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Abstract. This article is the second part of a comprehensive research program investigating the structural performance of thin-

walled channels with modified cross-sectional geometries. The study involved testing six beams, three of which featured 

perforated webs, while the other three had flat, solid webs. The beams were subjected to four-point bending tests to evaluate 

their load-bearing capacity. The first part of the research presented the results of experimental tests and finite strip analysis. This 

article will focus on finite element analyses and analytical calculations conducted in accordance with Eurocode 3 guidelines and 

the principle of minimizing potential energy. The study provides several significant contributions: it integrates experimental, 

numerical, and theoretical methods to deliver a thorough evaluation of beam performance. The finite element method (FEM) 

simulations offer precise modeling of complex stress and strain states, while analytical calculations supply a solid theoretical 

foundation for interpreting structural behavior. The research demonstrates that web perforation, while reducing critical and 

maximum forces, also results in considerable weight savings, enhancing material efficiency. Additionally, the division of the 

research into two articles ensures clarity and accessibility, with this second part dedicated to detailed FEM and analytical results, 

thereby facilitating both academic understanding and practical engineering applications. 
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1. INTRODUCTION 

Thin-walled structures produced through cold-forming 

technology are widely utilized across various fields, including 

civil engineering, the transportation sector (such as automotive 

and railway applications), and the aerospace industry. In 

contemporary engineering practice, there is a growing emphasis 

on minimizing material usage while maintaining structural 

integrity. Thin-walled structures address this objective 

effectively due to their high strength-to-weight ratio and low 

material consumption. Additionally, these structures are 

advantageous in terms of ease of assembly, further contributing 

to their appeal in both industrial and structural applications. 

Thin-walled structures with modified or non-standard 

cross sections are increasingly studied for their structural 

stability and buckling behavior, particularly when incorporating 

web perforations. Research indicates that these modifications 

can significantly influence the load-bearing capacity and 

overall stability of the structures. For instance, incorporating 

perforations into web sections can result in a reduction of mass 

while preserving structural integrity. However, such 

modifications may also render the structure more prone to 

buckling under specific conditions, as can be found in the 

studies by Roslanec and Rozylo [1] and Bakhach et al. [2] .In 

addition, the effectiveness of different cross-sectional shapes in 

enhancing stability has been investigated, revealing that custom 

geometries can outperform traditional designs in certain 

applications, as can be read in the work of Rozylo et al. [3], [4]. 

However, the performance of these modified structures is 

highly dependent on the configuration and size of the 

perforations, which necessitates careful design considerations 

to mitigate potential buckling risks. Overall, while innovative 

cross-sectional designs present opportunities for improved 

performance, they also require thorough analysis to ensure 

safety and reliability in engineering applications. 

Heavily modified cross-sectional shapes have been 

thoroughly described in the works of Grenda and Paczos [5], 

Grenda [6], Pawlak and Paczos [7], and Jasion et al. [8], Obst 

et al. [9], Magnucka-Blandzi et al. [10] where beams/columns 

subjected to four-point bending or axial compression were 

analyzed. Nevertheless, most researchers continue to focus on 

traditional cross-sectional shapes, failing to recognize that 

these modifications can positively impact the stability of thin-

walled structures and increase their critical strength [11], [12], 

[13]. The use of modified cross-sections in thin-walled 
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structures offers numerous advantages, such as enhanced 

bending strength and improved stability, leading to greater 

load-bearing capacity and extended service life of the 

structure. These modifications allow for significant weight 

reduction while maintaining or even improving strength, 

resulting in material savings and reduced costs. Additionally, 

altered cross-sectional shapes can streamline production and 

assembly processes, as well as enhance the aesthetics and 

functionality of structures, enabling better adaptation to 

specific loading and environmental conditions. 

Numerical investigations are crucial for analyzing 

thin-walled structures, with the finite element method (FEM) 

being one of the most frequently employed techniques. 

Numerical studies can be conducted using various methods, 

with FEM being one of the most prevalent, as applied in this 

paper. Anbarasu [14] utilized FEM to investigate the local, 

distortional, and flexural-torsional buckling behavior of cold-

formed steel (CFS) beams. Dinis and Camotim [15] explored 

the post-buckling behavior of channel columns subjected to 

bending moments, focusing on the interaction between local 

and strain buckling using FEM. El Hadidy et al. [16] examined 

beams with trapezoidal webs through FEM. Ghorashi [17] 

employed the Variational Asymptotic Method to address 

problems related to thin-walled structures, applying it for 

nonlinear static analysis and stability analysis of composite 

beams. Both finite difference and finite element methods were 

utilized to calculate the elastic deformations of beams with 

clamped-free boundary conditions. The paper [18] presents a 

numerical analysis of magnetohydrodynamic mixed 

convection heat transfer in a lid-driven wavy enclosure with a 

fin attached to the bottom wall, utilizing the finite element 

method. Results demonstrate that fin size plays a crucial role 

in influencing flow patterns and temperature distribution, with 

larger fins significantly enhancing heat transfer at higher 

Richardson numbers and lower Hartmann numbers. In the 

article [19], damage detection in an aluminum beam using 

vibration techniques showed that increasing crack depth 

raised amplitude. Experimental validation confirmed the 

method’s accuracy, with errors of 7.5% for crack position and 

9.1% for crack size. 

The work of Manikandan and Thulasi [20] investigated 

the behavior of cold-formed I-section steel plates with edge and 

intermediate web stiffening under bending loads. Their research 

involved optimizing the cross-section using numerical methods 

(FEM), followed by experimental tests employing strain 

gauges, and concluded with calculations based on Eurocode 3 

procedures. Nandini and Kalyanaraman [21] conducted a study 

using ABAQUS for finite element analysis, examining the 

interaction between local, strain, and bending-torsion buckling 

forms. Kubiak and Gliszczynski [22] assessed the load capacity 

of thin-walled composite channel beams subjected to pure 

bending using ANSYS software and FEM. Zhang and Young 

[23] developed a finite element model to account for initial 

geometric imperfections and nonlinear material properties, 

applying it to analyze cold-formed thin-walled structures with 

web stiffening. Falkowicz and Debski [24] analyzed thin-

walled plate elements with regular-shaped cutouts, employing 

both digital image correlation and FEM in their study. Debski 

[25] investigated the effect of eccentric loading on the stability 

and post-critical states of thin-walled composite columns in 

compression, designing and verifying numerical models of 

thin-walled composite sections based on FEM analysis. 

The motivation for this study stems from a notable gap 

in the existing literature concerning the analysis of thin-walled 

sections with modified cross-sectional geometries. This 

research seeks to address this gap by examining the effects of 

web perforations on both critical and maximum forces, 

thereby offering valuable insights into the trade-offs between 

weight reduction and structural performance. The findings of 

this investigation are expected to inform more refined design 

practices and enhance the safety and effectiveness of thin-

walled structural members across various engineering 

applications. 

2. GEOMETRY OF CROSS SECTIONS  

In this chapter, a brief overview of the subject of 

study is presented, as it has already been comprehensively 

described in Part 1 of this article, titled "Bending Behaviour 

of Thin-Walled Perforated Channel Beams with Modified 

Cross Sectional Shape – Part 1: Experimental Tests and 

FSM." This study focuses on six thin-walled, cold-formed 

channel beams (B1–B6) with modified cross-sectional 

configurations, where three beams have solid webs (B1, B3, 

and B5), and three have perforated webs (B2, B4, and B6). 

The dimensions of the beam cross sections are shown in 

Figure 1 and Table 1. 

 
Fig.1. Dimensioned cross-sections of the analyzed beams 

 

TABLE 1. Dimensions of the cross-sections of the beams 

𝐻 = 160.0 mm  𝑐1 = 18.0 mm 

𝑏 = 80.0  mm  𝑐2 = 10.0 mm 

𝑎 = 79.5 mm  𝑐3 = 10.0 mm 

𝑤 = 79.0  mm  𝑓 = 10.0 mm 

𝑑 = 18.0  mm  𝑔 = 36.0 mm 

ℎ𝑝2 = 68.5 mm  𝑛 = 24.0 mm 

ℎ𝑝4,6 = 40.0 mm  𝑚 = 18.0 mm 

𝑘 = 8.0 mm  𝑠 = 15.0 mm 
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Figure 2 illustrates the dimensions of the perforations 

and provides an image of the perforated beam web. 

 
Fig.2. Geometry and dimension of perforations 

 

In Part 1, the mechanical properties of the steel used to 

manufacture the beams were described in detail. These 

properties were determined based on results obtained from a 

static tensile test. 

3. ANALYTICAL CALCULATIONS 

Analytical calculations were conducted to determine the critical 

moments of the beams subjected to bending, focusing on beams 

B1, B3, and B5. Beams B2, B4, and B6, which feature 

perforations in the web, were excluded from these analyses due 

to Eurocode 3's limitation in accommodating significant 

modifications in cross-sectional shapes. The challenge of 

developing formulas for critical moments in these complex 

geometries further complicated their inclusion, as Eurocode 3 

only addresses single additional bends. This chapter presents 

the mathematical formulas implemented in MATLAB for 

efficient and accurate calculations, along with the resulting 

data. 

The mathematical formulas presented in this chapter 

have been developed based on the principle of minimum total 

potential energy [26], [27], [28]. This principle serves as a 

fundamental basis in the analysis of rigid body mechanics, 

allowing for the determination of equilibrium and stability 

conditions in structures. By utilizing this method, it is possible 

to accurately model the behaviors of beams, which is crucial for 

understanding their responses to various loads. Basing the 

calculations on this principle also enables more precise results 

and effective predictions of structural behaviors under real-

world conditions. 

This study presents comprehensive analytical 

calculations for global, local, and distortional buckling. 

However, it is evident that thin-walled structures do not 

experience global buckling. The mathematical formulas 

introduced in this work have been implemented into MATLAB, 

where a specialized program was developed to calculate critical 

forces for beams with arbitrary cross-sectional sizes and 

lengths. Additionally, this work aims to demonstrate how the 

prepared program computes these critical force values. 

3.1. Calculation procedure - theoretical introduction to 
analytical calculations 

Pure bending is simulated by a four-point bending test. The 

total length of the beam is denoted by 𝐿𝑐, the distance between 

the applied force and the supports equals 𝐿𝑠 and the distance 

between supports is equal to 𝐿0. The part of the beam which 

is under pure bending conditions has the length 𝐿. Thus, the 

critical moment 𝑀𝑐𝑟  in the middle span of the beam can be 

calculated using the following formula: 

 

𝑀𝑐𝑟 =
1

2
𝐹𝑐𝑟𝐿𝑠 =

1

4
𝐹𝑐𝑟𝐿𝑠 (1) 

 

where 𝐹𝑐𝑟 is critical force. Thin-walled beams are susceptible 

to loss of stability because of the high ratio of length and 

cross-sectional dimensions to plate thickness. In the context 

of thin-walled structures, we distinguish three types of loss of 

stability: general buckling, local buckling and distortional 

buckling. This paper presents a procedure for determining the 

values of critical moments for the different forms of buckling 

of thin-walled beams.  

The critical state of a thin-walled beam that was 

loaded with a bending moment of constant value was 

determined using energy methods. The energy or elastic 

deformation 𝑈𝜀 can be defined as follows: 

 

𝑈𝜀 = 𝑈𝜀𝑙 + 𝑈𝜀𝑛 (2) 

 

where  𝑈𝜀𝑙  is linear elastic deformation energy and 𝑈𝜀𝑛 is 

nonlinear elastic deformation energy. Components of energy 

are expressed in the following form: 

𝑈𝜀𝑙 =
1

2
𝐸 ∫ [𝐴 (

d𝑢

d𝑥
)

2

+ 𝐽𝑧 (
d

2𝑣

d𝑥2
)

2

+ 2𝐽𝑦𝑧

d
2𝑣

d𝑥2

d
2𝑤

d𝑥2

𝐿

0

+ 𝐽𝑦 (
d

2𝑤

d𝑥2
)

2

+ 𝐽𝜔 (
d

2𝜓

d𝑥2
)

2

] d𝑥

+
1

2
𝐺 ∫ 𝐽𝑡 (

d𝜓

d𝑥
)

2

d𝑥

𝐿

0

+
1

2
∫[𝑘𝑦𝑣𝑃

2 + 𝑘𝑧𝑤𝑃
2 + 𝑘𝜓𝜓2]d𝑥

𝐿

0

 

 

(3) 
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𝑈𝜀𝑛 =
1

2
∫ 𝑁 [(

d𝑣

d𝑥
)

2

+ (
d𝑤

d𝑥
)

2

] d𝑥

𝐿

0

+
1

2
∫[𝑟𝑆

2𝑁 + 2𝛽𝑆𝑧𝑀𝑦 − 2𝛽𝑆𝑦𝑀𝑧

𝐿

0

+ 2𝛽𝜔𝐵] (
d𝜓

d𝑥
)

2

d𝑥

+ ∫ [𝑀𝑦

d
2𝑣

d𝑥2
+ 𝑀𝑧

d
2𝑤

d𝑥2
] 𝜓d𝑥

𝐿

0

+ ∫ 𝑁 [𝑧𝑆

d𝑣

d𝑥
− 𝑦𝑆

d𝑤

d𝑥
]

d𝜓

d𝑥
d𝑥

𝐿

0

 

(4) 

 

where 𝐺 is Kirchhoff’s modulus, 𝐸 is Young’s modulus and 

𝐴 is a cross sectional area of the beam. The next designations 

are: 𝑢, 𝑣, 𝑤 – shear center displacement S; 𝐽𝑧, 𝐽𝑦𝑧 , 𝐽𝑦 – moment 

of inertia of the beam; 𝐽𝜔 – wrapping moment, 𝐽𝑡 – the Saint-

Venant torsion constant; 𝑘𝑦 , 𝑘𝑧 , 𝑘𝜓 – spring rates in the flange 

model for distortional buckling; 𝛽𝑠𝑧 , 𝛽𝑠𝑦 , 𝛽𝜔 – Wagner’s 

coefficient; 𝑢𝑃 , 𝑣𝑃 , 𝑤𝑃 – displacement components of the 

point P, 𝑟𝑠
2 – polar radius of the inertia about the shear center 

S, 𝜓 – torsion angle, 𝑁 – axial force, 𝑀𝑦 , 𝑀𝑧 – bending 

moment about 𝑦 and 𝑧 axis, 𝐵 – bimoment, 𝑧𝑠, 𝑦𝑠 – 

coordinates of the shear center S. 

 

3.1.1.  Global buckling 

Dislocation of thin-walled beams is characterized by 

simultaneous torsion of the beam and its spatial bending. The 

analysis assumes that the cross section of the beam does not 

change its shape. Figure 3 shows a general stability diagram 

for a beam with a non-standard cross-section shape. 

 
Fig. 3. Schematic of general loss of stability for a thin-walled beam 
with modified cross-sectional shape 

 

As the buckling half-wave length increases, the value 

of the critical force or moment decreases. The angle of 

rotation for general buckling for beams simply supported at 

both ends for any coordinate x can be represented by a 

mathematical formula: 

 

𝑣

𝑣1

=
𝑢

𝑢1

=
𝜓(𝑥)

𝜓1

= sin
𝜋𝑥

𝐿
 (5) 

 

where 𝜓1 is a dimensionless parameter. The bending moment 

can be written as: 

 

𝑀𝑦(𝑥) = 𝑀0 (6) 

 

The derived system of second order equilibrium equations 

was used to determine the critical moment for general 

buckling: 

 

𝑁, 𝑀𝑧 , 𝐵 = 0;  𝐼𝑦𝑧 , 𝛽𝑆𝑧 , 𝛽𝜔 = 0 

 

(7) 

 

𝑘𝑦 , 𝑘𝑧, 𝑘𝜓 = 0 (8) 

 

Thus, based on Eq. (3) and Eq. (4) an expression describing 

the elastic strain energy of the form was obtained: 

 

𝑈𝜀 =
1

2
∫ [𝐸𝐽𝑧 (

𝑑2𝑣

𝑑𝑥2
)

2

+ 𝐸𝐽𝑦 (
𝑑2𝑤

𝑑𝑥2
)

2𝐿

0

+ 𝐸𝐽𝜔 (
𝑑2𝜓

𝑑𝑥2
)

2

+ 𝐺𝐽𝑡 (
𝑑𝜓

𝑑𝑥
)

2

] 𝑑𝑥

+ ∫ 𝑀𝑦

𝑑2𝑣

𝑑𝑥2
𝜓𝑑𝑥

𝐿

0

 

(9) 

 

The work of external forces 𝑊 is written using the following 

formula: 

 

𝑊 =  − 𝑀𝑦

d𝑤

d𝑥
|

0

𝐿

 (10) 

 

It is defined that 𝑤(𝑥) is the displacement in the z-axis 

direction and 𝑣(𝑥) is the displacement in the y-axis direction. 

The formula describing the critical moment at general 

buckling was determined: 

 

𝑀𝑐𝑟
(𝑔𝑙𝑜𝑏𝑎𝑙)

=
𝜋

𝐿
√𝐸𝐽𝑧 [𝐺𝐽𝑡 + (

𝜋

𝐿
)

2

𝐸𝐽𝜔] (11) 

 

The above transformations led to a formula that will be used 

to determine the critical moment for global buckling. 

 

3.1.2.  Distortional buckling 

Considering the loss of beam stability by buckling of the 

flange with simultaneous deformation of the web, the flange 

can be treated as an elastically supported beam at the edge of 

its connection with the web (point 𝑃(𝑦𝑝 , 𝑧𝑝) of the cross-
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section). Figure 4 shows the buckling model and the cross-

section of the beam and flange. A central coordinate system 

(𝑥, �̅�, 𝑧̅), centred at 𝐶, is associated with the shelf. 

 

 

 
Fig. 4. Distortional stability loss diagram of a beam with a 
modified cross-section 

 

There are normal stresses in the flange, which can be 

expressed by the following mathematical formula: 

𝜎𝑥(𝑥, �̅�, 𝑧̅) =
𝑀𝑦

𝐽𝑦

(𝑧̅ − 𝑧�̅�) (12) 

 

Where (�̅�, 𝑧)̅ is the central coordinate system associated with 

the beam flange, and 𝑧�̅� is the coordinate of the beam section 

center in the coordinate system associated with the flange. It 

can be seen that there is a relationship with 𝑧�̅� = −𝑧𝑐̅. The 

internal forces present in the flange can be expressed by the 

formula: 

 

𝑁 = −
𝑀𝑦

𝐽𝑦

𝑧�̅��̅�,       �̅��̅� =
𝑀𝑦

𝐽𝑦

𝐽�̅̅� ,        �̅��̅�

= −
𝑀𝑦

𝐽𝑦

𝐽�̅̅��̅� ,        �̅� = 0 

(13) 

 

The model was simplified, as shown in figure 5. After 

simplifying �̅�𝑃 = 0, �̅�𝑃 = 0 and 𝑘𝜓 = 0 we get: 

 

�̅� = (𝑧�̅� − 𝑧�̅̅�)�̅� (14) 

  

�̅� = −(�̅�𝑃 − �̅��̅�)�̅� (15) 

 

The strain energy of the beam flange equals: 

 

𝑈𝜀
(𝑓𝑙𝑎𝑛𝑔𝑒)

=
1

2
𝐸𝐽�̅̅�𝑃

∫ (
d

2�̅�

d𝑥2
)

2

d𝑥

𝐿

0

+
1

2
𝐺𝐽�̅� ∫ (

d�̅�

d𝑥
)

2

d𝑥

𝐿

0

−
1

2

𝑀𝑦

𝐼𝑦

[�̅�𝑃
2𝑧�̅��̅� − 2�̅�𝑃�̅�𝐽�̅̅�

− 2�̅�𝑃�̅�𝐽�̅̅��̅�] ∫ (
d�̅�

d𝑥
)

2

d𝑥

𝐿

0

 

(16) 

 

where: 

 

�̅�𝑃
2 =

𝐽�̅̅� + 𝐽�̅̅�

�̅�
+ �̅�𝑃

2 + 𝑧�̅�
2 

 

𝐽�̅̅�𝑃
= 𝐽�̅̅� + (�̅�𝑃 − �̅��̅�)2𝐽�̅̅�

− 2(�̅�𝑃 − �̅��̅�)(𝑧�̅� − 𝑧�̅̅�)𝐽�̅̅��̅�

+ (𝑧�̅� − 𝑧�̅̅�)2𝐽�̅̅� 

 

�̅�𝑃�̅� = �̅��̅��̅� + �̅��̅� − �̅�𝑃 , �̅�𝑃�̅� = �̅��̅��̅� + 𝑧�̅̅� − 𝑧�̅� 

(17) 

 

The critical moment was calculated from the equation: 

 

𝛿(𝑈𝜀) = 0 (18) 

 

By substituting the expression: 

 

�̅�(𝑥) = 𝜓1 sin
𝜋𝑥

𝐿
 (19) 

 

and solving the equation using the Ritz method, we obtain the 

formula describing the critical moment for distortional 

buckling: 

 

𝑀𝑐𝑟
(𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙)

=
𝐺𝐽�̅� + 𝐸𝐽�̅̅�𝑃

(
𝜋
𝐿

)
2

�̅�𝑃
2𝑧�̅��̅� − 2�̅�𝑃�̅�𝐽�̅̅� − 2�̅�𝑃�̅�𝐽�̅��̅�

𝐽𝑦 (20) 

 

 

The above transformations led to the formula that will be used 

to determine the critical moment for distortional buckling. 

 

3.1.3.  Local buckling 

Local stability is characterized by the fact that the length of 

the buckling half-wave is comparable to the transverse 

dimensions of the beam and is most often considered as 

buckling of individual beam walls. In this paper, local 

buckling is considered as buckling of individual beam walls: 

• hinged at the four edges - spanning walls (figure 5a), 

• hinged on three edges and one free edge - cantilever 

walls (figure 5b). 
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The critical state of a thin-walled beam that was loaded with 

a bending moment of constant value was determined using 

energy methods. 

Figure 5 shows the beam support scheme in the local 

coordinate system (𝑥,, ) associated with the beam wall. 

Rectangular walls are shown. 

 
(a) span structure 

 
(b) cantilevered structure 

Fig. 5. Beam support scheme 
 

The procedures for determining the critical moment for local 

buckling are well known, as they are described in detail in PN-

EN 1993-1-5 [29]. The standard distinguishes between two 

ways of supporting a wall: spanning compression walls and 

cantilever compression walls. A simplified model is adopted 

in which the critical stress is calculated from the formula: 

 

𝜎𝑐𝑟 =
𝑀𝑐𝑟

𝐽𝑦

𝑦𝑅 (21) 

 

From Eq. (21), the value of the critical moment can be 

determined: 

 

𝑀𝑐𝑟 =
𝐽𝑦

𝑦𝑅

𝜎𝑐𝑟 (22) 

 

The critical stress for pure bending and the corresponding 

factor κ are calculated. Let's denote 𝜎1 = max(−𝜎𝑥) > 0 and 

𝜎1 = 𝜅
𝜋2𝐷

𝑡𝑏2 = 𝜅
𝜋2𝐸

12(1−𝜈2)
(

𝑡

𝑏
)

2

, Therefore, for a spanning wall, 

the stresses can be expressed by the formula: 

 

𝜎𝑥(𝑥, 𝜂) = − (1 −
𝜂

𝑏
) 𝜎1 −

𝜂

𝑏
𝜎2

= −𝜎1 [(1 −
𝜂

𝑏
) +

𝜂

𝑏
𝜓] 

(23) 

 

where 𝜓 =
𝜎2

𝜎1
 , 𝜎2 - see figure 5, 𝑏 is the beam width and 𝑡 is 

the thickness of the plate from which the beams were made. 

Critical values for the coefficient 𝜅 were obtained, e.g. for 

𝜓 = 1 𝜅 = 4 and for 𝜓 = −1 𝜅 is about 24. These values are 

valid for sufficiently long beams.  For a cantilevered, pinned 

wall supported on three edges and one free edge, 𝜂 = 0. 

However, for a spanning, pinned wall supported on four 

edges, 𝜂 = 𝑏. This data was obtained on the basis of the 

indicated standard. In summary, the critical moment value for 

local buckling is expressed by the formula: 

 

𝑀𝑦,𝑐𝑟
(𝑙𝑜𝑐𝑎𝑙)

=
𝐽𝑦

𝑦𝑅

(
6

𝜋2
(1 − 𝜈) +

1

𝜆2
) ×

4

1 + 3𝜓

×
𝜋2𝐸

12(1 − 𝜈2)
(

𝑡

𝑏
)

2

 

(24) 

 

where 𝑅 (𝑦𝑅 , 𝑧𝑅) is the point lying at one end of the wall 

centreline. At the point where the compressive stresses reach 

their maximum stresses are denoted 𝜎1, while at the other  

end 𝜎2. 

3.2. Results of calculations 

The results of the analytical calculations presented in this 

chapter were obtained using a specialized program that 

applies the analytical formulas outlined herein. This program, 

named GUI, was developed in MATLAB and authored by Dr. 

Marcin Rodak. The first step in the process involves 

specifying the beam lengths, the span between supports, and 

identifying the mechanical properties. For the purposes of this 

article, the mechanical properties implemented in the program 

were determined through static tensile tests, as detailed in 

Chapter 2 of this work. In the second step, the specific 

dimensions of the cross section must be defined, as illustrated 

in Figure 6. The following section provides a comprehensive 

examination of the analytical methods employed and the 

corresponding results generated by the program. 
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Fig. 6. Interface of the program for calculating critical moments of 
bent beams, developed by Dr. Marcin Rodak using the analytical 
formulas from this chapter 

 

For the lengths specified in the first step, the program 

calculates the critical moments based on Eq. (11), Eq. (20), 

and Eq. (24). An essential aspect of using this program is 

understanding the buckling mode to which each beam is 

susceptible. The program computes critical moments for 

global, distortional, and local buckling modes. All results 

generated by the program are presented in the results Table 2. 

For the final comparison with results obtained from other 

methods, the value corresponding to the buckling mode 

identified in the experimental tests was selected. This ensures 

that the most relevant and accurate data are used for 

comparison and analysis. 

The results of the analytical calculations are shown in 

Table 3. The values of critical moments for the corresponding 

forms of beam buckling are indicated: B1 and B3 - local,  

B5 - distortional. Different beam lengths 𝐿, i.e. 400, 500, 600, 

700 and 800 mm and three different plate thicknesses 𝑡, i.e. 

1.4 mm, 1 mm and 0.6 mm, were taken into account. 

 

TABLE 2. Results of the analytical calculations  

Beam 
Critical moments 𝑀𝑐𝑟[𝑘𝑁𝑚] 

B1 B3 B5 

Length 𝑳 [𝒎𝒎] 400 

𝑡 = 1.4𝑚𝑚 6.25 6.32 25.84 

𝑡 = 1𝑚𝑚 2.28 2.30 18.22 

𝑡 = 0.6𝑚𝑚 0.49 0.50 10.83 

Length 𝐿 [𝑚𝑚] 500 

𝑡 = 1.4𝑚𝑚 6.26 6.33 16.78 

𝑡 = 1𝑚𝑚 2.28 2.31 11.75 

𝑡 = 0.6𝑚𝑚 0.49 0.50 6.95 

Length 𝐿 [𝑚𝑚] 600 

𝑡 = 1.4𝑚𝑚 6.27 6.35 11.86 

𝑡 = 1𝑚𝑚 2.29 2.31 8.23 

𝑡 = 0.6𝑚𝑚 0.49 0.50 4.84 

Length 𝐿 [𝑚𝑚] 700 

𝑡 = 1.4𝑚𝑚 6.25 6.33 8.90 

𝑡 = 1𝑚𝑚 2.28 2.31 6.12 

𝑡 = 0.6𝑚𝑚 0.49 0.50 3.57 

Length 𝑳 [𝒎𝒎] 800 

𝑡 = 1.4𝑚𝑚 6.25 6.32 6.97 

𝑡 = 1𝑚𝑚 2.28 2.30 4.74 

𝑡 = 0.6𝑚𝑚 0.49 0.50 2.75 

Buckling form Local Local Distortional 

 

For beams B1 and B3, which are subject to local 

buckling, the critical moment remains constant regardless of 

the beam's length. This occurs because, as the beam length 

increases, the difference between the actual buckling half-

wave length and the half-wave length associated with the 

smallest critical moment decreases. Consequently, for longer 

beams, the critical moment for local buckling stabilizes and 

does not vary with changes in length. This behavior is a 

characteristic feature of local buckling in thin-walled 

structures, where the buckling wavelength is largely 

independent of the overall beam length once a certain 

threshold is reached. 

As previously mentioned, for beams experiencing 

local loss of stability, the critical moment remains constant 

regardless of the distance between supports. This constancy 

underscores the fact that local buckling is primarily governed 

by the geometry of the cross-section rather than the beam 

length. However, this is not the case for beam B5, which is 

subject to distortional instability. In this instance, the critical 

moment decreases as the beam length increases, reflecting the 

more complex nature of distortional buckling, where both 

cross-sectional and length factors play significant roles. 

Furthermore, an analysis of the effect of plate 

thickness on the critical moment reveals that the critical 

moment decreases with a reduction in plate thickness. This 

relationship holds true across all the beams tested, 

emphasizing the importance of material thickness in resisting 

buckling. Among the tested beams, beam B5 demonstrated the 

highest critical moment with a support length of 400 mm and 
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a plate thickness of 1.4 mm. This result highlights the 

interplay between length, thickness, and buckling mode, 

illustrating how these factors collectively influence the 

structural performance of the beams under load. 

4. FINITE ELEMENT METHOD 

This chapter presents the results of numerical analyses 

performed using the finite element method (FEM) to 

investigate the behavior of the beams under study. The 

ANSYS software was employed to conduct these simulations, 

providing a detailed insight into the structural response of the 

beams under various loading conditions. The following 

sections outline the methodology, boundary conditions, and 

material properties used in the simulations, as well as a 

discussion of the key findings obtained from the FEM 

analysis. Through these numerical analyses, a deeper 

understanding of the critical factors influencing the stability 

and performance of the beams is achieved, complementing the 

analytical calculations presented earlier. 

4.1. FE model of the beam and boundary conditions 

Numerical analyses were performed using finite element 

method within ANSYS software. The procedures for linear 

and non-linear calculations available in this system were used. 

To model all beams the DesignModeler has been used that is 

a part of ANSYS. Since the buckling mode and the mode of 

failure may have an asymmetric form a whole beam has been 

modelled although the geometry, load and support conditions 

were symmetrical. It was decided to abandon modelling the 

bending radii having in mind that in actual beam the strain 

hardening effect may influence the behaviour of the beam by 

increasing its stiffness. Straight corners on the cross-sections 

of the FE models prevent from generation of small, distorted 

finite elements which could appear on the bending radii and 

adversely affect the numerical solution. 

A pure bending load conditions has been applied to 

the model which is a typical load for testing structural 

elements like beams. Since the effect of such load is to be 

achieved in the simplest possible way without reproducing the 

test stand a number of simplifications have been made. Only 

a central part of the beam has been modelled which undergoes 

a pure bending. The bending conditions were achieved by 

adding rigid plates at both ends of the model (see figure 7) and 

by applying forces to the upper and lower edge of the plates, 

compressive and tensile one, respectively. The Young 

modulus of rigid plates are 103 times higher than the one for 

the beam. A similar solution has been used in paper by Jasion 

et al. [8]. 

A pure bending load conditions has been applied to the model 

which is a typical load for testing beams. The bending 

conditions were achieved by adding rigid plates at both ends 

of the model (see figure 7) and by applying forces to the upper 

and lower edge of the plates, compressive and tensile one, 

respectively. The model was supported along the line at mid-

height of the rigid plate in the way that the displacements in 

the 𝑦 and z direction were blocked. Additionally, to avoid a 

rigid body motion, the displacement in the 𝑥 direction was 

blocked at one node on the vertical symmetry plane of the 

beam. Between the beam and the rigid plates the contact 

conditions have been defined in the form of bonding 

connection. 

The whole model of the beam has been covered with a 

second order shell elements shell281 with 8 nodes and 6 DOF 

in each node. This element is suited for modelling thin shell-

like structures for linear elastic analyses but also for structures 

undergoing large strains and large rotations in non-linear 

analyses. It can be also related with plastic properties of the 

material model. The size of the finite element has been chosen 

based on the convergency analysis the results of which are 

shown in figure 5d. The size is equal to 5 mm which is a 

compromise between the computational time and the 

precision of the results. Additional condition about the 

element size has been imposed on the perforated web to obtain 

finer mesh, about 2 mm size of the element, around the 

circular holes. No special effort on the mesh around the holes 

was paid since the deformation of the perforated web is slight 

and has the form of mild buckling waves. The deformation is 

even smaller in the non-linear analyses since here mostly 

flange undergoes deformation. Moreover a circular shape of 

the holes prevents from arising local stress concentrations. 

The convergency analysis has been performed for 

two beams. One of them had a flat flange, beam B3, and the 

second one had a corrugated flange, beam B5. The parameters 

which have been analyzed during calculations were the 

critical bending moment, the left vertical axis, and the normal 

stress measured in the mid-length of the upper flange, the right 

vertical axis. To simplify the reading of the plots  

the power trend lines have been added to each set of the data. 
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Fig. 7. Details of FE model: a) model of the beam under pure 
bending; b) boundary conditions; c) mesh pattern around the holes 
of perforation and on the corrugated flange; d) results of the 
convergency study 

 

In the case of the beam with a flat flange the size of 

the finite element does not influence the results almost at all. 

The decrease the size of the element results in the change of 

the analysed parameters only about 0.3%. For the beam B5 the 

results are not so smooth which can be explained in two ways. 

First of all due to the shape of the corrugation the relation 

between the size of the element and the number of elements is 

not smooth. Second, the buckling mode has a local character  

and the change of the location of the waves may change the 

buckling load in a distinctive way. However, if the values on 

the vertical axes are observed, the stress varies within the 

range of 0.5%, and the buckling load within the range of 6%. 

Thus the selected size of the element seems to be enough 

having in mind that the main goal of the analyses is to 

determine the critical and limit load. The precise analysis of a 

local phenomenon like the local fold in the plastic range 

would need further improvements in the model. 

For the linear buckling analysis a linear elastic 

material has been modelled with the following parameters: 

Young’s modulus 𝐸 =  185000 𝑀𝑃𝑎, Poisson’s ratio 

𝜈 =  0.3 and the mass density 𝜌 =  7850 𝑘𝑔/𝑚3. For the 

post-buckling analysis the bilinear elastic-perfect plastic 

model has been assumed with the yield strength 

𝑅𝑒𝐻 =  328 𝑀𝑃𝑎. The stiffened plates attached at both sides 

of the beam have been modelled using the same material, a 

linear elastic one, but its stiffness, that is the Young’s 

modulus, is 10 times this of the material of the beam. The 

thickness of these plates equal 10 mm. 

After accepting the results of the convergency study 

the validation process has been made on the model of the 

beam to determine how accurately it reflects the behaviour of 

an actual beam.  First the flat specimen has been modelled to 

which the material properties have been ascribed as listed 

above. The geometry of the model corresponds to this of an 

actual specimens presented in figure 1. The comparison of the 

FE results with four plots obtained from experiments is 

provided in figure 9a. It is seen that in the elastic range the 

behaviour of the material and its model is the same. Also the 

plastic flow starts at about the same value of the load. On the 

plot only its initial part is provided since it seems to be enough 

having in mind that the goal of the investigation is the 

determination of the buckling and limit load. 
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Fig. 8. Validation of the FE model of the beam: a) static tensile test 
of the material; b) stress in the web of the beam under bending 

 

As a second step of the validation the normal stress 

in the web of the B1 obtained from the strain gauge 

measurements has been compared with the stress determined 

in the FE analysis (see figure 8b). The difference in the initial 

stiffness manifested by a different slope of the paths is 

acceptable remembering that the FE model is not intended to 

reproduce the test stand but is simplified to provide a pure 

bending condition in a simple way. The most important 

information is points marked on both curves which 

correspond to following stages of the loss of stability  

and deformation. For both curves they are at about the same 

level of load. The lower value indicates the initial loss of 

stability and the higher one is related to the start of formation 

of a local folding. Although the curves differ after the second 

point is exceeded the results are acceptable because  

the goal was to determine the limit load. The differences in 

the shape of the two curves are the result of the final failure 

mode shape. In the case of the FE model the a purelocal fold 

appeared near the mid-length of the beam where the stresses 

were read and thus their changes were seen when the fold on 

the web and then on the flange were formed. In experiment in 

contrast the failure taken place near the support giving more 

gentle curve. 

4.2. Influence of the length, thickness and perforation 
on the buckling behaviour 

The first type of analysis performed to investigate the 

buckling resistance of beams was the linear buckling analysis. 

Due to it one may analyse the influence of the geometry of the 

cross-section, the thickness of the sheet-metal and the length 

of the beam on the value of the buckling load and the 

corresponding buckling mode. 

This analysis also gives the possibility to compare 

the beams with different cross-sections and indicates the way 

to improve the buckling resistance of such structures. In the 

present investigation there are three different cross-sections 

investigated, however, each of them exists in two different 

versions – with a solid web and with the web containing 

perforation in the form of small holes. For each pair of beams 

a separate plot has been prepared on which the relation 

between the length of the beam and the critical bending 

moment is shown. Three pairs of curves correspond to three 

different thicknesses of the sheet-metal used to model the 

beam. 

In the case of beams B1 and B2 the buckling shape 

has the same character – the waves appear on the web, flange 

and the lip (see figure 9). The character is similar for all 

analysed thicknesses and lengths. The difference is in the 

number of waves. From the plot shown in figure 9 it is seen  

that the perforation decreases the buckling load by 10% with 

the loss of the weight about 14%. The reason for that is that 

the buckling waves appear also on the web the stiffness of 

which is reduced due to perforation. 

 

 
Fig. 9. Results of buckling analysis for beams B1 and B2 

 

For beams B3 and B4 (see figure 10) the buckling 

load has the form of short waves which appear on the flange 

and the lip. The web remains flat due to corrugation which 

increases its stiffness. As an effect the value of the buckling 

load for both types of beams is very similar. The perforation 

decreases this value only about 1.5% whereas the mass of the 

beam is decreased about 8%. 
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Fig. 10. Results of buckling analysis for beams B3 and B4 

 

The relation between the length and the thickness of 

the sheet-metal, and the buckling behaviour of beams B5 and 

B6, shown in figure 11, is more complex than for previously 

analysed cases. For longer beams made of thicker sheet-metal 

a global buckling mode appears in the form of one half-wave 

encompasses the whole upper flange. These cases are marked 

in figure 11 with circles. For other beams the local 

phenomenon appears in the form of short waves located on the 

lip. The dashed line on the plot corresponds to the buckling 

load which has local character (2nd  and 3rd buckling modes). 

From the results it follows that for beams which 

buckle in a global way the corrugation decreases the buckling 

load up to 2%. For the beams which buckle locally this 

decrease reaches about 1%. The weight of the beam due to 

perforation has decreased about 17%. 

 

 
Fig. 11. Results of buckling analysis for beams B5 and B6 

 

It is also worth to notice that the value of the linear 

buckling load for beams B1 to B4 do not depend on the length 

of the beam in a significant way. The differences between the 

values for the shortest and the longest beam do not exceed 2%. 

Similar results can be observed for beams B5 and B6 which 

buckle locally. The influence of the length parameter on the 

buckling load is clearly visible for beams which buckle in a 

global way. This can be explained by the fact that there is only 

one half-wave spread on the whole length of the flange and in 

such a case this length influence considerably the buckling 

resistance. The critical moment for the longest beam is 52% 

smaller than for the shortest one for 𝑡 =  1.4 𝑚𝑚 and 22% for 

𝑡 =  1.0 𝑚𝑚. Some additional attention should be paid for 

the longest version of beams B5 and B6 for which 

𝑡 =  1.4 𝑚𝑚. The first buckling mode is a global one and the 

corresponding buckling load equals about 15 kNm. However, 

if it would be possible to enforce a local buckling (third 

buckling mode) the load could be increased about 109%.  

4.3. Comparison of beams with different cross-sections 

Additional comparison have been prepared for all cross-

sections considered in investigations. This way the influence 

of the modifications of the shape of the cross-section on the 

buckling resistance of the beam can be analysed. Two families 

of beams have been investigated: the first one of the length 

𝐿 =  500 𝑚𝑚 and the second one of the length 

𝐿 =  800 𝑚𝑚. The results are presented in figure 12 in the 

form of relation between the sheet-metal thickness and the 

critical moment. 

 

 
Fig. 12. Comparison of buckling loads of beams with different 

cross-sections: a) beams with the length equal to 500 mm; b) 

beams with the length equal to 800 mm 

 

As can be expected since the deformation of the 

beams due to buckling is concentrated on the flange the 

modification of this part of the beam gives the highest increase 

in buckling resistance. Depending on the sheet-metal 

thickness the buckling strength is about 1.2 to 4.7 times higher 

for beams B5 and B6 than for other beams. The modification 

of the web provides the increase of the buckling load about 7 

to 11% when beams B1 and B3 are compared, depending on 

the thickness parameter. 

4.4. Parametric study 

The shape of the cross-sections of beams investigated in this 

paper has been based on the results of previous analyses, the 

experience of the authors and most of all they were limited  

with the manufacturing process. However, to show a broader 

view of the influence of this shape on the buckling behaviour 

of the beam the parametric study has been conducted for the 

beam B5. Two parameters have been introduced to control the 

geometry of the cross-section. The first one is the width of the 

base of the trapezoid in the flange 𝑓1, and the second one – the 

width of the base of the trapezoid in the web 𝑓2 (figure 13j). 
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For the parameters equal to 𝑓1 =  19.75 𝑚𝑚 and 

𝑓2 =  61.5 𝑚𝑚 the cross-section takes the form of the 

classical lipped channel as shown in figure 13g which is 

a reference shape for this study. If both parameters equal zero 

the most extreme case is obtained shown in figure 13c. Other 

parameters describing the cross-section are provided in 

figure 13j. The dimensions a, w, and d are the same as in the 

analyses presented in previous sections. Additionally an angle 

parameter α has been introduced the value of which equals 

30°. 

 

Fig. 13. Exemplary shapes of cross-sections of beams (a-i); 

geometrical parameters of the cross-section (j) 

 

The finite element model is the same as in the 

previous analyses. Only one length of the beam has been taken 

into account that is 𝐿 =  500 𝑚𝑚. The thickness of the 

reference shape is equal to 𝑡 =  1.4 𝑚𝑚. Thicknesses for 

other shapes have been determined in the way to keep the 

weight of the beam equal to the weight of the reference beam 

which is approximately 1.94 kg. Thicknesses of sheet-metal 

for all analysed models are provided on Table 3 along with the 

values of the critical bending moments corresponding to the 

first buckling mode.

 

TABLE 3. Buckling loads and thickness of beams

𝑓 2
 [

𝑚
𝑚

] 

0.0 
𝑡 [𝑚𝑚] 1.328 1.307 1.280 1.229 1.182 1.139 1.098 1.060 1.025 0.992 0.961 0.932 

𝑀𝑐𝑟 [𝑁𝑚] 6429.7 9221.5 13071 15447 18259 17199 14970 12729 10703 9176.4 8470.1 8497.0 

8.0 
𝑡 [𝑚𝑚] 1.337 1.316 1.288 1.237 1.189 1.145 1.104 1.066 1.031 0.997 0.966 0.937 

𝑀𝑐𝑟 [𝑁𝑚] 6558.9 9354.0 13148 15625 18372 17058 15050 12794 10759 9207.8 8345.0 8679.2 

16.0 
𝑡 [𝑚𝑚] 1.346 1.325 1.297 1.245 1.196 1.152 1.110 1.072 1.036 1.002 0.971 0.941 

𝑀𝑐𝑟 [𝑁𝑚] 6698.8 9504.1 13468 16010 18776 17754 15453 13169 11073 9491.7 8777.8 8838.0 

24.0 
𝑡 [𝑚𝑚] 1.355 1.334 1.305 1.252 1.204 1.158 1.117 1.078 1.041 1.007 0.976 0.946 

𝑀𝑐𝑟 [𝑁𝑚] 6837.5 9658.1 13778 16372 19156 18147 15854 13492 12324 9715.5 8987.6 9053.3 

32.0 
𝑡 [𝑚𝑚] 1.365 1.342 1.314 1.260 1.211 1.165 1.123 1.083 1.047 1.012 0.980 0.950 

𝑀𝑐𝑟 [𝑁𝑚] 6983.6 9784.5 14133 16770 19533 18603 16237 13796 11618 9945.3 9174.5 9241.6 

40.0 
𝑡 [𝑚𝑚] 1.374 1.352 1.323 1.268 1.218 1.172 1.129 1.089 1.052 1.018 0.985 0.955 

𝑀𝑐𝑟 [𝑁𝑚] 7103.2 9940.0 14488 17116 19885 19031 16596 14116 11868 10195 9381.0 9449.5 

48.0 
𝑡 [𝑚𝑚] 1.384 1.361 1.331 1.276 1.226 1.179 1.136 1.095 1.058 1.023 0.990 0.959 

𝑀𝑐𝑟 [𝑁𝑚] 7217.4 10092 14716 17232 20093 19411 16951 14406 12129 10404 10534 9621.2 

56.0 
𝑡 [𝑚𝑚] 1.393 1.370 1.340 1.285 1.233 1.186 1.142 1.101 1.063 1.028 0.995 0.964 

𝑀𝑐𝑟 [𝑁𝑚] 7246.9 10228 14421 16822 19776 19745 17218 14656 12331 10593 9763.7 9811.3 

61.5 
𝑡 [𝑚𝑚] 1.400 1.377 1.347 1.290 1.239 1.191 1.147 1.106 1.067 1.032 0.998 0.967 

𝑀𝑐𝑟 [𝑁𝑚] 7050.4 9396.3 12842 11464 11731 9946.7 8939.3 7977.0 6646.4 5996.8 5679.9 5557.1 

 19.75 19.00 18.00 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 

𝑓1 [𝑚𝑚] 

 

 

From Table 3 it is seen that the highest buckling 

load equals 20.09 kNm and corresponds to the beam 

characterised by parameters 𝑓1 =  14 𝑚𝑚 and 

𝑓2 =  48 𝑚𝑚. Thickness of the corresponding sheet-metal 

equals 1.226 mm. The corresponding cross-section is 

provided in figure 14a.  

 

 
Fig. 14. Buckling loads for beams from parametric study a); 

cross-section with the highest buckling  resistance b) critical 

moment as a function of 𝑓1 and 𝑓2 
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To simplify the analysis of the results the plot has 

been prepared based on the Table 3 which is shown in 

figure 14b. Looking at the plot it is seen that the parameter 

𝑓1 has much higher influence on the buckling resistance of 

the beam than the parameter 𝑓2. The value of the buckling 

load for a given value of 𝑓1 changing only slightly for 

different values of 𝑓2. For example for 𝑓1 =  14 𝑚𝑚 the 

difference between the highest and lowest value equals 

1.8 kNm which is 9.1% of the highest value. For 

𝑓1 =  2 𝑚𝑚 the difference reaches 20.8% and is the biggest 

one. If similar calculations are made for selected values of 

the parameters 𝑓2, the differences are between 50 and 55%. 

The variants with flat web and flat flange were omitted in 

this calculation. The fact that the parameter 𝑓2 does not 

influence the buckling resistance of the beam significantly 

is directly related to the buckling modes which, for selected 

beams, are shown in figure 15. For a given value of 𝑓1 the 

mode remains roughly the same for all values of 𝑓2.  

 

 
Fig. 15. Buckling modes of selected beams 

 

Analysing the table from figure 15 it can be seen 

that for initial configuration, the buckling mode has the 

shape of short waves located on the web, flange and the lip 

(bottom left corner). If the corrugation of the flange 

increases (𝑓1 decreases) the flange becomes stiffer and the 

waves are concentrated on the web. Similar situation can be 

observed for the web – for higher corrugation (smaller 

values of 𝑓2) the waves disappear from the web. For small 

values of both 𝑓1 and 𝑓2 the buckling mode has the form of 

short waves located on the lip only. The highest value  

of the buckling load corresponds to the buckling mode in 

the form of one half-wave located on the upper flange. This 

observation suggests that further increase of the buckling 

resistance can be achieved by increasing of the stiffness of 

the flange. 

4.5. Limit load 

When thin-walled beams are to be used as structural 

elements it is necessary to investigate their post-buckling 

behaviour and to determine the load at which the beam loses 

its load capacity. For this reason the non-linear analysis has 

been performed using the arc-length method which apart 

from the limit load gives the possibility to analyse the way 

the beam will collapse. A large deflection effect was 

applied. The model was loaded with the forces acting the 

same way as in the linear buckling analysis and the 

convergence parameter was the force the value of which 

was controlled by the system. The initial imperfections 

introduced into the model had the form of the first 

eigenmode obtained from the linear buckling analysis and 

their magnitude were equal to 1% of the sheet-metal 

thickness. 

Two types of non-linear models have been created. 

The first one was a geometrically non-linear model in which 

the linear elastic behaviour of the material was assumed. 

The second one was a geometrically and materially non-

linear model.  In the latter case the elastic-perfectly plastic 

model of the material has been used. The second model 

gives the possibility to predict the maximum load the beam 

can be loaded with before the plastic deformation appears. 

The analyses have been performed for each of six 

beams. The initial imperfections introduced into the model 

had the form of the first eigenmode obtained from the linear 

buckling analysis and their magnitude were equal to 1% of 

the sheet-metal thickness. The results are presented in the 

form of equilibrium paths. The horizontal axis corresponds 

to the maximum displacement normalized by the sheet-

metal thickness whereas the vertical axis corresponds to the 

dimensionless bending moment which is the bending 

moment applied during the analysis divided by the critical 

moment. To the plots the pictures have been added on which 

the deformation is shown for the case of the elastic material 

and for the case of plastic material, apart from the 

deformation, the equivalent plastic strain distribution is 

provided. Additionally, to have the possibility to compare 

the numerical results with the results of experiments, the 

equilibrium path has been provided in which the applied 

moment versus the displacement of the point located in the 

mid-length of the upper flange is shown. 

When comparing the paths presented in Figures 16 

to 21 two different behaviours can be distinguished. For 
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beams B1 to B4 the flange of which is flat, the critical load 

is slightly below the buckling load determined in linear 
buckling analysis for both models of the material. Initially, 

after the buckling load is exceeded, the paths for both 

materials’ models overlap each other which suggests that 

the buckling appears in an elastic range. After that, at about 

1.4 of the critical load the paths start to separate. For elastic 

material the buckling waves located on the upper flange  

and the lip increase. For the elastic-plastic material, after the 

plastic limit is reached the deformation starts to increase 

locally and the collapse of the beam can be observed. 

 

 
Fig. 16. Equilibrium path for the beam B1 

 

 
Fig. 17. Equilibrium path for the beam B2 

 

 
Fig. 18. Equilibrium path for the beam B3 

 

 
Fig. 19. Equilibrium path for the beam B4 

 

Different behaviour can be observed for beams B5 

and B6 which have a corrugated flange. Due to the 

corrugation the buckling load for these beams is much 

higher than for the other beams. The consequences are that 

the stresses reach much higher values and before the 

buckling appears the material starts to flow plastically. It is 

seen on plots in Figures 17 and 18 that the limit load for 

these beams is about 50% of the linear buckling load. 
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Fig. 20. Equilibrium path for the beam B5 

 

 
Fig. 21. Equilibrium path for the beam B6 

 

The total deformation for beams B5 and B6 in the 

non-linear analysis is the same for both materials’ models 

adopted and has the global form. It is similar to the buckling 

mode obtained in the linear analysis but in addition to the 

flange deformation in the form of one half-wave the web 

also deforms. 

5. COMPARISON AND CONCLUSION 

In the following section, the research results will 

be presented, encompassing both experimental findings and 

finite strip analyses that were thoroughly detailed in the first 

part of this article. Additionally, this section will 

incorporate results derived from analytical solutions and 

finite element analyses. Together, these diverse 

methodologies provide a comprehensive understanding of 

the structural behavior of the thin-walled beams under 

investigation, yielding valuable insights into their stability 

and load-bearing capacity. 

The primary objective of this research was to 

assess the impact of web perforations on buckling modes, 

stability resistance (critical force), and ultimate load-

bearing capacity (maximum force). The critical force values 

obtained from all four methods are presented in Table 4. 

TABLE 4. Critical forces [kN], EXP – experimental tests, FSM – 

inite strip method, AC – analytical calculations, FEM - finite 

element method 

Beam 𝐹𝑐𝑟𝐸𝑋𝑃
 𝐹𝑐𝑟𝐹𝑆𝑀

 𝐹𝑐𝑟𝐴𝐶
 𝐹𝑐𝑟𝐹𝐸𝑀

 

B1 6.00 5.07 4.60 4.80 

B2 5.10 - - 4.20 

B3 5.00 5.67 4.60 5.40 

B4 6.50 - - 5.20 

B5 14.90 31.49 23.60 13.80 

B6 11.20 - - 13.60 

 

Beams B1 and B2, with the classic lipped channel 

cross-section, served as reference points for comparing the 

stability results of beams with modified cross-sectional 

shapes. As cross-sectional complexity increases, critical 

force values also increase, indicating improved resistance to 

stability loss. The highest critical force values were 

obtained for the beams with trapezoidal flanges (B5 and 

B6), emphasizing that modified geometries positively 

impact stability. Quantitative analysis shows that beam B5, 

with a solid, flat web, offers nearly 2.5 times the stability of 

the classical B1 cross-section, underscoring the benefits of 

cross-sectional modifications on stability. 

Perforations in the web lead to a significant 

reduction in critical force values, which negatively impacts 

the beams' resistance to loss of stability. However, when 

evaluating the effect of perforations on structural 

performance, the reduction in weight of the beams plays a 

crucial role. Beams with perforated webs are lighter than 

those with solid webs, which is a significant advantage. 

Table 5 presents a dimensionless comparison of the critical 

force relative to the beam's weight, and the purpose of this 

analysis is to determine whether the percentage reduction in 

weight outweighs the slight decrease in critical force. 

TABLE 5. Non-dimensional critical forces with corresponding 

beam weights  

Beam Weight [kg] 𝐹𝑐𝑟𝐸𝑋𝑃
 

[𝑘𝑁] 

𝐹𝑐𝑟𝐹𝐸𝑀
 

[𝑘𝑁] 

B1 5.19 6.00 4.80 

B2 4.40 5.10 4.20 

B1/B1 1.00 1.00 1.00 

B2/B1 0.85 0.85 0.88 

B3 5.25 5.00 5.40 

B4 4.78 6.50 5.20 

B3/B3 1.00 1.00 1.00 

B4/B3 0.91 1.30 0.96 

B5 6.31 14.90 13.80 

B6 5.85 11.20 13.60 

B5/B5 1.00 1.00 1.00 

B6/B5 0.93 0.75 0.99 
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For the dimensionless comparison, beams with 

solid, flat webs served as the reference cross-section for 

each pair. Evaluations were conducted separately for each 

pair, leading to the following conclusions: 

 

• In beams B1 and B2, the perforated beam's weight 

decreased by 15%, accompanied by a 15% 

reduction in critical force. 

• For beams B3 and B4, the perforated beam's weight 

reduced by 9%, while the critical force increased by 

30%. 

• In the comparison of beams B5 and B6, the 

perforated beam's weight decreased by 7%, yet the 

critical force significantly dropped by 25%. 

 

For pairs B1/B2 and B5/B6, the decrease in weight 

correlated with the expected reduction in critical force. 

However, for beams B3 and B4, the perforated beam 

exhibited a significant increase in critical force despite a 

weight reduction. Finite element analysis indicated that the 

critical force for beam B4 (perforated) decreased by only 

4% compared to beam B3 (solid, flat web). Thus, in this 

case, the benefits of using perforations are evident, as the 

weight reduction outweighs the minor decrease in critical 

force. 

In the analysis of thin-walled structures, geometric 

imperfections significantly impact their resistance to loss of 

stability. 

 

 
Fig. 22. Geometric imperfections of the cross sections of the 

beams 

 

Figure 22 illustrates the geometric imperfections 

in beams B1, B3, and B5. The yellow color represents the 

ideal CAD dimensions, while the black line indicates the 

shape deviations projected onto the cross-sectional view 

along the entire length of the beam. Beam B5 exhibits the 

most significant deviations. These geometric imperfections 

notably affect the stability and load-bearing capacity of bent 

beams and compressed columns, as shown in the study by 

Pawlak et al. [30]. 

An important innovation in this work is the 

modification of the beam cross-sectional shape, which 

significantly increases both critical and maximum forces, 

enhancing structural performance. Additionally, while web 

perforations cause a slight reduction in critical force, they 

lead to a considerable weight reduction, providing efficiency 

gains with minimal impact on stability. 

6. SUMMARY 

In this part of the article, conclusions from analyses 

conducted using four methods - experimental studies, Finite 

Strip Analysis (FSM), Finite Element Analysis (FEM), and 

analytical calculations - are presented. This broad spectrum 

of methodologies enabled mutual verification of results, 

which was crucial given the unique combination of cross-

sectional shape modifications and perforations in the beams 

analyzed. The lack of references in the literature for such 

constructions necessitated additional accuracy and 

validation, provided by the multi-method approach. 

• Modifying the cross-sectional shape, as a 

significant innovation, increases both the 

maximum load capacity and the critical force; a 

more modified shape results in a higher critical 

force, positively influencing the structure's overall 

stability. 

• Perforations in the web significantly reduce beam 

weight, enhancing material efficiency and cost 

savings in lightweight design. Critical force 

values, crucial for thin-walled structure analysis, 

decrease slightly relative to weight reduction, 

indicating a favorable compromise between 

stability and mass. 

• The use of perforations balances the goal of 

minimizing structure mass while maintaining high 

strength. This approach responds to the increasing 

demand for lightweight yet durable structural 

solutions. 

• The studies demonstrated that regardless of 

whether the beams had a solid, flat web or were 

perforated, they experienced local loss of stability. 

This instability mechanism was documented in 

both experimental analyses and numerical 

simulations conducted using the FEM. 

• The influence of geometric imperfections in thin 

steel sheets is significant, and discrepancies in 

results may stem from these imperfections, 

affecting stability and load capacity. The authors 

are currently undertaking a research project 

focused on analyzing the impact of geometric 

imperfections on the strength and stability of thin-

walled steel elements, aiming for improved 

understanding and design recommendations. 

NOTIFICATION 

𝒌𝒚, 𝒌𝒛, 𝒌𝝍 – spring rates in the flange model for 

distortional buckling 
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𝑱𝒚, 𝑱𝒚𝒛, 𝑱𝒛 – moments of inertia of the cross-section 

𝒖, 𝒗, 𝒘 – shear center displacement 𝑆 

𝒖𝑹, 𝒗𝑹, 𝒘𝑹 – displacement components of the point 𝑅 

𝒙, 𝒚, 𝒛 – basic beam coordinate system 

𝒙, 𝒚,̅  �̅� – central coordinate system connected to the flange 

of beam with the middle at point 𝐶̅ 
𝜷𝒔𝒛, 𝜷𝒔𝒚, 𝜷𝝎 – Wagner’s coefficients 

𝒙,,   – local coordinate system 

𝑴𝒚, 𝑴𝒛 – bending moments about 𝑦 and 𝑧 axes 

𝒚𝑹, 𝒛𝑹 – coordinates of the point R, lying at one end of the 

midline of the wall 

𝒚𝒔, 𝒛𝒔 – coordinates of the shear center S 

𝑨 – cross-sectional area of the beam 

𝑩 – bimoment 

𝑪 – center of gravity of the beam cross-section 

�̅� – center of gravity of the flange 

𝑪′ – displaced center of gravity of the beam cross-section 

for overall buckling 

𝑬 – Young’s modulus 

𝑭𝒄𝒓 – critical force 

𝑮 – Kirchhoff modulus 

𝑱𝒕 - the Saint-Venant torsion constant 

𝑱𝝎 – warping constant 

𝑳 – the length of the middle span subjected to pure 

bending 

𝑳𝒄 – total length 

𝑳𝟎 – distance between supports 

𝑳𝒔 – distance between applied force and supports 

𝑴𝒄𝒓 – critical moment 

𝑴𝒈 – bending moment 

𝑵 – axial force 

𝒓𝑺
𝟐 – polar radius of inertia about the shear center S 

𝑹𝒆𝑯 = 𝒇𝒚𝒃 – yield strength  

𝑹𝒎 = 𝒇𝒖 – ultimate strength  

𝒕 – thickness 

𝑼𝜺 – elastic deformation energy 

𝑼𝜺𝒏 – nonlinear elastic deformation energy 

𝑼𝜺𝒍 –  linear elastic deformation energy 

𝑾 – work of external forces 

�̃� – the deflection of the wall towards 𝜁 

�̅�𝑪 – the coordinate of the beam section center in the 

coordinate system associated with the flange 

𝜿  –  the coefficient depending on the ratio of wall 

dimensions 𝜆 =
𝐿

ℎ
 and parameter 𝛽 

𝜿𝒄𝒓 – the critical coefficient depending on the ratio of wall 

dimensions 𝜆 =
𝐿

ℎ
 and parameter 𝛽 

𝝀 – slenderness of the beam 

𝝂 – Poisson’s ratio 

𝝆 – mass density  

𝝈𝒈 – bending stress 

𝝈𝒙 – normal stress in the x-axis direction 

𝝍 – torsion angle 

𝝍𝟏 – dimensionless parameter 
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