Gas Emissions and Sinks on 
the website of the Environmental Protection Agency (EPA) in 
the United States and selects the industry sector as the primary 
official public data set source in Greenhouse Gas Inventory 
Data Explorer and take US CO2 emissions as the primary 
research category.

Texas is an important city for oil and natural gas production 
in the United States, the main sources of greenhouse gas 
emissions come from “Fossil fuel combustion: carbon dioxide” 
and “Natural gas and petroleum systems”. In the greenhouse 
gas emission time-series data set, a total of greenhouse gas 
emission values for each year from 1990 to 2020 are included, 
including 10 different types of CO2 emissions, such as Fossil 
fuel combustion: carbon dioxide, natural gas, and petroleum 
systems, other industrial categories, chemical industry, 
mineral industry, production and use of fluorinated gases, 
metal industry, fossil fuel combustion: other greenhouse gases, 
coal mining, etc. Carbon dioxide emissions are calculated in 
Million Metric Tons (MMT).

In terms of data set allocation, since this study uses a small 
sample data set and adheres to rigorous research methods, it is 
still trying to divide the data into a training set, verification set, 
and testing set based on limited data set resources at 60:20:20 
proportion. Therefore, following pre-processing of the data set, 
there will be 15 training sets, 5 validation sets, and 5 test sets to 
serve as the research resources for this experiment.

In the time series window setting, this study uses a window 
size = 5. For example, data from the first year to the fifth year is 
used to predict the total carbon dioxide emissions for the sixth 
year. The training data employs a sliding window concept, 
shifting the time pane with each training set. For instance, data 
from 1991-1995 is used to predict carbon dioxide emissions 
for 1996, and data from 2005-2009 is used to predict emissions 
for 2010, resulting in a total of 15 data sets.

To validate the sliding time pane, data from 2006-2010 is 
used to predict carbon dioxide emissions for 2011, and data 
from 2010-2014 is used to predict emissions for 2015, yielding 
a total of 5 data sets. Similarly, for the test data sliding window 
concept, data from 2011-2015 is used to predict carbon dioxide 

emissions for 2016, and data from 2015-2019 is used to predict 
emissions for 2020, also resulting in a total of 5 data sets.

Research Methods
Since the data set type is time-series, there are two main parts 
in Data preprocessing. Time Series Differencing and Min-max 
Normalization are the techniques we will mainly use in data 
preprocessing.

The backward shift operator first difference can be written 
as Eq. (1):
                                y't  = yt – yt-1� (1)

Where yt is the value of time t, yt-1 is the last period before time 
t, y'1 is time  after differencing.

Min-max normalization is a method commonly used for 
data standardization, which can help to scale features to a 
specified range. The commonly used scaling range is usually 
in the range of [-1, 1] or [0, 1]. Taking this study as an example, 
after the column data of different types of CO2 emissions are 
pre-processed, Min-max normalization is performed on the 
data. In order to scale different types of value features to the 
same range, it can also avoid excessive influence of data with 
different eigenvalues on the model, so that the data retains the 
original distribution of eigenvalues in each category.

The formula can be written as Eq. (2) follows:
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where      is the normalized value of     ,      is the     value in the X-type data,      is 

the largest value in the X-type data, and      is the smallest value in the X-type data (Fig. 

1). 
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where m(i) is the normalized value of X(i), X(i) is the ith value 
in the X-type data, Xmax is the largest value in the X-type data, 
and  Xmin is the smallest value in the X-type data (Fig. 1).

Neural Network Algorithm
In our research, four kinds of neural network model algorithms 
are used for implementation. RNN, LSTM, GRU, and 
Transformer are implemented on the small-sample time-series 
data set in this study, trying to compare the performance of 
each model with the best performance.

Recurrent Neural Network (RNN) is a deep learning 
neural network model that is often used to process sequential 
data, such as time series, speech signals, natural language 

Fig. 1. Data differencing and min-max scaling
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processing (NLP), and other datasets. In the traditional neural 
network, each input is independent, and RNN is characterized 
by its memory function, which can be used for time series 
analysis by referring to the data of the previous and subsequent 
time points through the structure of the recurrent cyclic neuron.

Long Short-Term Memory (LSTM) is a special form of 
RNN. Compared with traditional RNN, LSTM is characterized 
by using three different control valves in the neural unit, 
namely a forget gate, an input gate, and an output gate. These 
gates can control the flow of information updated with time, 
and then through the forget gate, an input gate decides whether 
to update the currently stored information.

Gated Recurrent Unit (GRU) is a type of neural network 
designed for modeling sequence data. Similar to LSTM, GRU 
addresses the issues of gradient vanishing and exploding in RNN. 
It achieves this through a gating mechanism, which effectively 
captures long-term dependencies. Moreover, GRU boasts a 
relatively simple structure, making it easy to train and adjust.

Transformer is a popular neural network model in recent 
years. It is a sequence model based on the attention mechanism.

The main structure is composed of two parts: encoder and 
decoder. The encoder is responsible for receiving the input 
sequence and converting it into a series of feature vectors 
through a multi-layer self-attention mechanism. The decoder 
receives the output of the encoder and converts the feature 
vector into a sequence through a multi-layer self-attention 
mechanism as the predicted output.

Neural Network Optimization Technology
Our research utilizes the Sigmoid function, with a preset 
Momentum reference value set to 0.9. The Dropout rate defaults 
to 0.5. The underlying concept is randomly deactivating 
neurons during training, ensuring that only a portion of the 

network structure is updated at each iteration. This approach 
helps prevent overfitting, which can be especially problematic 
with small sample sizes during training.

Considering resource constraints, model complexity, and 
the characteristics of our small-sample data set, we chose a 
batch size of 5. A smaller batch size helps mitigate model 
overfitting. Additionally, we consistently apply a dropout rate 
of 0.5 for subsequent experiments.

For other hyperparameters, we employ the Genetic Algorithm. 
Specifically, we focus on three parameters, each representing 
a gene; Learning Rates (lr): We predefine seven learning rates: 
[0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]; Hidden 
Layers: We explore the number of hidden layers within the range 
of 1 to 10; Hidden Layer Neurons: We consider the number of 
neurons per hidden layer, ranging from 1 to 20.

Hyperparameter Selection-Genetic Algorithm (GA)
Genetic Algorithm Parameter Initial Setting
In our research, a Genetic Algorithm is used for hyperparameter 
selection, and the following are used as initial settings. 
Chromosome length=3, representing the three genes of the 
learning rate, num_layers, and hidden size.

The population is set to 100 randomly generated individuals 
in the first generation. Max_iteration is set to 100, represents 
the number of generations to be set, and this study is set to 
reproduce 100 generations of offspring.

Genetic Algorithm Fitness Calculation Strategy
In the Genetic Algorithm model, 100 sets of chromosomes are 
randomly selected in the population as the first generation. The 
first generation of parent chromosomes are randomly selected 
gene learning rate, num_layers, and hidden size, which become the 
parameters of the training performance of each set of chromosomes.

Fig. 2. Neural network model combined with Genetic Algorithm
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The smaller the M  SE in the verification set, the better. 
Here  is defined as the reciprocal of the average M  SE of the i th 
chromosome (Eq. 3), which is the block of Fitness calculation 
in Fig. 2. Next, in the elite selection mechanism, use the 
f  it(i) of each gene individual in this generation to add up the 
denominator, the f  it(i) of the individual gene is the numerator 
and F  IT(i) represents the value of each chromosome in the 
elite selection mechanism probability (Eq. 2). The objective 
function is the maximum value of F  IT, which means that 
better genes have a higher probability of being selected and 
passed on to the next generation.

The performance of chromosome (i) can be written as Eq. (3):
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where i = 1, 2,... number of populations, F  IT(i) represents 
the probability of each chromosome in the elite selection 
mechanism.

Genetic Algorithm Selection and Crossover
“Selection” means are selected according to the performance 
of the population chromosome, and the selected chromosome 
individuals represent (s1, s2), respectively. The higher the 
fit score, the higher the probability ‘prob’ of being selected. 
“Crossover” means randomly selecting the gene fragments of 
excellent individuals (s1, s2) as exchange genes for the next 
generation of reproduction (Fig. 3). Select the crossover point 
as the cutting point of outstanding individual DNA fragments, 
and the probability of random selection is p = 0.5.

Merge and extract the fragments of excellent chromosomes 
(s1, s2) to become new chromosomes, and the resulting new 
generation of chromosomes will replace the chromosome with 
the lowest fit score in the original parent generation to become 
a new generation of population. (Fig. 4).

Then proceed to the next-generation selection process, 
select the next generation of excellent chromosomes (s1, s2) 
according to the level of ‘prob’, and perform crossover gene 

Fig. 3. Select crossover point between first and second fragment, or between second and third fragment

Fig. 4. Crossover process to a new chromosome
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fragment exchange to replace the parent chromosome with 
the lowest fit score. This cycle will repeat max_iter = 100, 
leaving the best 100 individuals. In our research, the highest fit 
score among the selected results means that the average result 
of M  SE_valid after num_seed (times) is the lowest, which 
means that the performance under this gene combination (the 
hyperparameter combination of this study) is the best.

In addition, this study did not use the mutation mechanism 
in the Genetic Algorithm. Since we have set 100 chromosomes 
in the first-generation population design, in terms of expected 
value, the seven learning rates can draw an average of 14.29 
times. In the setting of 10 kinds of “number of layers”, each can 
draw 10 times on average. In the setting of 20 kinds of “number 
of hidden sizes”, each can draw five times on average. After 
repeating the Elitism Selection for 100 generations, selection 
and crossover are performed. This method can quickly converge 
and find an excellent parameter combination easily.

Evaluation Metrics
Our research focuses on three evaluation indicators: M  SE, 
M  AE and M  APE. In the process of model training, this 
research focuses on the M  SE of the verification set to select the 
model and uses M  AE and M  APE% as the assistant to evaluate 
the effectiveness of model training and the basis for selecting 
parameters.

Running Time
In addition to comparing the performance of the data set M  SE 
in the four neural network models, this study also compared 
the calculation time of the Genetic Algorithm using the same 
equipment, environment, and computing resources according 
to the algorithm characteristics of different models. We attempt 
to find the most efficient algorithmic models for predicting 
CO2 emissions research.

Model Selection
We use RNN, LSTM, GRU, and Transformer to conduct 10 
different random seed experiments at the validation stage, 
respectively, to confirm whether the optimal solution stays 
in the local optimal as the basis for model selection. And 
100 random seed experiments were performed with the best 
parameter combination (learning rate, num_layers, and hidden 
size) of each model to determine the stability of the model 
and conduct subsequent verification analysis of experimental 
results.

Kolmogorov-Smirnov (KS) Normality Test
The Kolmogorov-Smirnov (KS) test is a statistical test used to 
determine whether a data set follows a particular distribution, 
most commonly a normal distribution. As a nonparametric 
test, it does not require any assumptions about the underlying 
distribution of the data to assess normality. Therefore, due to 
its robust properties, we use the Kolmogorov-Smirnov (KS) 
test for normality testing of the samples.

Experimental Results and Discussion

Experimental Results
After 10 times, 30 times, and 100 times of random experiments, 
the experimental results of the four models TransformerGA, 

RNNGA, LSTMGA, and GRUGA, are detailed below. The 
parameter combinations of the best-performing models and the 
comprehensive performance results of the models are listed.

In the GA experiment, the search range for feasible 
solutions was set to an initial population size of 100 and a 
maximum of 100 iterations. The learning rate varied between 
0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001. The 
number of layers ranged from 1 to 10, and the hidden size 
ranged from 1 to 20.

Experimental Results in Test Data Set for 10 Times
Based on the experimental results of 10 Valid data sets, the best 
parameter combinations of the RNNGA model performance 
learning rate, number of layers, and hidden size are shown in 
Table 1. They are 0.0001, 2, 8, respectively; the best parameter 
combinations of the LSTMGA model learning rate, number 
of layers, and hidden size are 0.01, 2, 9, respectively; the 
best parameter combinations of the GRUGA model learning 
rate, number of layers, and the hidden sizes are 0.0005, 
1, and 9 respectively; the best parameter combinations of 
TransformerGA model learning rate, number of layers, and 
hidden size are 0.01, 10, 12 respectively.

According to the experimental results in Table 2, 
TransformerGA performed better than other models in the 
verification set M  SE. M  SE found the best solution at 78.44. 
Although in the process of finding the optimal solution, more 
layers and hidden sizes are required than other neural network 
models, better results can still be found. In addition, the 
average result of GRUGA in the 10-time validation set M  SE 
is the best at 100.31, and the standard deviation is the smallest 
at 12.17, showing that the model is relatively stable in the 10-
time experimental results. It is worth noting that LSTMGA 
and TransformerGA use a learning rate of 0.01 to find a better 
optimal solution under the same conditions. TransformerGA 
and LSTMGA are sequence-based models and perform better 
in capturing temporal dependencies within the sequence. 
On the other hand, GRUGA and RNNGA may need more 
modeling capability for long-term dependencies within the 
sequence, which could lead to slower convergence or failure 
to converge, especially with high learning rates. Overall, the 
experimental results from 10 runs show that LSTMGA and 
TransformerGA perform better in sequence prediction and are 
the top-performing models in the experiment.

Experimental Results in Test Data Set for 30 Times
Following the results of 10 random experiments on the 
validation set, we combined the best parameters of each 

Table 1. The best parameter combination of 10 valid dataset 
experiments

Model lr num_layers hidden_size

RNNGA 0.0001 2 8

LSTMGA 0.01 2 9

GRUGA 0.0005 1 9

TransformerGA 0.01 10 12
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model, conducted 30 experiments respectively, and obtained 
the following observations with the results of the test set. 
From Table 3, TransformerGA M  SE in the test data set, 
the minimum value is 225.71, and there is a clear gap with 
RNNGA, LSTMGA, and GRUGA. In the evaluation of M  SE, 
LSTMGA, and TransformerGA have similar results, which 
are 300.54 ± 17.39 and 303.01 ± 30.29, respectively. In the 
evaluation results of M  AE and M  APE (%), the four models 
did not exhibit significant differences. If we only focus on the 
minimum values of M  SE, LSTMGA and TransformerGA will 
perform best. It can be seen that the test set  distribution of 
LSTMGA and TransformerGA is concentrated, and the median 
and mean positions are very close. Compared with GRUGA 
and RNNGA, the distribution is uneven, and there are more 
outlier values (* symbol). RNNGA has two outliers, LSTMGA 
and TransformerGA each have one outlier, and GRUGA has 
four outliers. The length of the line extending outward from the 
box-and-whisker plot can also be seen as the degree of model 
variation, and the most variable degree is the RNNGA model. 
Our research believes that LSTM and TransformerGA have 
shown a relatively stable trend in 30 experiments.

Experimental Results in Test Data Set for 100 Times
Following the results of 10 random experiments, we used the 
best parameters of each model, performed 100 experiments 
respectively, and obtained the following observations with the 
results of the test set.

From Table 4, TransformerGA in the test set M  SE, the 
minimum value can be found to be 186.19, and there is a clear 
gap with RNNGA, LSTMGA, and GRUGA. In the evaluation 
of M  SE, LSTMGA and TransformerGA have similar results, 
both of which belong to models with higher accuracy, which 
are 304.42 ± 16.09 and 305.13 ± 34.54, respectively. In the 
evaluation results of M  AE and M  APE (%), the four models 
did not show significant differences. If we only focus on the 
minimum value of M  AE and M  APE, TransformerGA will 
perform best.

According to the experimental results of this study, the 
average performance of LSTMGA in the 100-time test set M  SE 
is relatively stable, and the standard deviation of the LSTMGA 
model in the test set is only 16.09, showing that the model is 
relatively stable. In addition, it can be seen from the box-and-
whisker diagram that the MSE distribution of the test set of 

Table 2. Result of valid dataset for 10 random experiments

Table 3. Result of test dataset for 30 random experiments

Table 4. Results of test dataset for 100 random experiments

Model num_seed Min_MSE Max_MSE MSE±Std MAE±Std MAPE±Std (%)

RNNGA 10 81.34 171.33 102.12 ± 27.92 8.50 ± 0.80 2.71 ± 0.26

LSTMGA 10 83.32 159.70 108.31 ± 24.60 8.22 ± 0.65 2.61 ± 0.22

GRUGA 10 80.97 111.97 100.3l ± 12.17 7.93 ± 0.22 2.52 ± 0.07

TransformerGA 10 78.44 171.76 127.77 ± 34.43 8.83 ± 1.41 2.82 ± 0.46

Model num_seed Min_MSE Max_MSE MSE±Std MAE±Std MAPE±Std (%)

RNNGA 30 286.76 489.02 334.57 ± 58.89 15.60 ± 1.29 4.61 ± 0.34

LSTMGA 30 286.80 370.22 300.54 ± 17.39 15.50 ± 0.58 4.57 ± 0.15

GRUGA 30 286.76 491.48 325.98 ± 62.06 15.51 ± 1.26 4.59 ± 0.34

TransformerGA 30 225.71 355.53 303.01 ± 30.29 15.52 ± 0.98 4.57 ± 0.28

Model num_seed Min_MSE Max_MSE MSE±Std MAE±Std MAPE±Std (%)

RNNGA 100 286.08 593.00 330.14 ± 60.20 15.66 ± 1.26 4.62 ± 0.34

LSTMGA 100 286.77 370.22 304.42 ± 16.09 15.63 ± 0.58 4.61 ± 0.15

GRUGA 100 286.76 631.73 345.40 ± 75.40 15.91 ± 1.56 4.69 ± 0.42

TransformerGA 100 186.19 415.34 305.13 ± 34.54 15.62 ± 0.91 4.60 ± 0.26
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LSTMGA and TransformerGA is concentrated, the median and 
the average are close to each other, and there are few outliers, 
which further indicates that LSTMGA and TransformerGA 
are relatively stable models. Taking these results together, this 
study concludes that in this specific time series forecasting 
task, the LSTMGA and TransformerGA models perform well, 
especially in forecasting accuracy and stability (Fig. 5).

Prediction Graph Comparison of Four Models
In the experimental results of the previous stage, we observed 
that the LSTMGA and TransformerGA models performed 
well. Table 5 is the predicted value of the LSTMGA and 
TransformerGA models in valid data and test data. The 
last column is the actual value of Texas CO2 emissions for 
comparison.

In Fig. 6, the time series prediction diagram of the neural 
network model is a data example, and it can be observed that 
LSTMGA, TransformerGA, and actual value show a trend in 
the same direction.

Sonata and Heryadi (2024) identified LSTM and Transformer 
models as particularly suitable for time series prediction, noting 
that LSTM performs better overall. Aligning with their findings, 
our study reaffirms that combining LSTM or Transformer models 
with Genetic Algorithms further enhances their performance, 

Fig. 5. The summary report of test dataset MSE for 100 experimental results

Table 5. Time series prediction and actual value comparison 
table of neural network model

Time Series Forecast and Actual Value

Model LSTMGA TransformerGA Actual value

valid_2011 291.97 289.27 287.60

valid_ 2012 295.31 295.67 304.06

valid_2013 311.76 310.57 323.70

valid_2014 331.41 327.82 320.05

valid_2015 327.76 314.96 321.64

test_2016 329.35 321.14 312.47

test_2017 320.17 312.70 321.36

test_2018 329.06 320.65 348.08

test_2019 355.78 348.41 360.11

test_2020 367.81 351.46 338.46
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highlighting their ability to capture complex patterns and 
dependencies, even in data sets with limited sample sizes.

Kolmogorov-Smirnov (K-S) Normality Test 
K-S Normality Test - RNNGA Model
In Fig. 7, the RNNGA model was used to conduct 100 non-
repetitive experiments, the average M  SE of the experimental 
results of the test data set was used as the sample, and the K-S 
Normality Test was conducted at the significance level α = 0.05.

The test result shows a p – value  <  0.05, rejecting the 
hypothesis that H0 = samples follow a normal distribution. Our 
research supposes that the average M  SE of the experimental 
results of the test data set in the RNNGA model does not follow 
a normal distribution.

K-S Normality Test - LSTMGA Model
In Fig. 8, the LSTMGA model was used to conduct 100 non-
repetitive experiments, the average M  SE of the experimental 
results of the test data set was used as the sample, and the K-S 
Normality Test was carried out at the significance level α = 0.05.

The test result shows a p – value  <  0.05, rejecting the 
hypothesis that H0 = samples follow a normal distribution. Our 
research supposes that the average M  SE of the experimental 
results of the test data set in the LSTMGA model does not 
follow a normal distribution.

K-S Normality Test - GRUGA Model
In Fig. 9, the GRUGA model was used to conduct 100 non-
repetitive experiments, the average  of the experimental 

results of the test data set was used as the sample, and the 
K-S Normality Test was carried out at the significance level 
α = 0.05.

The test result shows a p – value  <  0.05, rejecting the 
hypothesis that H0 = samples follow a normal distribution. Our 
research supposes that the average M  SE of the experimental 
results of the test data set in the GRUGA model does not follow 
a normal distribution.

K-S Normality Test - TransformerGA Model
In Fig. 10, the TransformerGA model was used to conduct 100 
non-repetitive experiments, the average  of the experimental 
results of the test data set was used as the sample, and the 
K-S Normality Test was carried out at the significance level 
α = 0.05.

The test result shows a p – value  <  0.05, rejecting the 
hypothesis that H0 = samples follow a normal distribution. Our 
research supposes that the average M  SE of the experimental 
results of the test data set in the TransformerGA model does 
not follow a normal distribution.

Based on the normality test results of the above RNNGA, 
LSTMGA, GRUGA, and TransformerGA models, none of them 
follow a normal distribution. However, this research model 
carries out 100 non-repetitive experiments, and according 
to Slutsky’s theorem, the sampling distribution under large 
samples is still normal. Therefore, the next step is to use the Z 
test as the test data set M  SE of RNNGA, LSTMGA, GRUGA, 
and TransformerGA models to test the difference between the 
mean of two independent populations.

Fig. 6. Time series prediction diagram of neural network model
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Z-Test
Z-Test for LSTMGA and TransformerGA
From the experimental data, we observed that the average 
of LSTMGA in the test set M  SE is very similar to that of 
TransformerGA, and the variance of LSTMGA is smaller than 
that of TransformerGA. From the small degree of variation of 
the LSTMGA model, we can infer that the LSTMGA model 
is slightly more stable than the TransformerGA model. At the 
Z-test significance level α = 0.05, the test result p – value < 0.05, 
do not reject H0:u1 = u2. Statistically, we believe that there is 

no significant difference between the TransformerGA model 
M  SE_test and the LSTMGA model M  SE_test.

Z- Test for TransformerGA and RNNGA
Based on our experimental findings, we noticed that the mean 
squared error (M  SE) of the TransformerGA in the test set 
is lower compared to that of the RNNGA, and the variance 
of the TransformerGA is significantly less than that of the 
RNNGA. At the Z-test significance level α  =  0.05, the test 
result p – value < 0.05, reject H0:u1 = u2. Statistically, there 

Fig. 8. K-S Normality Test Result - LSTMGA Model

Fig. 7. K-S Normality Test Result - RNNGA Model
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is a significant difference between the TransformerGA model 
M  SE_test and the RNNGA model M  SE_test.

To summarize the Z-test results in this study: (1) There 
is no statistically significant difference between the two 
models with the best predictive performance, LSTMGA 
and TransformerGA. (2) There is a statistically significant 
difference between TransformerGA and RNNGA.

The results of this experiment are almost as good when 
using LSTMGA and TransformerGA, and the reason why 
there is no significant difference in prediction performance, we 

believe that the possible reasons are as follows: (1) Algorithm 
model capabilities are similar: LSTMGA and TransformerGA 
are powerful sequence modeling models that can process time 
series data. Although they are structured and operate differently, 
they may have similar learning capabilities and representational 
capabilities, capable of capturing patterns and structures in 
time series. (2) Data set characteristics: small sample data 
has a simpler structure, and LSTMGA and TransformerGA 
may be able to model at a similar level effectively. In this 
case, the characteristics of the data may cause the two models 

Fig. 9. K-S Normality Test Result - GRUGA Model

Fig. 10. K-S Normality Test Result - TransformerGA Model
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to be comparable in predictive performance. (3) Parameter 
adjustment: In the experiment, we used Genetic Algorithm to 
perform similar parameter adjustment and optimization training 
on models such as LSTMGA and TransformerGA. By adjusting 
the hyperparameters of the model, such as learning rate, hidden 
layer size, etc., the performance of the two models can be 
maximized so that they can achieve similar results on small 
samples. (4) Specific problem domains: Some specific temporal 
forecasting problems may not be sensitive to the choice of model. 
Another possible situation is that LSTMGA and TransformerGA 
have similar strengths in CO2 emission prediction problems.

On the other hand, the results of this experiment are worse 
than those of TransformerGA and LSTMGA when using the 
RNNGA model for CO2 prediction experiments. We deduce 
the possible reasons as follows: (1) Small sample limitation: 
The RNNGA model is prone to overfitting when dealing with 
small sample data. Since RNN has a recurrent structure, it may 
be more sensitive to noise and incompleteness in small sample 
data, which may lead to its performance degradation. (2) 
Model structure limitation: Compared with the TransformerGA 
and LSTMGA, the model structure of RNNGA is relatively 
simple. RNNGA mainly relies on memory cells and recurrent 
networks, which may not be able to adequately capture complex 
relationships in data, limiting its predictive performance. 
Next, we will compare the computing performance of the four 
models and select the most suitable neural network model for 
greenhouse gas emission prediction.

Run Time Comparison
In addition to comparing the performance of the verification 
set M  SE in the four types of neural network models, this study 
also conducts a trial calculation comparison of the calculation 
time of the model using GA.

Comparing the running time of GA under the same 
equipment, environment, and computing resources, we can find 
that under the condition of limited computing resources, to find 
the optimal solution under the same parameters and conditional 
assumptions, the computing time of RNNGA, LSTMGA, and 
GRUGA are significantly faster than TransformerGA.

After comparing the four algorithms under GA algorithm 
conditions, TransformerGA can be used if the goal-oriented 
search for the best solution is desired. It means that if the goal 
of the experiment is to find the best solution, you can try to use 
the TransformerGA model with the Genetic algorithm. This 
method will consume more computing resources but has a 
higher chance of obtaining better prediction results. However, 
other algorithms are recommended if we want to search for the 
best solution in a more efficient manner.

Conclusions

In recent years, greenhouse gas emissions have emerged as a 
critical global issue, prompting increased research attention 
toward prediction methods. Our study focuses explicitly on 
constructing a forecasting model for small-sample time series 
data, considering limited computational resources and time 
constraints. We evaluate model performance using M  SE, 
M  AE, and M  APE metrics.

Our experimental findings indicate that the LSTMGA 
(LSTM with Genetic Algorithm) model outperforms other 

neural network models when applied to small-sample time 
series data sets. We employ a Z-test for comparative analysis 
after conducting a Kolmogorov-Smirnov (K-S) normality test 
on M  SE across the four model groups. Interestingly, there is no 
significant difference in performance between the LSTMGA 
and TransformerGA models.

Beyond performance comparison, our study involves 
adjusting model parameters and applying the Genetic Algorithm 
for optimization. The experimental results demonstrate that 
these deep-learning models outperform traditional statistical 
approaches in predicting greenhouse gas emissions.

Based on these results, we conclude that the 
TransformerGA model holds promise for effectively handling 
future greenhouse gas emission data sets, even in small sample 
scenarios. Additionally, the LSTMGA model excels in small-
sample time-series data, and parameter optimization via the 
Genetic Algorithm enhances training efficiency.

In the research process, we use CO2 emission data sets, 
and our research results have substantial application value in 
the management of greenhouse gas emissions. (1) Monitoring 
and reporting of greenhouse gas emissions: by establishing a 
time-series analysis and prediction model of greenhouse gas 
emissions, the monitoring values of greenhouse gas emissions 
within a specific period of time can be accurately estimated 
and used for greenhouse gas control plan emissions. (2) Energy 
demand management: accurate time forecasting models can 
help predict future energy demand, optimize energy use and 
supply, and reduce greenhouse gas emissions. It is an essential 
tool for national and corporate energy planning, urban planning, 
and energy management agencies. (3) Resource planning and 
emission reduction strategies: time prediction can provide critical 
information for carbon emission management and help formulate 
resource planning and emission reduction strategies. By predicting 
future changes in carbon emissions, we can better allocate 
resources, set carbon emission reduction targets, and implement 
corresponding emission reduction measures. (4) Decision support 
system: establish a carbon emission management model based on 
time prediction and provide a decision support system. Such a 
system can help governments, businesses, and organizations make 
informed decisions on carbon emission management, promoting 
sustainable development and green transition.

The practical model of this study can help enterprises, 
governments, and other institutions formulate emission reduction 
policies, adopt energy-saving and emission-reduction measures, and 
evaluate emission contributions, thereby reducing carbon emissions 
and mitigating climate change. In addition, the methods and results 
of this study can also be applied to time series data forecasting in 
other fields, providing a reference for future related research.
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