
ARCHIVES OF ELECTRICAL ENGINEERING VOL. 74(1), pp. 247 –268 (2025)

DOI 10.24425/aee.2025.153022

Identifying core nodes in interaction graphs for critical
component analysis in cascading failures of power grids

FRANCISCO RIVAS-DÁVALOSo 1B, DANIEL TOLEDO-ADAME1,
EDUARDO A. MARTÍNEZ-CESEÑA2

1Tecnológico Nacional de México/Instituto Tecnológico de Morelia
Av. Tecnológico 1500, Col. Lomas de Santiaguito, Morelia, Michoacán, México

2Department of Electrical and Electronic Engineering, The University of Manchester
Manchester, M13 9PL, UK

e-mail:B francisco.rd@morelia.tecnm.mx, daniel.toledo.adame@hotmail.com,
alex.martinezcesena@manchester.ac.uk

(Received: 03.07.2024, revised: 10.02.2025)

Abstract:This paper introduces a novel approach to identifying critical lines in power systems
during cascading failures, addressing significant limitations in previous methodologies
such as computational inefficiency and limited effectiveness. The proposed methodology is
inspired by social network analysis techniques for evaluating the importance of nodes and
determining core roles within a network. By adopting these techniques, multiple centrality
metrics – degree, ego-betweenness centrality, and eigenvector centrality – are applied to
assess the importance and role of lines in interaction graphs of cascading failures. The
methodology can be applied to any type of interaction graph of cascading failures and involves
selecting centrality metrics with strong correlations to outline the particularity of critical
lines. The importance of each line is evaluated as the normalized sum of its three metrics.
Critical lines are identified based on their deviation from the statistical correlation of the
overall interaction graph, analogous to the role determination process in social networks. The
effectiveness of the proposed approach is demonstrated through extensive testing on IEEE
39-bus and 118-bus systems. The identified critical lines are validated with a method from
the literature and by analysing the effects of upgrading the critical lines, demonstrating the
accuracy and reliability of the proposed methodology. By leveraging interaction graphs and
simulation data, our approach provides a robust framework for mitigating cascading failures.
The results indicate that this methodology not only improves computational efficiency but
also enhances the precision of critical line identification, making it highly suitable for
real-time applications in power system stability and reliability.
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1. Introduction

Significant blackouts, which have substantial impacts on society and the economy, often result
from cascading failures within power grid transmission networks [1]. The complexity and vast
number of components in power grids that interact intricately make preventing these cascading
failures challenging. Research efforts have focused on understanding these complex interactions to
predict failure propagation and identify critical or vulnerable components within power grids.

Notable blackouts, such as those in India in July 2012 [2], the northeaster US and Canada
on August 14, 2003 [3], and the widespread outage affecting Italy and other EU nations on
September 28, 2003 [4, 5], have been extensively studied using both complex networks theory
(CNT) and electrical engineering methodologies [6]. CNT offers a robust framework for analysing
and managing power grids by conceptualizing generators and loads as interconnected nodes
through power cables or communication links [7]. This approach, rooted in graph theory, focuses
on network structure, measurements, and component influence [8, 9].

In the context of the application of CNT, many studies have used centrality concepts to model
and analyse cascading failures with the physical topology of power grids. Centrality identifies
nodes and edges with maximal influence on network performance [10,11], and research shows
that targeted removal of specific nodes causes faster network disintegration than does random
removal [12]. This highlights the importance of identifying central components for both network
resilience and potential attack strategies. However, empirical evidence suggests that physical
topology alone is insufficient. Historical data show that the failure of a critical transmission
line can overload distant lines, up to 100 miles away, despite no direct physical connection.
This phenomenon is due to the principles of electricity governing power flow dynamics and the
functional and cyber dependencies managed by automated systems and operators. Consequently,
recent research has focused on using interaction graphs, instead of the physical topology of
power grids, to represent influences among outaged components, simplifying the study of failure
propagation and component roles during cascading events.

An interaction graph is a graph G(C,L), where vertices C represent system components and
edges L represent interactions or influences among components. These interactions can be directed,
undirected, weighted, or unweighted, depending on the analysis requirements. Interaction graph
construction methods fall into two categories: data-driven and electric distance-based methods.
Data-driven methods use system data (historical or simulation data) to infer interactions during
cascading processes, while electric distance-based approaches rely on Kirchhoff’s laws to define
interactions based on electrical distances.

Interaction graphs have proven to be effective tools for identifying critical components in
cascading failures. For instance, methods such as [13, 14] sum the weights of the interaction
links originating from a node to find critical transmission lines whose failure could trigger large
cascades. Other studies employ methods like cascade probability vectors to quantify the failure
likelihood of transmission lines during cascading stages, providing a probabilistic view of critical
line identification [15–17]. Meanwhile, approaches based on electric distance, such as effective
resistance-based interaction graphs [18] and impedance-based graphs [19,20], compute metrics
like effective graph resistance and net-ability to evaluate grid performance before and after the
removal of specific components.
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While these methods provide valuable insights, they often require extensive simulations,
detailed system models, or rely heavily on historical failure data, which may limit their applicability
to unseen scenarios. To address these challenges, other works have applied CNT to interaction
graphs to identify critical components. For example, studies such as [21, 22] have identified
fault chain-based interaction graphs as scale-free, implying that a small number of nodes hold
a disproportionate degree centrality, leading the authors to conclude that nodes with high
degrees are the critical components. Similar conclusions were reached in impedance-based
interaction graphs [23,24]. However, the reliance on degree centrality (DC) in these studies, while
computationally efficient, limits the approach to local information [25]. This lack of global context
can lead to an overemphasis on high-degree nodes, potentially missing other critical components
that do not have high connectivity but are still essential to the network’s function [26]. Eigenvector
centrality (EC) used in other studies [27] addresses this by considering not only the number of
connections but the influence of connected nodes [28]. Yet, EC-based approaches often concentrate
influence on a few dominant nodes, which can obscure the importance of other critical nodes [29].

Several other works have incorporated global centrality measures to overcome the limitations
of local metrics. Closeness centrality (CC) [30] and betweenness centrality (BC) [31], for instance,
are frequently employed to identify nodes that hold critical positions within the overall network
structure. BC identifies nodes that act as bridges between different parts of the network, while CC
focuses on nodes with short paths to all other nodes. Despite their effectiveness in identifying key
components, using these methods as single indicators is not sufficient to analyse the multiple and
complex characteristics of a node in an interaction graph. Similarly, the K-shell decomposition
method [32], which identifies nodes based on their position within the network hierarchy, provides
a spatially informative analysis but often lacks the granularity to distinguish between nodes within
dense core regions, hindering precise identification of critical components [33].

Finally, several studies [34, 35] have also applied community detection and community-
centrality measures to identify critical lines. These methods go beyond traditional centrality
measures by considering the role of nodes within network substructures. However, the effectiveness
of community detection algorithms can vary based on network structure; disconnected components
or isolated nodes can significantly affect their performance. Additionally, these techniques often
require substantial computational resources, particularly in large and complex networks, and their
outcomes are sensitive to the choice of algorithm, making results difficult to generalize across
different grid models.

Given the limitations of single-metric approaches and community detection algorithms in
identifying critical components, this paper introduces a multi-metric methodology aimed at
assessing component importance in cascading failures of power systems. Drawing on concepts
from social network analysis [36], the proposed methodology combines degree centrality, ego-
betweenness centrality, and eigenvector centrality to evaluate node importance and identify core
nodes within interaction graphs. By calculating the normalized sum of these metrics and validating
node roles through statistical correlations, this approach captures both local and global network
properties, offering a more nuanced understanding of component influence.

The proposed methodology’s effectiveness is demonstrated through application to data-driven
interaction graphs constructed using the method from [13], with cascading failure data generated
by a simulator based on [37]. Detailed descriptions of both the interaction graph construction and
cascading failure simulator are provided.
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The main contribution of this paper is to demonstrate that the proposed multi-metric approach
provides an effective and competitive alternativewithin the scope of current interaction-graph-based
methods, offering high computational efficiency and accuracy in identifying critical components.
This is exemplified through comparative analysis with the method in [13], which is widely
recognized as a representative state-of-the-art approach in interaction-graph-based analysis and
has been cited extensively in review articles and recent studies. The case studies on the IEEE
39-bus and IEEE 118-bus systems further underscore the potential of the proposed methodology
to improve cascading failure analysis in power systems.

The paper is organized as follows: Section 2 explains the cascading failure simulator, which
generates the failure data used to build the interaction graphs. Section 3 describes the methodology
for constructing the interaction graphs based on the failure data from cascading failure simulations.
Section 4 introduces the proposed methodology to be applied to the interaction graphs. Section 5
provides a detailed analysis to identify critical transmission lines using the IEEE 39-bus and
IEEE 118-bus systems, which serve as representative models of real power systems, and Section 6
summarizes the findings and draws conclusions.

2. Cascading failure simulator

Various methods for constructing interaction graphs are typically based on cascading failure
simulations and statistical analysis of utility outage data. A variety of tools for simulating
cascading failures in power systems have been developed, as reviewed in [38]. There are two
principal approaches to cascading failure simulation: dynamic transient models [39–41] and
quasi-steady-state (QSS) models [37, 42, 43], each with distinct advantages and limitations.

Dynamic models incorporate the detailed behaviour of system components such as rotating
machines, exciters, and governors, typically described by differential equations. These models
also account for the protective elements and their dynamic responses, providing a more granular
representation of system behaviour. However, this level of detail significantly increases compu-
tational complexity, especially when applied to large-scale systems, limiting the feasibility of
performing numerous Monte Carlo (MC) simulations needed to evaluate blackout risk across
multiple planning scenarios. Additionally, dynamic simulations can suffer from numerical issues
related to solving differential equations, and they often rely on various assumptions that can affect
accuracy. The study by Dai et al. [41] presents an example of enhancing dynamic modelling in
cascading failure studies using Python scripting for DIgSILENT PowerFactory, which addresses
some of these computational challenges.

In contrast, QSS models, which assume a steady-state condition for the system, have been
widely adopted in the literature for cascading failure analysis due to their relative simplicity and
efficiency. These models calculate network re-dispatch flows using power flow analysis, offering
a practical trade-off between computational burden and the ability to assess large-scale blackouts.

For the purposes of this work, a QSS model is sufficient to generate the cascading failure data
needed. The study focuses on the failure of transmission lines and transformers, where a cascade
refers to successive component disconnections following an initial contingency. The sequence of
failures in each simulated cascade is recorded to form the dataset used for analysis.



Vol. 74 (2025) Identifying core nodes in interaction graphs 251

The cascading failure model developed in this work was based on that presented in [37], which
uses AC power flow to account for reactive power and voltage. The cascading failure simulation is
implemented through the following steps:

1. Select and disconnect overloaded components after a contingency occurs.
2. Update the system (generators, lines, and loads).
3. If the system becomes divided into islands, balance the generation and load in each island

by shedding the load or adjusting the generator outputs.
4. Compute AC power flow in each island.
5. If there are components violating their capacity limits, return to Step 1; otherwise, proceed

to Step 6.
6. Calculate load losses or other cascade size metrics and stop the simulation.
In Step 3, if the total supply of active power within an island surpasses the total demand, the

active power outputs of the generators are curtailed. Conversely, if the total supply of active power
falls short of satisfying the total demand, demand reduction is employed to balance supply and
demand within the island. This involves scaling down the energy supply or demand across all
nodes by a common factor. In the event that an island lacks both supply and demand, all supply
and demand nodes within the island are deactivated.

This cascading failure model has limitations because it does not encompass the full complexity
of cascading failures and specifically overlooks transients and phase angle dynamics. Nonetheless,
it enables the identification of the impact of component overloads, which are consistently present
in any cascading failure and blackout. Additionally, this model can produce consistent data
distributions, such as the well-observed power-law distribution of demand loss [44].

3. Estimating the interactions between component failures
in a cascade process

To extract the interactions among the components of the power grid during the cascade process,
a set of cascading failures are simulated using the cascade model described in the previous section.
Given that the cascade model is based on transmission line overloading, the interactions among
the transmission lines of the power grid are obtained. The specific technique outlined in [13]
is adopted in this work for interaction extraction and subsequent interaction graph construction.
Additionally, the technique presented in [13] for the identification of the critical components based
on the obtained interactions is considered in this work for validating the proposed methodology.
This section offers a concise overview of these techniques.

3.1. Graph of interactions

Within cascading failures, a group of failures can trigger subsequent failures in other com-
ponents. These groups, defined as the generation of failures, encapsulate failures occurring in
close temporal proximity. In this work, the sequence of cascade failures is partitioned into these
generations, where cause-and-effect relationships between successive generations are explored.
Specifically, it is assumed that outages in generation k + 1 are caused by outages in generation k.
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Thus, M cascades can be expressed as

Generation 0 Generation 1 Generation 2 · · ·

Cascade 1 F(1)0 F(1)1 F(1)2 · · ·

Cascade 2 F(2)0 F(2)1 F(2)2 · · ·

...
...

...
...

...

Cascade M F(M)0 F(M)1 F(M)2 · · ·

where F(m)
k

is the set of failed components produced in generation k of cascade m.

For a system with n components, a matrix A ∈ Zn×n can be constructed using the M simulated
cascades. The entry ai j of matrix A is the number of times that component i fails in one generation
before the failure of component j among all cascades. The assumption based on which A is
obtained consists of considering that all components in generation k have interactions with all
components in generation k + 1. However, all line outages in one generation may not be the cause
of a line outage in the next generation. Therefore, in the work presented in [13] it is considered
that the cause of failure of a line j in generation k + 1 is due to the failure of a line in generation
k with the maximum influence value on line j. The maximum influence value for component
i in generation k is defined as the number of times that component i has failed in generation k
before the failure of line j in the successive generation k + 1 in the simulated cascades. This can
be expressed mathematically as{

ic |ic ∈ F(m)
k

and aic j = ai j
}
. (1)

Once matrix A is obtained, a corrected A′ ∈ Zn×n is determined, where entry a′i j is the number
of times that the failure of component i causes the failure of component j.

To determine how components interact with each other in a cascade process, the interaction
matrix B ∈ Rn×n is calculated from A′. Its entry bi j is given by

bi j =
a′i j
Ni
, (2)

where bi j is the empirical probability that the failure of component i causes the failure of
component j and Ni is the number of failures of component i.

Finally, an interaction graph G(C,L) can be obtained from matrix B, where vertices C are
components and nonzero element bi j corresponds to a link l ∈ L : i → j that starts from
component i and ends with component j; this also indicates that a failure of the source vertex
component causes the failure of the destination vertex component with a probability greater than 0.

3.2. Identifying critical components
To identify critical components, an index Il is defined for each link l : i → j to be the expected

value of the number of failures that are propagated through link l. The failures propagated through
link l can be directly triggered by the failure of component i or can be triggered by the failures of
other components that eventually cause component i to fail.
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Therefore, to calculate Ii , a directed acyclic subgraph Gj

(
Cj,Lj

)
starting with component j

from interaction network G is obtained. For each link, there is a unique directed acyclic subgraph
that can be extracted from the whole interaction graph and is composed of all the components
influenced by this link. Then, from the subgraph Gj , the index Il is obtained, which indicates the
contribution of a link to the propagation of cascading failures. The greater the index is, the more
important the link is for cascading failure propagation. Thus, the links with large Ii can be defined
as key links.

By taking Ii as the weights of the links, a directed-weighted interaction network GW is
obtained. Then, the vertex out-degree and in-degree of the interaction network can be calculated.
Components with large out-degree can cause great consequences and thus are critical for the
propagation of cascading failures.

4. The proposed methodology

The proposed methodology for identifying critical components within an interaction graph of
cascading failures in power systems builds upon the work presented in [36]. The methodology
focuses on finding core nodes within interaction graphs. A core node is defined as one that binds
a group of nodes together and significantly influences other nodes, typically occupying a central
position within the group. To identify these core nodes, multiple network metrics are utilized.
Based on the experiments and findings detailed in [36], the methodology employs three specific
metrics: degree, ego betweenness centrality, and eigenvector centrality.

Degree is the most used metric and is crucial for identifying important nodes, as nodes with
a high degree are more likely to serve as core nodes. Ego betweenness centrality is chosen to
assess a node’s role in facilitating information exchange. It has been demonstrated across various
applications that nodes with high ego betweenness are critical for mediating communication and
collaboration between non-adjacent nodes. Eigenvector centrality measures a node’s connectivity
to other important nodes, reinforcing a node’s status as a core if it has a high eigenvector centrality.

These metrics exhibit strong positive correlations, which help highlight the topological
features of the nodes, particularly when the correlation of their metrics conflicts with statistical
relationships. In this methodology, the importance of nodes in influencing others is evaluated using
the normalized sum of these three indicators. The following subsections describe the methodology
and its components in detail.

4.1. Evaluation of node importance

In the proposedmethodology, the importance of a node is equal to the normalized sumof its three
metrics. For a given interaction graph G(C, L), where C is the set of vertices and L is the set of links,
if CRDi , CEBi , and CEi denote the normalized value of the degree, the ego-betweenness centrality
and the eigenvector centrality of node i ∈ C, respectively, then the importance IMi of node i is thus:

IMi = CRDi + CEBi + CEi, (3)

where the three metrics are defined as follows:
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Degree centrality
The degree of a node is the number of edges incident to node i, in other words, it is the number

of nearest neighbours that i has. The most characteristic feature of degree centrality is that it
accounts only for the influence of nearest neighbours to a given node [45]. The relative degree of
node i is RDi = Di/(C − 1), where Di is the number of edges incident to node i.

Ego betweenness centrality
An ego network consists of a focal node ("ego") and the nodes to which the ego is directly

connected (these are called "alters") plus the ties, if any, among the alters. The betweenness of
node i is:

Bi =
∑

s,t,i∈C

gst (i)
gst

, (4)

where gst (i) is the number of shortest paths between s and t passing through i and gst is the total
number of shortest paths between s and t. Betweenness centrality measures the usefulness of the
node in the transmission of information within the network. The node plays a central role if many
of the shortest paths between two nodes have to go through this node. With these definitions of
ego network and betweenness, the ego betweenness EBi of node i is the betweenness of i between
its immediate neighbours.

Eigenvector centrality
The eigenvector centrality Ei of node i is defined to be proportional to the sum of the eigenvector

centralities of i’s neighbours, so that

Ei = q−1
∑

nodes j that are
neighbors of i

Ej, (5)

where q must be equal to the largest eigenvalue of the adjacency matrix of the interaction graph.
With this definition, a node can achieve high centrality either by having many neighbours with
modest centrality or by having a few neighbours with high centrality (or both) [46].

4.2. Identification of critical components by identifying the core nodes in the interaction
graph

In the proposed methodology, the identification of critical components in cascading failures
for power systems is achieved by identifying the core nodes in the corresponding interaction graph.
The procedure for identifying core nodes is described in this section.

First, all the nodes of the interaction graph are sorted in descending order by degree, ego-
betweenness centrality, and eigenvector centrality. The rank of node i is denoted as RDi , REBi,

and REi respectively. Second, the following rank differences are obtained: Dif fEBi = RDi − REBi

and Dif fEi = RDi − REi for node i. Third, the general correlation of the overall interaction graph
is computed as follows:

Dif fEB =
1
C

∑
i

Dif fEBi, (6)

Dif fE =
1
C

∑
i

Dif fEi . (7)
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Finally, the core nodes are identified according to the following rule: if 1 ≤ RDi ≤ K ,
Dif fEBi ≥ Dif fEB, and Dif fEi ≥ Dif fE node i is a core node, where K is the greatest integer less
than or equal to the average degree of the interaction graph.

If Dif fEBi ≥ Dif fEB, the rank of the ego-betweenness centrality of node i is greater than
the rank of the degree; thus, the node not only connects with many other nodes but also shows
a more significant feature of information exchange. If Dif fEi ≥ Dif fE , the rank of the eigenvector
centrality of node i is higher than the rank of the degree; thus, the node shows a more significant
feature of connecting with other important nodes.

Overall, the methodology for identifying critical components in cascading failures in power
systems can be presented with the pseudocode shown in Table 1.

Table 1. The pseudocode of the proposed methodology

Pseudocode Description
1: Input: power system data;
2: Output: arrays critical components[];

Begin
3: Simulate cascading failures;
4: Build the matrix A;
5: Obtain the corrected matrix A′;
6: Calculate the interaction matrix B;
7: Build an interaction graph G(C, L); It is obtained from matrix B (See Section 3.1)
8: Set integer K = the greatest integer less
than or equal to 2L/C;
9: Set double av_dif_eb = 0 and
av_dif_e = 0; Dif fEB and Dif fE

10: Set integer #core = 0; Number of detected cores
11: Set array metric[i][3], rank[i][3] and
IM[i];

The value and the rank of the three metrics, and the
importance of all nodes of the interaction graph

12: Set array temporary[C ];
13: metric = calculate_metric (G(C,L)); Computing the metrics’ value of all the nodes
14: rank = getRank (metric); Ranking all the nodes based on the metrics
for each node i do
15: Calculate IM[i]; Computing the importance of node i

16: temporary[i] = rank[i][2]; Recording the rank of ego-betweenness of node i

17: rank[i][2] = rank[i][1] – rank[i][2]; Computing Dif fEBi

18: rank[i][3] = rank[i][1] – rank[i][3]; Computing Dif fEi

19: av_dif_eb = av_dif_eb + rank[i][2]; Summing up the rank difference Dif fEB

20: av_dif_e = av_dif_e + rank[i][3]; Summing up the rank difference Dif fE
end

Continued on next page
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Table 1 – Continued from previous page
Pseudocode Description

21: av_dif_eb = av_dif_eb/C; Computing Dif fEB

22: av_dif_e = av_dif_e/C; Computing Dif fE
for each node i do
if rank[i][1] ≥ 1 and rank[i][1] ≤ K Selecting nodes with great degree as core candidates
and rank[i][2] ≥ av_dif_eb Detecting cores from the candidates
and rank[i][3] ≥ av_dif_e;
23: core_nodes[#core] = i; Recording the detected core nodes
24: #core = #core + ;

end
end
25: Rank = getRank(core_nodes[], IM[]); Ranking the core nodes based on their importances

26: critical_components[] = core_nodes[] The critical components are the core nodes ranked
from highest to lowest importance IM

end

The process of the proposed methodology is as follows: first, outage datasets are obtained by
simulating cascading failures using the model presented in Section 2. The sequence of cascade
failures of each simulation is partitioned into generations (see Section 3.1). Second, with the outage
datasets, the matrices A, A′ and B are calculated according to the procedure explained in Section 3.
The entry bi j of matrix B is the empirical probability that the failure of component i causes the
failure of component j. Third, the interaction graph is obtained from matrix B. Fourth, the values
of multiple metrics of each node are computed; see step 13 in Table 1. Fifth, the importance and
rank difference of each node and the average difference of the interaction graph are calculated in
steps 15 to 22. Sixth, the core nodes are identified according to the identification rule in step 23.
Seventh, in steps 25 and 26, the core nodes are ranked based on their importance and are the
critical components in cascading failures of the power system under analysis.

5. Experiments and analysis

5.1. The case study with the IEEE 39-bus system
The first test system used in this work is the IEEE 39-bus system, which includes 10 generators

and 46 lines. This system is a representative model of the 345 KV New England power system (see
Fig. 1). The basic data for this system can be found in [47] and are not duplicated here. In this study,
10 000 cascading failures were simulated using the cascading model described in Section 2. To
introduce diversity in the cascading outages, the system loads at the start of each run were varied
randomly around their mean values by multiplying by a factor uniformly distributed in [2 − γ, γ],
where γ = 1.15. The initial failures comprised two lines selected randomly, with each line assumed
to fail independently with a probability p = 0.01. These values of γ and p are typical in the literature.
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Fig. 1. One-line diagram of the IEEE 39-bus system. The critical lines found by the proposed methodology

are highlighted in dashed red

By applying the method from [13], matrices A and B were obtained. Due to space limitations,
these matrices are not displayed here. Figure 2 shows the interaction graph derived from matrix B.
The nodes represent lines in the IEEE 39-bus system, and the links denote the interactions between
lines during the cascading process. The weights of the links are omitted for clarity. This graph is
distinct from the one-line diagram in Fig. 1, where the vertices are buses and the undirected links
between vertices are transmission lines. Table 2 lists the seven most critical components identified
using the method from [13].

Table 2. Critical components (transmission lines) in cascading failures of the IEEE 39-bus system

Rank Method of [13] Proposed methodology

1 3 19

2 13 23

3 19 27

4 42 9

5 23 3

6 9 13

7 38 42

To identify critical components using the proposed methodology, we calculated the metric
degree, ego-betweenness, and eigenvector for each node in the interaction graph of Fig. 2. Using
these metrics, the importance of each node was determined with (3). The rank difference of
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Fig. 2. Interaction graph of the IEEE 39-bus system. The critical lines found by the proposed methodology

are highlighted in green

each node and the average difference of the interaction graph were obtained using (6) and (7):
Dif fEB = −6.3696 and Dif fE = −6.6957. To find the core nodes in the interaction graph, K = 17
is set to apply the identifier rule. The core nodes identified were ranked from highest to lowest
in importance, indicating the most critical components of the power system in descending order
of importance.

Table 2 also shows the seven most critical components identified by the proposed methodology.
Comparing the critical components identified by both methods, it can be observed that only
one component differs between the two methods, indicating that the proposed methodology is
competitive with the method from [13]. In the one-line diagram of Fig. 1, the critical lines identified
by the proposed methodology are highlighted in red.

To validate the critical lines, we compared the mitigation effects of upgrading the critical lines
versus upgrading seven random lines. Figures 3 and 4 display the complementary cumulative
distributions of the total number of line outages and the total load shed, respectively. As shown in
Figs. 3 and 4, upgrading the critical lines identified by the proposed methodology more effectively
mitigates the cascading process than does upgrading random lines.

Computation time analysis
To provide a comprehensive evaluation, we also compared the computation times required by

both methods to identify the critical components. The experiments were conducted on a laptop
with an Intel(R) Core(TM) i5-11400H 11th Gen processor operating at a speed of 2.70 GHz
and equipped with 24 GB of RAM. MATLAB R2022b was used for the computations. The
m-files used for this research included custom scripts developed specifically for calculating the
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Fig. 3. The complementary cumulative distribution functions of line outages from 10 000 cascading failure
simulations for the IEEE 39-bus system in three scenarios: before upgrading lines, after upgrading random

lines, and after upgrading the critical lines identified by the proposed methodology

 
Fig. 4. The complementary cumulative distribution functions of load shed from 10 000 cascading failure
simulations for the IEEE 39-bus system in three scenarios: before upgrading lines, after upgrading random

lines, and after upgrading the critical lines identified by the proposed methodology

centrality metrics – degree centrality, ego-betweenness centrality, and eigenvector centrality – and
for building and analysing the interaction graphs.

For the IEEE 39-bus system, the method from [13] took 6.878 seconds, while the proposed
methodology took only 0.954 seconds. This significant reduction in computation time highlights
the efficiency of the proposed methodology.



260 F. Rivas-Dávalos et al. Arch. Elect. Eng.

5.2. The case study with the IEEE 118-bus system

The second test system used in this work is the IEEE 118-bus system (see Fig. 5). This system
approximates the American Electric Power System in the Midwestern US as it was in 1962. It
contains 19 generators, 35 synchronous condensers, 177 lines, 9 transformers, and 91 loads. The
data for this system are standard, except that the line limits are cl = (1 + α)max

{
| fl | , f

}
, where α

is the line tolerance and f is the mean initial line flow. Basic data for this system are provided in [48].

 
Fig. 5. One-line diagram of the IEEE 118-bus system. The critical lines found by the proposed methodology

are highlighted in dashed red

In this case, 30 000 cascading failures were also simulated, using γ = 1.15 and p = 0.01 to
randomly vary system loads and select initial failures. For line capacity limits, α = 1.0 was used.

By applying the method from [13], the resulting interaction graph is shown in Fig. 6, and the
ten most critical components identified by this method are listed in Table 3. Using the proposed
methodology, we also identified the ten most critical components, as shown in Table 3. As in the
previous case, the two methods differ by only one component, demonstrating that the proposed
method is competitive with the method from [13].
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Table 3. Critical components (transmission lines) in cascading failures of the IEEE 118-bus system

Rank Method of [13] Proposed methodology
1 104 119
2 106 104
3 30 126
4 126 106
5 102 105
6 119 54
7 37 30
8 96 96
9 105 102
10 32 37

 
Fig. 6. Interaction graph of the IEEE 118-bus system. The critical lines found by the proposed methodology

are highlighted in green
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As in the previous case, we compared the mitigation effects of upgrading the critical lines versus
upgrading ten random lines. Figures 7 and 8 display the complementary cumulative distributions
of the total number of line outages and the total load shed, respectively. Once again, upgrading the
ten critical lines identified by the proposed methodology more effectively mitigates the cascading
process than does upgrading random lines.

 
Fig. 7. The complementary cumulative distribution functions of line outages from 30 000 cascading failure
simulations for the IEEE 118-bus system in three scenarios: before upgrading lines, after upgrading random

lines, and after upgrading the critical lines identified by the proposed methodology

 
Fig. 8. The complementary cumulative distribution functions of load shed from 30 000 cascading failure
simulations for the IEEE 118-bus system in three scenarios: before upgrading lines, after upgrading random

lines, and after upgrading the critical lines identified by the proposed methodology
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Computation time analysis
We also measured the computation times for the IEEE 118-bus system using the same hardware

and software setup. The method from [13] took 1730 seconds, while the proposed methodology
took only 8.63 seconds. This drastic reduction in computation time further demonstrates the
efficiency and practical applicability of the proposed methodology.

The significant reduction in computation time, as demonstrated in the case studies, not only
demonstrates the efficiency of the method but also indicates its potential for use in real-time
monitoring and control systems. By quickly identifying critical components in the interaction
graph, the methodology could be integrated into supervisory control and data acquisition (SCADA)
systems or energy management systems (EMS) to prevent cascading failures before they escalate.

6. Conclusions

This research introduces a multi-metric methodology for identifying critical transmission lines
in power systems during cascading failures, providing novel contributions that address several
limitations in current methods. Traditional approaches often rely on single-metric measures, such
as degree centrality, which lack the global context necessary for accurately pinpointing critical
components. Other methods, such as community detection algorithms, are sensitive to network
structure and can be affected by disconnected components or isolated nodes. The proposed approach
addresses these challenges by adapting principles from social network analysis, creating a more
comprehensive framework that simultaneously evaluates multiple centrality metrics – degree,
ego-betweenness, and eigenvector centrality – to capture both local and global network properties.

Novel contributions to the methodology
The proposed methodology uniquely integrates multiple centrality metrics into a composite

score, allowing for a balanced assessment of node importance that surpasses the limitations of
single-metric and even dual-metric methods. This approach introduces a new level of accuracy to
power system interaction graphs by combining the strengths of local (degree) and influence-based
(eigenvector and ego-betweenness) metrics. Furthermore, the inclusion of rank differences to
validate core nodes introduces an innovative validation layer that distinguishes truly influential
nodes by analysing inconsistencies across metrics, an aspect not addressed in previous methods.

Impact of the novel methodology on results
Theoretical benefits: By leveraging multiple metrics, the proposed methodology achieves

a nuanced and precise identification of critical components. The multi-metric approach ensures
that nodes with high composite scores are genuinely influential, as demonstrated by the method’s
effective performance in reducing cascading failures.

Quantitative comparison: The IEEE 39-bus and IEEE 118-bus case studies illustrate the
method’s competitive performance. For the IEEE 39-bus system, the proposed methodology
identified six out of seven critical components that matched the results from the method in [13],
with only one differing component. Notably, the proposed methodology achieved these results
with significantly lower computation times – 0.954 seconds compared to 6.878 seconds for the
method in [13]. This represents an improvement of approximately 86.1% in computation time.

Similarly, for the IEEE 118-bus system the proposed methodology identified nine out of
ten critical components matching the method in [13], with only one differing component. This
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result further confirms the reliability of the approach across larger power systems. Also, for this
larger system, the proposed methodology completed the analysis in 8.63 seconds, whereas the
method in [13] required 1730 seconds. This corresponds to a 99.5% reduction in computation
time, demonstrating the scalability and computational efficiency of the proposed approach.

Empirical validation
The critical lines identified by the proposed methodology were further validated through

mitigation testing. As demonstrated in Figs. 3, 4, 7, and 8, upgrading the critical lines identified
by the proposed methodology resulted in a more effective reduction of cascading failures than
upgrading random lines, underscoring the accuracy and reliability of the proposed approach in
identifying genuinely critical components. Additionally, the significant reduction in computation
time across both case studies illustrates the scalability of the methodology, supporting its potential
for real-time applications in large-scale power systems. The combination of high accuracy and
reduced computational demands positions the methodology as an effective and competitive
alternative for rapid decision-making in real-time grid operations.

It is important to note that these results were obtained through comparative analysis with the
method in [13], a well-recognized representative of interaction-graph-based methods, and validated
on the IEEE 39-bus and IEEE 118-bus systems. While the conclusions drawn in this paper are
specific to these test systems and the comparative context provided, the demonstrated advantages
in accuracy and computational efficiency suggest that the proposed methodology holds potential
for broader applicability in cascading failure analysis across diverse power systems. Further studies
are encouraged to explore its performance under varying conditions and in comparison with other
state-of-the-art methods to assess its generalizability.

In summary, this research presents a highly accurate and efficient tool for identifying critical
components in power systems, with results validated through both quantitative comparison and
mitigation testing. By addressing the limitations of previous single-metric and interaction-graph
methods, the proposed multi-metric methodology offers substantial improvements in accuracy,
computational efficiency, and scalability. These advancements represent a valuable contribution to
power systems research, with promising implications for enhancing the stability and resilience of
modern power grids. Future research could explore the integration of machine learning techniques
to further adapt and refine the methodology in real-time grid environments, enabling more robust
solutions for cascading failure prevention and response.

Nomenclature

G(C, G) Interaction graph

C Set of vertices of an interaction graph

L Set of edges of an interaction graph

F(m)
k Set of failed components produced in generation k of cascade m

M Set of simulated cascades

n Number of components of a power system
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ai j
Entry of matrix A, indicating the number of times component i fails in one generation
before the failure of component j among all cascades

a′i j
Entry of matrix A′′, representing the number of times the failure of component i causes
the failure of component j

bi j
Entry of matrix B, the empirical probability that the failure of component i causes the
failure of component j

Ni Number of failures of component i

l A link corresponding to a nonzero element bi j

Il Expected value of the number of failures propagated through link l

Gj
(
Cj,Lj

)
Directed acyclic subgraph starting with component j from interaction network G

GW Directed-weighted interaction network

CRDi , CEBi , CEi
Normalized values of degree, the ego-betweenness centrality and eigenvector centrality
of node i ∈ C, respectively

IMi Importance index of node i

RDi Relative degree of node i

Bi Betweenness of node i

gst (i) Number of shortest paths between s and t passing through i

gst Total number of shortest paths between s and t

EBi Ego betweenness of node i

Ei Eigenvector centrality of node i

q Largest eigenvalue of the adjacency matrix of the interaction graph

RDi , REbi , REi
Rank of node i sorted in descending order by degree, ego-betweenness centrality, and
eigenvector centrality, respectively

Dif fEBi, i f fEi Rank differences

Dif fEB , Dif fE General correlation of the overall interaction graph

K Greatest integer less than or equal to the average degree of the interaction graph
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