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Abstract: The authors of the paper analyse and carry out simulation studies on a cylindrical
linear “excitation coil – permanent magnet” module, which is an elementary component
of many electromagnetic devices and linear permanent magnet (PM) electric motors. The
geometric dimensions of the module and the winding data of the excitation coil correspond
to the constructed prototype. The most important result of the work is demonstrating that
it is possible to approximate the discrete function of the electromagnetic force acting on
the runner, the flux linked with the excitation coil and the electromotive force of motion
induced in the excitation coil using a modified Kloss function. The consequence of these
approximations is conversion of the classical field-circuit model with Lookup Tables into
a purely analytical model. Using this model, simulation studies of the oscillatory motion
of the runner were carried out in the MATLAB Simulink environment, confirming the
usefulness of the developed analytical model in the numerical analysis of dynamic states.

The next part is dedicated to the experimental verification of the proposed analytical
mathematical model. A laboratory setup with a high-speed camera was designed and built.

A comparative analysis of the time curves obtained from measurement studies and
simulation studies was conducted using the example of the damped oscillatory motion of the
runner. The root mean square errors (RMSEs) were determined for various time intervals,
relevant from the perspective of implementing the developed analytical mathematical model
in control systems of different linear electromagnetic devices with permanent magnets.

Key words: analytical form of field-circuit model, approximation of various electromagnetic
quantities, “excitation coil – PM runner” module, linear PM electromagnetic devices,
modified Kloss function
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1. Introduction

The dynamic development of neodymium permanent magnet manufacturing technology and the
constant improvement of magnet performance parameters have led to the increasingly widespread
use of permanent magnets in electric motors and actuators. This applies to both rotary and linear
electromechanical converters [3,8–10,13,15,16,19–21]. The development of technology for drives
with permanent magnets is accompanied by the remarkable advancement in design methods of such
converters which base usually on circuit-field and field calculations [1, 5, 6, 11, 12, 17, 18, 22–24].
This article concerns a cylindrical linear “single excitation coil – permanent magnet” module,
which is an elementary component of many electromagnetic devices, particularly those in which
the magnetic field generated in the air around the considered modules does not interfere with
the operation of other devices. The main aim is to indicate the possibility of a new approach to
formulating mathematical models of the electromagnetic devices containing the above-mentioned
module or consisting of such modules based on the use of analytical approximation functions.

A modified Kloss function was chosen as the approximation function, which has not previously
appeared in this form in the known technical literature and has not been used for such purposes.
The first indication that it can be used to describe the electromagnetic force is contained in the [2].

2. Description of the constructed cylindrical linear “single excitation coil –
permanent magnet” module

The analysed cylindrical linear “single excitation coil – permanent magnet” module is
schematically presented in Fig. 1. As mentioned, such a module (or a set of such modules) is part
of various electromagnetic devices or linear electric motors.

 
Fig. 1. Schematic diagram of a cylindrical linear “single excitation coil – permanent magnet” module (with

disc-shaped PM)
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The permanent magnet (disc-shaped or ring-shaped) serves as the runner which moves within
the cylinder under the influence of the magnetic field generated by the energised excitation
coil wound around the cylinder. The cylinder is made of a non-magnetic material (e.g. Teflon,
a synthetic polymer material or filament used in 3D printing technology).

The position of the runner relative to the excitation coil is determined by the coordinate zR
(Fig. 1).

The following terminology and designations of the geometric dimensions of the individual
elements of the considered module are adopted: outer radius of the permanent magnet RR, length
of the permanent magnet LR, inner radius of the permanent magnet rR (if the permanent magnet
is ring-shaped), length of the excitation coil LC , inner radius of the excitation coil rC , outer radius
of the excitation coil RC , length of the cylinder Cl and wall thickness of the cylinder Cd .

This occurs:
HC − RC − rC, (1)

where HC is the cross-sectional height of the excitation coil.
The authors designed a prototype in which they assumed a ratio of the excitation coil height

HC to its length LC equal to 1:1 (HC/LC = 1) based on the conclusions drawn from a comparative
analysis of coils with different proportions conducted in [3, 5, 6]. Taking into account these
conclusions, the geometric dimensions of the permanent magnet and the excitation coil of the
designed and constructed module have proportions and dimensions, as shown in Fig. 2. Regarding
the cylinder, its length and its wall thickness are, respectively: Cl = 120 mm and Cd = 1.6 mm.
The inner radius of the cylinder is matched to the outer radius of the permanent magnet RR to
ensure a sliding fit.

 
Fig. 2. Visualisation of the “single excitation coil – permanent magnet” module having a ratio of HC/LC = 1

(with ring-shaped PM)
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The number of turns of the excitation coil is n = 576. The excitation coil is made of insulated
AWG 26 winding wires (American Wire Gauge) with a diameter of 0.4 mm and its filling factor
is 74%. The cylinder is made of Teflon and the permanent magnet is made of N38 neodymium.
Based on the insulation class, wire diameter and cooling conditions, the maximum (allowable)
excitation current density is set at 4 A/mm2, corresponding to a maximum excitation current of
0.7 A (Imax = 0.7 A).

3. Mechanical and electrical equilibrium equations of the cylindrical
“single excitation coil – permanent magnet” module

The mathematical model of the cylindrical “single excitation coil – permanent magnet” module
includes:

– mechanical equilibrium equations (for the runner)

m
d2zR
dt2 − F − Fm − Ft,

Ft − kt · sgn
(
dzR
dt

)
, (2)

where: m is the mass of the runner, F is the electromagnetic force acting on the runner
dependent on the current value and the runner’s position, Fm is the load force, Ft is the
friction force between the runner and the inner surface of the cylinder, kt is the friction
coefficient (it was assumed that the aerodynamic drag force can be neglected),

– electrical equilibrium equations (for the excitation coil)

uz − R · i + L
di
dt
− emov, (3)

where: uz is the voltage waveform of the excitation coil power supply, R is the resistance
of the excitation coil, i is the instantaneous current value in the excitation coil, L is the
self-inductance of the excitation coil, emov is the electromotive force of motion induced in
the excitation coil (regarded as a source) dependent on the position and speed of the runner,

– and initial conditions that are:

zR (t = 0) = zR0, (4)
dzR
dt
= v (t = 0) = v0. (5)

The above system of differential equations composed of Eqs. (4) and (5) after transforming
to canonical form can be rewritten in the following way:

d2zR
dt2 −

1
m
· (F − Ft − Fm) , (6)

di
dt
=

1
L
· (uz − R · i − emov) . (7)
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4. Approximation of the discrete function of the electromagnetic force and
the electromotive force of motion

The classical method for solving the above system of differential equations (Eqs. (6) and (7))
involves turning the mathematical model into a field-circuit model, where the relationship between
the electromagnetic force F and two variables: the position zR and excitation current I, as well as
the relationship between the electromotive force of motion induced in the excitation coil emov(t)
and two variables: the position zR and the runner speed ν are discrete functions determined on the
basis of field calculations. The results of these field calculations for appropriately selected points
of the runner position, instantaneous excitation current values and runner speeds are compiled into
the so-called Lookup Tables, which form an essential part of the model [1, 7, 12, 14].

The new method of solving the mathematical model involves transforming it into a purely
analytical model by replacing the discrete functions of electromagnetic force and electromotive
force of motion with their approximations.

The method of approximating the electromagnetic force using a modified Kloss function is
presented in [2–4]. For the constructed prototype (Figs. 1 and 2), the discrete function of the
electromagnetic force determined by the field method (using the FEMM 4.2 software) for 320
points, under the assumption that the excitation coil current i is constant: i = I and equal to
maximum allowable value I = Imax = 0.7 A, is shown in Fig. 3.

 
Fig. 3. The discrete function of the electromagnetic force determined by the field method (using the
FEMM 4.2 software) for 320 points assuming that the constant excitation coil current value is at its maximum:

Imax = 0.7 A
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Due to the linearity of the magnetic circuit, the relationship between the electromagnetic force,
the spatial coordinate zR and the excitation current i can be reduced to the product of the linear
function

i
Imax

and the discrete function f (zR, I = Imax) shown in Fig. 3:

F (zR, i) −
i

Imax
f (zR, I − Imax) . (8)

The function approximating the discrete function f (zR, I = Imax), which is described in detail
in [2–4] is a modified Kloss function having the following form:

f (zR, I = Imax) =
M ′zR(

S′ + z2
R

)2 . (9)

The coefficients of the above analytical function for the discrete function shown in Fig. 3,
determined using the Hooke-Jeeves optimisation algorithm, are: M ′ = −34387 and S′ = 172.

Therefore, the electromagnetic force acting on the runner in the constructed prototype can be
described (based on relations (8) and (9)), as follows:

F (zR, i) −
i

Imax
·

M ′zR(
S′ + z2

R

)2 −
i

0.7
·
(−34387) · zR(

172+z2
R

)2 . (10)

In order to determine analytically the electromotive force of motion induced in the excitation
coil by the permanent magnet, it is necessary to approximate the distribution of the flux linked
with the excitation coil as a function of the runner position Ψ (zR). The discrete distribution of the
flux linked with the excitation coil Ψ (zR) determined using the field method (in the FEMM 4.2
program), in a manner analogous to that used to determine the distribution of the electromagnetic
force (Fig. 3), is shown in Fig. 4.

To achieve consistency between the analytical description of the flux distribution linked with
the excitation coil (Fig. 5) and the analytical description of the electromagnetic force (Eq. (10)), it
was decided to consider the function g (zR) as the approximation function, which is the indefinite
integral of the modified Kloss function described by the formula:

g (zR) =
∫

f (zR) dzR =
M ′′

2
(
S′′ + z2

R

) (11)

The impact of the coefficients M” and S′′ on the shape of the function g (zR) is illustrated
in Fig. 5.

Comparing the analytical functions presented in Fig. 5 with the discrete function shown in
Fig. 4, it can be noticed that the analytical function g (zR) (Eq. (11)) correlates very well with the
waveform of the discrete flux function.

The coefficients M ′′ and S′′ of the analytical function g (zR) (Eq. (11)), approximating the
discrete flux function as depicted in Fig. 4, were determined (similarly to the electromagnetic
force) using the Hooke-Jeeves optimisation algorithm. They are: M ′′ = 52.2 and S′′ = 181.6.
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Fig. 4. The discrete function of the electromotive force of motion induced in the excitation coil by the
permanent magnet was determined by the field method (using the FEMM 4.2 software) for 320 points of the

runner position

 
Fig. 5. The influence of coefficients M ′′ and S′′ on the shape of the function g (zR), approximating the

discrete function of the flux linked with the excitation coil
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With these values of both coefficients, the function approximating the discrete flux function linked
with the excitation coil (Fig. 4) of the form:

Ψ (zR) =
M ′′

2
(
S′′ + z2

R

) = 52.2
2
(
181.6 + z2

R

) . (12)

has a root mean square error RMSE of 0.001 and a percentage error ε = 1.5%, which means
that the function being an integral of the modified Kloss function was very well chosen for
approximating the flux linked with the excitation coil. This is confirmed by Fig. 6.

 

  Fig. 6. Comparison of the discrete function of the flux linked with the excitation coil with the approximation
function based on the indefinite integral of the modified Kloss function (Eq. (11))

With the above analytical description of the flux linked with the excitation coil, we can
analytically determine the electromotive force of motion induced in the excitation coil by the
permanent magnet:

emov (t) = −
dΨ (zR)

dt
= −

dzR
dt

dΨ (zR)
dzR

= −
dzR
dt

M ′′zR(
S′′ + z2

R

)2 ,

emov (t) = −ν (t)
M ′′zR(

S′′ + z2
R

)2 , (13)

where Ψ (ZR) is the flux linked with the excitation coil generated by the permanent magnet and ν
is the linear velocity of the runner.
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Substituting the previously determined values of the coefficients M ′′ and S′′, we obtain the
final expression for the electromotive force, as follows:

emov (t) = −ν
52.3 · zR(

181.6 + z2
R

)2 . (14)

5. The analytical mathematical model of a cylindrical “single excitation coil
– permanent magnet” module

Introducing the electromagnetic force described by Eq. (10) and the electromotive force of
motion described in Eq. (14) into the system of differential equations: Eqs. (2) and (3) we obtain
the mathematical model of the considered cylindrical “single excitation coil – permanent magnet”
module (presented in Figs. 1 and 2) in the following purely analytical form:

d2zR
dt2 =

1
m
·

(
i

0.7
·
(−34387) · zR
(172 + zR2 )

2 − Ft − Fm

)
, (15)

di
dt
=

1
L
·

(
uz − R · i + ν

52.2 · zR
(181.6 + zR2 )

2

)
. (16)

The block diagram of the analytical mathematical model of the “single excitation coil –
permanent magnet” module is presented graphically in Fig. 7.

 
Fig. 7. The graphical structure of the mathematical model of the “single excitation coil – permanent magnet”

module describing input variables, output variables and disturbance variables
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The simulation model was elaborated in the MATLAB Simulink environment. The graphical
structures of the differential equations: mechanical equilibrium equation (Eq. (6)) and electrical
equilibrium equation (Eq. (7)) with initial conditions given by Eqs. (4) and (5), are presented in
Figs. 8 and 9, respectively.

 
Fig. 8. The structure of the mechanical equilibrium equation after implementation in the MATLAB Simulink

environment

 
Fig. 9. The structure of the electrical equilibrium equation after implementation in the MATLAB Simulink

environment

The excitation coil resistance is R = 13.8 Ω and the mass of the runner (the mass of the ring-
shaped permanent magnet) is m = 65.71 g. The self-inductance of the excitation coil determined
by the field method is L = 20.9 mH.
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6. Simulation studies of the oscillatory motion of the runner based
on the analytical mathematical model of the “single excitation coil –

permanent magnet” module

The simulation studies were conducted under the assumption that the excitation coil is powered
by a step voltage uz (t) = Uz · 1 (t), and the initial condition for the runner position is zR0 = 10 mm.
It is evident that in this scenario, the motion of the runner released at the moment t = 0 will be
damped oscillatory motion.

For all the analysed cases a constant friction force was assumed to be Ft = 0.137 N (estimated
on the basis of laboratory experiments). The simulation model of the cylindrical module was solved
for 4 different cases differing in the excitation coil voltage: Uz = 8 V and Uz = 16 V at the no-load
state Fm = 0 N and the full load Fm = 2 N. For each case the following time curveswere determined:
runner acceleration a(t), runner velocity ν (t), runner position zR (t) and excitation coil current i(t).

The considered 4 cases are as follows:
case 1: Uz = 8 V, zR0 = 10 mm, no-load state Fm = 0 N;
case 2: Uz = 6 V, zR0 = 10 mm, no-load state Fm = 0 N;
case 3: Uz = 8 V, zR0 = 10 mm, full load Fm = 2 N;
case 4: Uz = 16 V, zR0 = 10 mm, full load Fm = 2 N.
Simulation results in the form of time curves for the acceleration a(t), velocity ν (t) and position

zR (t) of the runner, along with the excitation coil current i(t) for the last case 4, chosen as the
example, are presented in Fig. 10.

For all the simulated cases 1, 2, 3 and 4 the time required for the runner to move from its initial
position to the centre of the excitation coil ∆T (half of the first oscillation) and the oscillation decay
time of the runner ∆Tmech have been determined. How to determine these characteristic times ∆T
and ∆Tmech was shown on the example of two representative cases in Fig. 11 (the case in Fig. 11(a):
Uz = 16 V, zR0 = 40 mm and Fm = 0 N; the case in Fig. 11(b): Uz = 10 V, zR0 = 10 mm and
Fm = 0.2 N).

The characteristic times ∆T and ∆Tmech read in this manner for all the considered cases 1, 2, 3
and 4 (solved with use of Kloss function approximation) are put together in Table 1.

Table 1. Characteristic times ∆T and ∆Tmech for the 4 considered cases

Fm [N] UZ [V] ∆T [ms] ∆Tmech [ms]

0
8 23 360

16 16 455

2
8 39 185

16 19 365

The analysis of the results presented in Table 1 confirms that for the same load Fm, increasing
the voltage Uz results in a shorter characteristic time ∆T , whereas increasing the load Fm at the
same voltage Uz leads to a longer characteristic time ∆T . Similarly, increasing the voltage Uz

for the same load Fm results in a longer oscillation decay time ∆Tmech, while increasing the load
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Fm for the same voltage Uz results in a shorter oscillation decay time ∆Tmech. This allows us to
conclude that the new model based on the modified Kloss function as the approximation function
is qualitatively accurate. The quantitative assessment of this model is presented in the next chapter.

 

Fig. 10. Time curves for runner acceleration, runner velocity, runner position and excitation coil current for
the chosen case 4: Uz = 16 V, zR0 = 10 mm and full load Fm = 2 N determined on the basis of analytical

mathematical model
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Fig. 11. Method of determining the characteristic times ∆T and ∆Tmech for 2 exemplary cases: (a) Uz = 16 V,

zR0 = 40 mm and Fm = 0 N; (b) Uz = 10 V, zR0 = 10 mm and Fm = 0.2 N
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7. Description of the laboratory stand for measuring instantaneous position
of the runner

The schematic diagram of the laboratory stand for measuring the instantaneous position of the
runner in the “single excitation coil – permanent magnet” module using a high-speed camera is
shown in Fig. 12.

 

Fig. 12. The schematic diagram of the laboratory stand for measuring instantaneous position of the runner
with use of a high-speed camera

The laboratory stand consists of a measurement ruler rigidly connected to the runner, a viewer
for optically reading the instantaneous position of the runner zR and a high-speed camera embedded
in a mobile device from Apple Inc., mounted on a suitably chosen rigid metal tripod. A photo of
the laboratory stand elaborated according to this concept is shown in Fig. 13.

 

Fig. 13. Laboratory stand for measuring the instantaneous position of the runner in the cylindrical linear
module (photo)

The camera used to record the runner motion was equipped with a 48 MP Sony sensor,
a 7-element lens with a 24 mm focal length, an aperture of f /1.78 and automatic four-axis Optical
Image Stabilisation (OIS). The recorded image with a resolution of Full HD (1920 × 1080 px),
was saved in RAW format at a speed of 240 frames per second.
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The measurement verification was conducted using the example of the runner oscillatory
motion. The runner was placed in the initial position zR0 = 40 mm. The excitation coil was
powered by a step voltage uz (t) = Uz · 1 (t), where Uz = 9.7 V. The shape of the required step
voltage was checked experimentally. Under the influence of the magnetic field generated by the
energised excitation coil, the runner, released at the moment t = 0 from the initial position
zR0 = 40 mm, performed damped oscillatory motion. This motion was recorded by the camera
until the runner came to a stop. In the experiment, the transient state lasted approximately 0.45
seconds, and the number of frames recorded at a speed of 240 frames per second was about 110
frames. To obtain the instantaneous position of the runner, the recorded frames were analysed
frame by frame. The results of the measurements supplemented by simulation results obtained on
the basis of the developed analytical mathematical model are presented in the same Fig. 14.

 

Fig. 14. Comparison of the time curve for runner position determined experimentally with the curve obtained
through simulation based on the proposed analytical mathematical model (UZ = 10 V and zR0 = 40 mm)

The percentage error ε for the entire duration of the transient state t ∈ (0 ÷ 450) ms is
ε = 11.9% (with the simulation as a reference). The difference between the simulated and
measured runner positions increases with time, and the reason for this is that the aerodynamic
drag force whose value decreases as the speed of the runner decreases, was neglected in the
simulation studies. It is necessary to underline that in the control systems of various linear
electromagnetic devices with permanent magnets, the re-switching of the excitation coils takes
place in much shorter time intervals. Considering the potential implementation of the proposed
analytical mathematical model in such control systems, the error ε was determined for two shorter
time intervals: t ∈ (0 ÷ 104) ms and t ∈ (0 ÷ 217) ms, as depicted in Fig. 15.

For the time interval t = 0 ÷ 217 ms, the error ε is 5.6% while for the interval t = 0 ÷ 104 ms,
the error ε is even less – ε = 3.0%, (latter time intervals correspond to the re-switching times of
excitation coils in electromagnetic devices with several excitation coils [8, 9, 19]).

The above percentage errors (in the range of only a few percent) indicate that the proposed
analytical model can be successfully implemented in different control systems.
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Fig. 15. Determination of the percentage errors ε for shorter time intervals:
t ∈ (0 ÷ 104) ms and t ∈ (0 ÷ 217) ms

In the next step, it was decided to verify the correctness of the developed analytical model
in yet another way. For the measured time curve from Fig. 4, a time plot of the absolute value
positions of the runner |zR | was drafted (red dashed line) and then all consecutive maximum points
(marked with yellow symbols “?” in Fig. 16) were connected together by an exponential curve.
The final result of this graphical procedure, illustrating the so-called trend line of the damping
oscillatory motion of the runner is presented in Fig. 16.

 

Fig. 16. Graphical procedure for determining trend line of the damping oscillatory motion of runner

The trend line shown in Fig. 16 can be described by the following equation:

y − a · e−
1
b ·x, a = 25, b = 108. (17)
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The coefficient b is equal to the time constant which in the considered case takes the value
τR = 108 ms. Also, from such a point of view, taking into account the trend line of the damping
oscillatory motion of the runner and the associated with this line time constant τR, the measurement
experiments align well with the results of the simulation studies, as shown in Fig. 17.

 

Fig. 17. Comparison of the trend lines of the damping oscillatory motion of runner obtained on the basis of
experiment simulation

8. Conclusions

The subject of theoretical analysis, simulation studies and laboratory experiments was the
cylindrical linear “single excitation coil – permanent magnet” module which is an elementary
component of many electromagnetic devices and linear PM electric motors. By approximating the
discrete function of the electromagnetic force acting on the runner using an analytical function
based on the modified Kloss function and subsequently approximating the discrete function of the
flux linked with the excitation coil using an analytical function based on the indefinite integral
of the modified Kloss function, it was demonstrated that the classical mathematical model of
the analysed module, in the form of a field-circuit model with Lookup Tables, can be replaced
by a purely analytical model. The method of solving such an analytical model in the MATLAB
Simulink environment was illustrated using the example of the oscillatory motion of the runner
under different conditions of excitation coil supply, both in a no-load state and at full load.

The presented comparison of the experimental results obtained when using a high-speed
camera on the laboratory stand with the results of simulations based on the elaborated analytical
mathematical model of the “single excitation coil – permanent magnet” module indicates fully
satisfactory agreement. This agreement has been confirmed through comparative analysis from
various perspectives: direct comparison of time curves by calculating percentage errors ε over
different time intervals, comparison of the trend lines of the damping oscillatory motion of the
runner and comparison of time constants of these lines. It shows that the analytical mathematical
model is suitable for implementation in control systems of electromagnetic devices with permanent
magnets [10, 16, 17].
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“Single excitation coil – permanent magnet” module is a component of a wide variety of
electromagnetic devices and electromechanical converters, so it will be useful to consider in future
the problems associated with the efficiency of such a module and the density of the generated force
(described by the force-per-mass ratio and force-per-volume ratio), as well as minimisation of the
module mass and volume following, for example, the detailed analysis made in [14] in relation to
magnetorheological disc brakes.

It is also worth mentioning that the proposed measurement method using a high-speed camera
has proven to be effective. Its advantages include the low cost of the laboratory stand, easy
operation and the ability to perform multiple measurements quickly and easily within a short time
interval.

The authors envisage the application of the presented “single excitation coil – permanent
magnet” module in the development of the model of a linear cylindrical electromagnetic pump,
whose permanent magnet (runner) simultaneously performs the function of the piston and in the
model of an electromagnetic launcher with missiles made of permanent magnets.

In order to facilitate the use of the new model by designers of such electromagnetic devices,
they plan at a later stage to determine the relationships between the M ′′ and S′′ coefficients of the
approximating function used and the constructional data of the module (geometrical dimensions,
number of turns of the excitation coil, specification of the permanent magnet).
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electromagnetic pump, Przegląd Elektrotechniczny (in Polish), vol. 99, no. 1, pp. 179–184 (2023), DOI:
10.15199/48.2023.01.35.

[5] Bartel S., Kluszczyński K., The Problem of Choosing the Optimal Ratio: Height to Length of Excitation
Coil in Linear Cylindrical PM Synchronous Motors, Progress in Applied Electrical Engineering (PAEE),
Koscielisko, Poland, pp. 1–7 (2023), DOI: 10.1109/PAEE59932.2023.10244671.

[6] Bartel S., Kluszczyński K., The issue of selecting the geometric proportions of excitation coils in a linear
cylindrical synchronous motor with a permanent magnet as a running gear, Przegląd Elektrotechniczny,
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