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 Optimal power extraction from a photovoltaic (PV) plant in urban and rural areas varies due 

to microclimatic conditions and diffuse irradiations. Traditional methods such as Perturb and 

Observe (P&O) and Incremental Conductance (INC) are used in urban and rural PV power 

plants. Diffuse irradiation and microclimatic conditions are different in urban and rural areas. 

Moreover, one of two sides of the PV characteristics is used for tracking the maximum power 

point (MPP), i.e., either constant voltage or constant current region. In this paper, 

a Bayesian-optimized multiple regression-based dual tracking (BM-DT) is proposed for a 

sub-intervals prediction technique (SIPT) and the tracking of MPP is done using both sides 

of the PV characteristics. Moreover, the voltage step used for tracking the MPP is not a fixed 

quantity and is predicted using BM. The proposed BM-DT technique predicts sub-intervals 

from a specified initial voltage interval. Moreover, the maximum power point is tracked 

through interval and SIPT, based on microclimatic conditions. As tracking is done along 

both sides of the photovoltaics (PV), the performance with outstanding power extraction 

efficiencies at low, medium, and high power levels is 99%, 99.2% and 99.4%, respectively. 

 

  

 

;  

 

Keywords:

dual tracking;

sub-interval prediction technique;

maximum power point tracking (MPPT); 

PV array; 
uniform irradiation.

 

 

 

 

1. Introduction  

Optimization methods are used in maximum power point 

tracking (MPPT) for maximum power extraction. MPPT 

algorithms are selected based on the pattern of irradiation 

on all photovoltaic (PV) cells/modules, such as uniform 

irradiation and non-uniform irradiation. Uniform 

irradiation leads to more power delivery from the PV 

modules rather than non-uniform irradiation. 

Many techniques were proposed for MPPT under 

uniform and non-uniform irradiated conditions. Most of the 

techniques implemented in MPPT are for uniform 

irradiation, with a control algorithm that is less complex 

and faster in convergence. MPPT techniques used for non-

uniform irradiation conditions are complex in nature and 

require an effective control technique for convergence. 

Another categorization of the MPPT methods for PV 

modules are off-line and online methods. In the online 

method, the PV module operating parameters, such as 

module terminal voltage (Vpv) and current (Ipv), are 

regularly measured and processed through the control 

algorithm. The control algorithm tracks the maximum 

power point (MPP) continuously, increasing the efficiency 

of the PV system. 

The traditional on-line methods, such as Perturb and 

Observe (P&O) and Incremental Conductance (INC) 

methods, are used in the MPPT. Many new methods have 

been developed to improve MPPT performance by 

adjusting control parameters. Modified P&O and INC 

methods focus on step size, where the step sizes are 

modified with respect to dP/dV [1], dP/dI [2], dI/dD [3], 

dP/dD [4] in the entire range of control space. Based on the 

above parameters, the adaptation is tuned empirically and 

hence loses generalization [2].  

In specific modified P&O methods, the PV curve is 

divided into several sectors/regions and the step sizes are 
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modified based on the voltage sector/region on the PV 

curve in which the operating point lies [5–6], and in another 

similar variant, the step size is modified based on the 

distance of the operating point from the MPP [7]. Another 

modified P&O method incorporates a momentum term to 

the step size, where selecting a momentum factor was 

crucial for faster tracking [8]. In [9], the P&O method is 

based on multi-sampling of the neighbourhood, which 

determines the direction of tracking on the PV curve under 

varying irradiation to avoid incorrect tracking. 

In a few variants, the step size is modified only around 

the MPP at a steady state [10–11] and reduces the oscilla-

tions in MPP. Few methods change the PV parameters, 

such as PV voltage, power, and current and determine the 

perturbation size for the next iteration, enhancing the 

tracking performance during varying irradiation conditions 

[12–14]. Optimization-based MPPT methods track MPP 

for an optimal operating point based on the parameters of 

the PV module [15–19]. Existing MPPT methods are 

complex and need many PV parameters leading to high 

computational costs. 

Different intelligent techniques are used in MPPT-

based intelligent control methods, each with several stages 

of implementing a specific module [20–24]. 

In [25], an MPPT controller has a boundary controller 

using a second-order switching surface in the inner control 

loop and tracks the reference voltage generated by the 

dP/dV tracker in the outer loop. This dP/dV tracker tracks 

the PV characteristics using samples of two consecutive 

points along the constant voltage or the constant current 

region. Furthermore, the switching instants of the switch in 

the converter depend on the geometry of the input capacitor 

voltage and current, leading to a varying switching fre-

quency under transient periods. 

Nowadays, integrated building PV with more efficient 

PV modules using good transparent conductive oxide have 

become popular [26], where installations in urban regions 

require low reflectance value by using texturized glasses, 

which ultimately reduces the electric power output by 

around 5% [27]. Hence, under such circumstances, MPPT 

is essential to extract the remaining available power 

without much loss 

1.1. Research questions (RQ) 

1.1.1 (RQ1) Do the microclimatic conditions influence 

solar irradiations, and how can the MPP be 

implemented for maximum power extraction? 

An attempt has been made to develop a new method for 

the MPPT technique which has less complexity and 

computational burden but has fast tracking and gener-

alization by invoking voltage intervals and then making 

them converge towards the MPP under uniform irradiation 

conditions. Such a conceived method, Bayesian-optimized 

multiple regression-based dual tracking (BM‑DT) is pre-

sented in this paper. The proposed sub-interval predicting 

technique (SIPT) method, also presented in this paper, 

consists of BM-DT that predicts the voltage interval along 

with microclimatic data which are used to fix the new 

intervals in such a way as to reach the MPP without 

divergence. 

1.1.2 (RQ2) How to improve the MPP during the diffuse 

irradiation (DI) which occurs in the urban area and 

extract maximum power from a PV array? 

The proposed BM-DT method tracks the MPP along both 

sides of the PV characteristics, one along the constant 

current (CC) region and the other along the constant 

voltage (CV) region towards the MPP. These two tracking 

processes follow one after the other in the convergence 

process. The BM-DT is proposed for SIPT. The BM-DT 

method presented in this paper uses the module general 

data, microclimatic data of panel planted such as urban/ 

rural areas, and also periodically measures the module 

terminal voltage and current to implement the control 

algorithm to track the MPP effectively along with urban/ 

rural microclimatic data. The module data are required with 

microclimatic data to implement the presented algorithm, 

which are the open circuit voltage Voc and the MPP voltage 

Vmpp both at a standard test condition (STC) and can be 

easily obtained from the specification sheet provided by the 

manufacturer. No special efforts are required to obtain the 

same and the microclimatic data are included in the MPP, 

which is obtained from weather monitoring sensors. 

2. I-V and PV characteristics of a PV module 

Characteristics of a PV module are non-linear due to the 

presence of a PN junction in every PV cell. The generation 

of a PV current is linearly dependent on the level of 

irradiation. The non-linear mathematical model of a PV 

module current vs. voltage characteristics is represented 

in (1) [28]. The corresponding single-diode electrical 

equivalent circuit model of a PV module is shown in Fig. 1. 

pv pv s se pv pv s se

pv p os
s s sh

exp 1 ,
T

V I N R V I N R
I I I

nN V N R

 +  +    
= − − −    

     

 (1) 

where Vpv is the PV module output voltage, Ipv is the PV 

module output current, Ip is the photocurrent produced due 

to irradiation, Ios is the reverse saturation current, VT is the 

thermal voltage, Ns represents the number of cells in series, 

Rsh is the shunt resistance, Rse is the series resistance and 

the ideality factor of the PV cell. 

As the adaptation time of the proposed method is 

shorter compared to changing environmental parameters 

such as module temperature, location humidity, and wind 

speed impact, a simple model of the PV modules is 

considered. 

A graphical representation of the I-V characteristics is 

shown in Fig. 2, which was obtained by solving (1) 

numerically through the Newton-Raphson method for 

 

Fig. 1. Single-diode electrical equivalent circuit model of a PV 

module. 
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different uniform irradiation levels. Similarly, the PV 

characteristics of the PV module shall be obtained 

numerically and plotted in Fig. 3 for different uniform 

irradiation levels. It is obvious from Fig. 2 and Fig. 3 that 

both the I-V and PV characteristics are non-linear, and the 

PV characteristics exhibit unique points at which the power 

delivered through the PV module is at the maximum, and 

such points are known as MPPs. 

To extract maximum power from the PV module under 

the prevailing environmental condition, a power electronic 

converter circuit is interposed between the PV module and 

the load. The converter is operated using control techniques 

and different algorithms. 

3. Dual tracking sub-interval predicting technique 

(SIPT) of MPP 

The proposed SIPT method presented in this paper consists 

of BM-DT, which predicts the voltage interval along with 

microclimatic data, which is used to fix the new intervals 

in such a way as to reach the MPP without divergence. The 

method is graphically illustrated in Fig. 4. 

3.1. Bayesian-optimized multiple regression for dual 

tracking (BM-DT)  

Bayesian optimization automates the search for optimal 

hyperparameters in regression models, which is often a 

resource-intensive process. Bayesian optimization uses the 

Gaussian process and predicts the performance of different 

hyperparameter combinations based on previous evalua-

tions. This method focuses on the hyperparameter space 

leading to better results due to lower mean squared error, 

adaptability, and uncertainty management. 

Bayesian optimization provides a natural framework for 

quantifying uncertainty in predictions. It captures the 

inherent variability in data and model predictions by 

generating posterior distributions for model parameters 

rather than point estimates. This capability allows practi-

tioners to construct credible intervals around predictions, 

offering insights into their reliability. The advantages of 

BM-DT are robustness to outliers, model flexibility, and 

improved model selection. 

Bayesian optimization facilitates model comparison by 

calculating posterior probabilities for different models. 

This capability enables practitioners to select models based 

on performance while taking into account uncertainty and 

prior beliefs about model effectiveness. Bayesian 

optimization helps identify which model best explains the 

data while considering uncertainty in parameter estimates. 

Recent advancements in Bayesian linear regression 

allow for scalable approaches that maintain efficiency even 

as data size increases, making them suitable for small 

datasets. Bayesian optimization enhances multiple regres-

sion models by streamlining hyperparameter tuning, 

effectively managing uncertainty, and facilitating robust 

model selection. This leads to improved predictive 

accuracy and reliability in various applications across data 

science and machine learning domains. 

 

 

# Pseudocode for Bayesian-optimized multiple 

regression (BM-DT) 

# Step 1: Define the model 

function BayesianRegressionModel(X, y): 

   # X: Input features 

   # y: Target variable 

   # Define prior distributions for weights     

     and bias 

    w_prior = Normal(0, 1) # Prior for weights 

    b_prior = Normal(0, 1) # Prior for bias 

# Step 2: Define the likelihood function 

    function likelihood(X, y, w, b): 

      predictions = X * w + b 

      return Normal(predictions, sigma) 

  # Assuming normally distributed errors 

# Step 3: Set up the Bayesian optimization  

  process 

   Function Bayesian Optimization (objective_       

   function, bounds): 

 
Fig. 2. I-V characteristics of a PV module for different 

irradiations. 

 

   Fig.  3.  P-V  characteristics of a PV  module for different

  irradiations. 

 

 

 

Fig. 4. Concept of a dual tracking sub-interval prediction 

technique (SIPT) of MPPT with microclimatic data. 
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 # Initialize Gaussian Process model 

   gp_model = GaussianProcess() 

# Step 4: Randomly sample initial points from   

  the bounds 

  initial_samples=RandomSample(bounds,num_       

  samples) 

  # Evaluate the objective function at initial  

    points for sample in initial_samples: 

  y_sample = objective_function(sample) 

  gp_model.update(sample, y_sample) 

# Step 5: Iteratively optimize 

  for iteration in range(max_iterations): 

  # Update the Gaussian Process model with new    

  observations 

  gp_model.update() 

# Step 6: Find the next point to evaluate using   

  acquisition function 

 next_point=maximize_acquisition_function (gp_   

 model) 

 # Evaluate the objective function at the new  

   point 

   y_next = objective_function(next_point) 

   gp_model.update(next_point, y_next) 

# Step 7: Define the objective function for  

  regression 

function objective_function(params):            

X_train,y_train =load_data() 

# Load training data 

model=BayesianRegressionModel(X_train,y_train

) 

  # Fit model with current parameters and return  

    a metric (e.g., MSE) 

  return compute_mse(model) 

# Main execution flow 

  bounds = define_bounds()   

# Define parameter bounds for optimization 

BayesianOptimization(objective_function, bounds) 
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 Y  V  Predicted  V  V  W  T  H(  v1  v0  1  0  2  3  4−  =  +  +  +  +)          (  )  (  A  )  (  )  (  )  (  ).   

  An  initial  voltage  interval  is  fixed  based  on  the  PV

module open circuit voltage  Voc  and the maximum power

point voltage  Vmpp  at STC given in the specification sheet

by the manufacturer. One of the voltage interval points is

on the CC region, which is fixed between 0  V  and the  Vmpp,

preferably greater than the mean of 0  V  and the  Vmpp,  i.e.,

Vmpp/2. The other voltage interval point is on the CV region 

which is fixed at or around the mean of the  Vmpp  and the

open circuit voltage  Voc,  i.e.,  (Vmpp  +  Voc  )/2.

  After fixing the initial voltage interval points, the DC-

DC converter is operated  so that the PV modules operate at

the  predetermined  voltage  interval  points,  called  Vc0  and

Vv0, one by one, and the respective output power delivered

by the PV modules, i.e.,  P(Vc0) and  P(Vv0), is  measured.

  In  the  first  iteration,  the  initial  voltage  interval  points 

are  predicted  with  BM-DT,  as  in  (2).  Where  α  and  β  are

constant,  H  represents  the  humidity  in %,  T  represents  the

temperature  of  the  area  in  °C  and  W  represents  the  wind

speed in mph  where the PV array is installed.

(2)

  With  the  computed  voltage  VA0,  the  initial  voltage

interval  is  sub-divided  into  two  sub-intervals  such  as

[Vc0,  VA0] and [VA0,  Vv0]. Then,  the new values of voltage

interval  points  are  predicted  from  the  sub-intervals  using

the BM-DT, which are given by the following equations:

(3)

(4) 
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  The PV modules are again made to work at these new 

voltage interval points and the respective power delivered 

by the PV modules at these new voltage interval points 

aremeasured as  P(Vc1) and  P(Vv1).

  The same procedure is followed in the second iteration; 

however,  before  retaining  the  voltage  interval  points  Vc1 

and  Vv1  for the next interval computation, a power check 

needs to be performed,  as stated below.

  If  P(Vc1)  >  P(Vc0),  Vc1  is  retained  otherwise  Vc1  =  Vc0, 

similarly  if  P(Vv1)  >  P(Vv0),  Vv1  is  retained  otherwise 

Vv1  =  Vv0. Upon evaluation of the above criteria, the second 

prediction is computed and these procedures are repeated 

until  a  predetermined  tolerance  is  satisfied  for  both  the 

power  and  the  voltage  interval  points.  It  is  clear  that  the 

prediction optimization continues until the voltage interval 

shrinks and eventually converges to a single point or closer 

to each other when  a  predetermined tolerance for voltage 

interval is satisfied, where the power delivered by the PV 

modules  will  be  at  the  maximum  or  very  close  to  the 

maximum power which depends on the tolerance.

  In  general,  the  interval  average  and  the  sub-interval 

average,  which are the voltage interval points for the next 

iteration,  are predicted as per the following expressions:

(5)

(6) 

(7)

  In  the SIPT method of MPPT, at every iteration, both 

sides of the voltage interval are adjusted and the adjustment 

of the  voltage interval is based on the prediction of the sub- 

intervals created by the average of the interval.

3.2.  General  procedure  of  the  proposed  technique  of

  MPPT

1.  Set  iteration number ‘n’  to 0. Give initial values to the

  voltage interval  as  Vc0  and  Vv0  and drive the converter

  to operate at these voltages consecutively.

2.  Obtain  the  powers  P(Vc0),  P(Vv0)  at  Vc0  and  Vv0,

  respectively.

3.  Predict the values of  Vc0  and  Vv0  as given by  (2).

4.  Increase  ‘n’  and  determine  the  new  voltage  interval

  values given by the following expressions:

(8)

(9)

5. Apply  new voltage values to the  converter.

6. Obtain  new powers  P(Vcn+1) and  P(Vvn+1).

7. Check if  P(Vcn+1) is greater/less than  P(Vcn) and  P(Vvn+1)

is greater/less than  P(Vvn).

8. If  P(Vcn+1) is greater than  P(Vcn),  Vcn+1  shall be carried 

over to next iteration. Otherwise,  reject  Vcn+1  and make 

Vcn+1  =  Vcn.

9. If  P(Vvn+1) is greater than  P(Vvn),  Vvn+1  shall be carried 

over  to  next  iteration.  Otherwise,  reject  Vvn+1,  make 

Vvn+1  =  Vvn. 
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10. Compute the interval average and the sub-interval 

prediction for the next iteration using the following 

expressions: 

( ) ( ) ( ) ( ) ( ) ( )An 1 cn+1 1 vn+1 2 3 4 ,Y V Predicted V V W T H    + − = + + + +

  (10) 

( ) ( ) ( ) ( ) ( ) ( )cn+2 cn+1 1 An+1 2 3 4 ,Y V Predicted V V W T H    − = + + + +

  (11) 

( ) ( ) ( ) ( ) ( ) ( )vn+2 vn+1 1 An+1 2 3 4 .Y V Predicted V V W T H    − = + + + +

  (12) 

11. Find the change in power and voltage as given in (13) 

and (14): 

 ( ) ( )cn+1 vn+1 ,P P V P V = −  (13) 

 cn+1 vn+1.V V V = −  (14) 

12. Check whether ΔP and ΔV are less than tolerance. 

13. If either ΔP or ΔV violates the tolerance, increase ‘n’ 

and go to step 5; otherwise, go to step 14. 

14. Stop changing the voltage intervals. 

15. Apply perturbation to the final value of either Vc or Vv 

for ‘N’ times to check for any change in irradiation 

during iteration. 

16. Check whether the power increases and exceeds 

a predetermined threshold value. 

17. If the power is increasing and greater than the 

predetermined threshold value, proceed to step 1; 

otherwise, proceed to step 18. 

18. Continuously check for any change in irradiation level. 

If not, repeat step 18; otherwise go to step 1. 

3.3. Simulation of SIPT using BM-DT 

The proposed SIPT method for MPPT is verified through 

computer simulations. The computer simulations are carried 

out with the help of a PLECS software. In the simulations: 

i) start-up behaviour, ii) dynamic behaviour when a change 

in irradiation takes place before reaching a steady state, and 

iii) dynamic behaviour when a change in irradiation takes 

place after reaching a steady state of the SIPT method are 

studied using BM-DT. 

The schematic used for the SIPT method of MPPT is 

illustrated in Fig. 5. The intended application of the 

complete circuit is to charge batteries. A PV array, 

consisting of two strings comprising three numbers of PV 

modules all connected in series, is connected to two 12 V 

batteries, connected in series through a buck converter. The 

simulation study is configured with the intention of 

determining the behaviour of PV power, voltage, current, 

and their convergence when the SIPT method is deployed. 

In all the cases, to visualize the convergence of the SIPT 

method, illustrations are made by superimposing the time 

variation of PV voltage and power to create power vs. 

voltage trace. Furthermore, this research is meant for 

uniform irradiation conditions and although the tempera-

ture of the environment and module takes into account the 

self-heating phenomenon, it is not explicitly considered. 

3.4. Start-up behaviour in microclimatic conditions 

The start-up behaviour of the system is considered a vital 

performance index as it shows, under non-uniform irradia-

tion, how fast the MPP is reached and its convergence 

pattern. The start-up performance of the proposed SIPT 

method is studied under the following environmental 

parameters: i) irradiation – 600 W/m2, (ii) temperature – 

25 °C and microclimatic conditions such as i) land surface 

temperature – 25 °C, ii) humidity, and iii) wind speed at 

nominal values of the considered location (Chennai and 

Tiruvallur urban areas) as specified in section 5. During 

tracking, the movement and the convergence of the interval 

points and their corresponding powers are illustrated in 

Fig. 6. The net convergence behaviour of the SIPT method 

during start-up is illustrated in Fig. 7. From Fig. 6 and 

Fig. 7, SIPT tracking performance and its convergence 

towards the MPP are appealing. The time variation of 

PV power, voltage, and current are illustrated in Fig. 8. 

 

Fig. 5. Scheme for verification of the SIPT method by computer simulation. 
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From the simulation, after reaching a steady state, the 

power extracted from the PV array by the SIPT method is 

230.21 W and the true maximum power, which is the peak 

power at a particular environmental condition, is 231.12 W. 

3.5. Dynamic behaviour due to daily insolation (DI) is 

changed before reaching steady state 

Dynamic behaviour was studied and the convergence 

performance was assessed under varying environmental 

microclimatic parameters such as (i) wind speed, (ii) 

humidity, and (iii) surface land temperature. The dynamic 

behaviour of the SIPT method is studied with the following 

environmental parameters: i) initial irradiation – 600 W/m2 

at start-up, ii) initial irradiation – 200 W/m2, and final 

irradiation – 800 W/m2, where the change was initiated 

before reaching steady state, iii) initial irradiation – 

500 W/m2 and final irradiation – 900 W/m2, where the 

change was initiated after reaching steady state, 

iv) temperature – 25 °C and nominal microclimatic 

parameters such as v) wind speed, vi) humidity, vii) surface 

land temperature. The change in the irradiation magnitude 

had been applied before SIPT and reached its steady state. 

The convergence behaviour and the time behaviour of PV 

parameters are illustrated in Fig. 9 and Fig. 10. In this case 

of dynamic behaviour, the final power extracted from the 

PV array after reaching the steady state is 315.46 W and 

a true maximum power is 318.1 W. 

3.6. Dynamic behaviour of DI is changed after reaching 

steady state 

Performance characteristics of the SIPT method were 

investigated, when the magnitude of DI is changed after 

reaching steady state, and the behaviours are illustrated in 

Fig. 11 and Fig. 12 for convergence and combined time 

variation of power, voltage, and current, respectively. 

A simulation study for this condition gives the final 

power extracted from the PV array after reaching steady 

state as 360.69 W and the true maximum power is 361.98 W. 

4. The experimental bedtest of SIPT and BM-DT in 

different urban and rural locations 

The bedtest is used to validate the SIPT method of MPPT 

and confirm the results obtained in the simulations. The 

experimental setup consists of: i) PV array consisting of 

four modules of 125 Wp each with (Voc = 21.8 V, 

Vmpp = 17.4 V) connected in series, ii) buck converter, 

 
Fig. 6. Convergence of interval points of SIPT. 

 
Fig. 7. Net convergence of SIPT during start-up. 

 
Fig. 8. Time variation of PV power, voltage, and current at start-up. 

 
Fig. 9. Tracking/convergence behaviour of SIPT when irradia-

tion is changed before steady state. 

 
Fig. 10. Time variation of PV power, voltage, and current when 

irradiation is changed before steady state. 
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iii) three 12 V batteries of 100 Ah capacity connected in 

series, and iv) control circuit configured around 

dsPIC30F2010. The values of the passive components used 

in the buck converter in the experimental testbed are the 

same as those of the values used in the simulation studies.  

The following equipment take measurements: i) Keysight 

DSO DSOX3014T to monitor dynamics of the SIPT method, 

ii) Tektronix DSO TPS2024 to capture the PV parameters, 

and iii) MECO Solar Array Analyzer to find the true 

maximum power from the PV array. The experimental 

setup is shown in Fig. 13.  

In the experimental study, an iteration step size fixed in 

the software is 400 msec producing better clarity in the 

illustrations. The start-up performance of the SIPT method 

is experimentally verified under a low power-level, medium-

power level, and at a high-power level. Experimentally 

obtained results are shown in Fig. 14 to Fig. 16. The 

extracted power from the PV array under the above-

mentioned power levels is 104 W, 360 W, and 488 W, 

respectively, against the true maximum powers, which is 

the maximum power (peak power at a particular environ-

mental condition) measured by a solar array analyser of 

105 W, 363 W, and 491.6 W, as measured through the 

Solar Array Analyzer. The typical graphical illustration of 

the tracking and convergence performance of the SIPT 

method under medium-power level is obtained by 

superimposing the time variation in PV voltage towards the 

MPP on the power-voltage trace obtained from the data 

captured by a digital storage oscilloscope (DSO), as shown 

in Fig. 17, which gives an excellent correlation with the 

simulated results. 

The performance of the SIPT method is verified under 

dynamic variation of DI during natural cloud movements 

and different microclimatic conditions. The tracking 

performance under such dynamic environmental conditions 

is shown in Fig. 18. This illustration shows the excellent 

behaviour of the SIPT method in tracking and convergence 

towards MPP. 

 
Fig. 11. Tracking/convergence behaviour of SIPT when 

irradiation is changed after steady state. 

 
Fig. 12. Time variation of PV power, voltage, and current when 

irradiation is changed after steady state. 

 

 

 

Fig. 13. Experimental set-up to verify the SIPT method. 

 

 

 

Fig. 14. Start-up behaviour of SIPT at low-power level. 

 

Fig. 15. Start-up behaviour of SIPT at medium-power level. 

 

Fig. 16. Start-up behaviour of SIPT at high-power level. 
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The speed of the tracking process depends on the proper 

design of the PI controller and its effect on the settling time 

of the PV array voltage to the set reference voltage given 

by the SIPT method. The settling time of the designed PI 

controller implemented with a 30F2010 dsPIC digital signal 

controller is 30 ms. Setting the iteration time period to 30 ms 

improves the tracking speed and the convergence time of the 

proposed method is measured at 660 ms. The converging 

performance with this iteration time period is captured using 

a digital storage oscilloscope and illustrated in Fig. 19. 

5. Results and discussion  

The proposed SIPT method with BM-DT prediction is intro-

duced in this paper and has an excellent tracking perfor-

mance and power extraction efficiency. This is obvious 

from the simulation study which is performed under three 

different situations as presented in section 4; the power 

extraction efficiencies are calculated as 99.6%, 99.1%, and 

99.6%, with an excellent tracking performance. This has 

clearly shown the SIPT method success with BM-DT 

prediction in MPPT. The tracking process precisely follows 

the algorithm used to implement the SIPT method. 

The experimental verification of the SIPT method 

showed a testimony to its performance and exhibited an 

excellent correlation with the simulation results. The 

experimental study made at three different power output 

levels has produced a well-acceptable tracking performance 

with outstanding power extraction efficiencies at low, 

medium, and high-power levels as 99%, 99.2%, and 99.4%, 

respectively. The accuracy of the measured results is well 

within ± 2% of the absolute readings. In addition, the 

tracking speed of the SIPT method under DI and urban 

microclimatic conditions of MPP is shown as 660 ms with 

the dsPIC30F2010 digital signal controller. Furthermore, 

tracking convergence is well-established under naturally 

varying DI and urban microclimatic conditions without any 

divergence. Altogether, the overall performance of the 

SIPT method of MPPT is shown through simulation and 

experimental results and leads to this proposed method 

being an excellent method for PV array applications with 

uniform irradiation. 

5.1. DI in urban areas and solar panels  

DI refers to solar radiation that reaches the Earth’s surface 

after being scattered by atmospheric particles, clouds, and 

other obstructions. This type of radiation is crucial for solar 

energy applications, particularly in urban environments 

where buildings can obstruct direct sunlight. DI is very 

high in urban areas. Urban areas typically experience 

different patterns of DI compared to rural settings due to 

factors such as building density, pollution, and atmospheric 

conditions. For instance, studies have shown that cities like 

Chennai in Tamil Nadu, India receive varying amounts of 

DI depending on the season and local atmospheric 

conditions. On clear days, Chennai areas receive up to 

15.6% more DI in June than nearby rural areas like 

Tiruvallur in Tamil Nadu. The presence of particulate 

matter and urban heat can enhance scattering, thus 

increasing the diffuse component of solar radiation. The 

impact on solar panel performance during MPP is higher. 

Figure 20 shows the DI due to high buildings near solar 

panels. 

Solar panels can use direct and diffuse solar radiation, 

making them effective even in less-than-ideal conditions. 

The amount of DI influences the performance of PV 

systems. DI is the sunlight that reaches the panels directly 

 
Fig. 17. Convergence behaviour of SIPT at medium-

power level. 

 

Fig. 18. Dynamic behaviour of SIPT under natural 

variation of irradiation. 

 

Fig. 19. Illustration of convergence time with an iteration 

time of 30 ms. 

 

 

 

Fig. 20. DI due to high buildings near solar panels. 
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from the Sun. It is most effective when panels are oriented 

towards the Sun. DI is critical during times when clouds 

obscure direct sunlight. Due to this diffused light, PV 

systems can still generate electricity under overcast 

conditions. This study indicates that urban environments 

can significantly affect the DI available to solar panels. For 

example, a study highlighted the importance of modelling 

DI on tilted surfaces in urban settings, considering factors 

like building orientation and surrounding structures. 

Tables 1 and 2 show the DI and predicted outpower of the 

proposed BM-DT algorithm for Chennai urban area and 

Tiruvallur rural area, respectively, where DI represents 

the daily insolation, H represents the humidity in %, 

T represents the temperature of the area in °C, and W 

represents the wind speed in mph, Pout and Pin represent 

the output and input power in watts, and η is the efficiency 

in %. Figure 21 shows (a) a histogram of residuals, 

(b) a standard probability plot of residuals for the Chennai 

urban area, and Figure 22 shows the same for the Tiruvallur 

rural area. histogram allows analysts to inspect whether the 

residuals are approximately normally distributed visually. 

This is crucial because many statistical tests and confidence 

intervals rely on the assumption of normality in residuals. 

This study used accuracy, specificity, and sensitivity in 

solar testing. Sensitivity (true positive rate) measures the 

proportion of actual positives that are correctly identified 

by the test. 

    TP / TP FN ,Sensitivity = +  (15) 

where TP equals true positives (correctly identified positive 

cases) and FN = false negatives (actual positives incorrectly 

identified as negative). 

Specificity (true negative rate) measures the proportion 

of actual negatives that are correctly identified by the test. 

    TN / TN FP ,Specificity = +  (16) 

 

where TN = true negatives (correctly identified negative 

cases) and FP = false positives (actual negatives incorrectly 

identified as positive). 

Accuracy measures the overall correctness of the test, 

indicating the proportion of true results (both positives and 

negatives) among the total number of the cases examined. 

    TP TN / TN FP FN .Accuracy = + + +  (17) 

Table 1.  

DI and predicted outpower of the proposed BM-DT algorithm (Chennai urban area). 

Date and time 

Day – D; Evening – E 

DI 

(MJ/m2/day) 

T 

(°C) 

H 

(%) 

W 

(mph) 

Pout (W) 

Actual 

Pout (W) 

Predicted 

η 

(%) 

7/6/24 (D) 18.67 29 84 8 388 387 99.74 

9/7/24 (E) 19.25 32 75 9 400 398 99.50 

8/8/24 (D) 21.97 28 82 8 360 358 99.44 

15/9/24 (D) 24.36 31 86 7 350 348 99.42 

16/9/24 (D) 22.45 32 87 6 412 411 99.75 

20/9/24 (E) 23.45 36 74 8 436 435 99.77 

21/9/24 (E) 18.32 37 84 8 399 387 96.99 

Table. 2. 

DI and predicted outpower of the proposed BM-DT algorithm (Tiruvallur rural area).  

Date and time 

Day – D; Evening – E 

DI 

(MJ/m2/day) 

T 

(°C) 

H 

(%) 

W 

(mph) 

Pout (W) 

Actual 

Pout (W) 

Predicted 

η 

(%) 

17/5/24(D) 15.32 28 90 9 350 346 98.86 

18/6/24(E) 14.32 26 84 10 345 342 99.13 

25/8/24(D) 13.25 25 86 9 354 352 99.43 

26/9/24(D) 12.36 24 89 11 356 350 98.31 

2/9/24 (D) 14.25 25 85 10 400 398 99.50 

22/9/24(E) 17.39 26 80 12 412 411 99.75 

29/9/24(E) 16.27 27 81 10 425 421 99.05 

 

 

 
(a) 

 
(b) 

Fig. 21. (a) Histogram of residuals, (b) normal probability 

plot of residuals for Chennai urban area. 
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Figure 23 compares the performance metrics such as 

accuracy, sensitivity, and specificity of the proposed 

Bayesian-optimized decision tree model with the two 

benchmark methods presented in [29] and [30] at Chennai 

urban area, whereas Figure 24 does the same for Tiruvallur 

rural area. The diffuse horizontal irradiance is measured 

with a pyranometer shaded by a shadow ball. 

5.2. Discussion 

MPPT algorithms are used for optimizing the energy output 

of PV systems during different environmental conditions. 

The output characteristics of PV cells are nonlinear and 

vary with different irradiance levels. As DI increases, the 

overall power output of the PV system is changed and 

affects the location of the MPP on the voltage-current (V-I) 

curve. Under conditions of a high DI, MPP shifts and 

requires MPPT algorithms to adapt quickly to maintain 

optimal performance. When MPPT algorithm is slow to 

respond, it may not effectively capture the maximum 

available power, which leads to reduced efficiency. 

In summary, DI plays a critical role in determining the 

efficiency of MPPT systems in PV applications. The ability 

of the MPPT algorithm to adapt to changing irradiance 

conditions, especially those involving significant diffuse 

radiation, has greatly influenced the overall energy 

production. Proper sensor calibration and choice of MPPT 

technique are essential for optimizing performance under 

varying atmospheric conditions. The presence of DI alters 

the power output characteristics of PV panels. As diffuse 

radiation increases, the PV system voltage-current (V-I) 

curve changes, shifting the MPP upwards. MPPT algo-

rithms must continuously adapt to these changes to 

optimize energy capture effectively. 

The distribution of residuals obtained from the Bayesian-

optimized regression model presented in histogram in 

Figs. 21(a) and 22(a) is divided into bins to group residuals, 

showcasing their distribution. A majority of the residuals 

are concentrated near the zero-residual value, indicating a 

low average deviation between predicted and actual values, 

which reflects the accuracy of the Bayesian-optimized 

regression in estimating the MPP. The histogram indicates 

the effectiveness of the optimization technique. The 

concentration of residuals around zero suggests that the 

model minimizes prediction errors, making it suitable for 

the applications. The histogram also validates the model 

effectiveness in minimizing errors for power output 

predictions under varying solar conditions. 

Examining normality over a wider range of residuals 

captures extreme cases where predictions significantly 

deviate in the form of normal probability plot to assess the 

normality of residuals from the regression model in 

Figs. 21(b) and 22(b). These figures demonstrate the model 

sensitivity to unusual solar or environmental conditions. 

All the residuals were closely aligned with the diagonal 

line, indicating that the model errors are approximately 

normally distributed and that the proposed Bayesian 

regression model is robust. The normality of residuals is 

crucial for ensuring the reliability of the Bayesian 

optimization in tracking the true MPP.  

Further from the charts in Figs. 23 and 24, 

corresponding to two different locations, the performance 

of the proposed method of MPPT has outperformed the 

other two techniques mentioned in [29] and [30] with 

respect to the accuracy of tracking and sensitivity to 

environmental parameters, and specificity in tracking to 

reach the MPP under uniform irradiation without any 

divergence. These qualities underscore the proposed BM-

DT model reliability and robustness in adapting to the 

 
(a) 

 
(b) 

Fig. 22. (a) Histogram of residuals, (b) normal probability 

plot of residuals for Tiruvallur rural area. 

 

 

Fig. 23. Accuracy and specificity for the proposed BM-DT 

(Chennai urban area). 

 

Fig. 24. Accuracy and specificity for the proposed BM-DT 

(Tiruvallur rural area). 
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nonlinear characteristics of solar MPPT systems and 

substantiate their reliability and effectiveness in optimized 

power extraction form PV modules. 

DI notably influences the efficiency of MPPT 

algorithms due to its impact on the power output 

characteristics of PV systems. Algorithms that can quickly 

adapt to changes in diffuse radiation, such as INC, tend to 

perform better than those that do not adjust as dynamically, 

such as P&O. Understanding these dynamics is essential 

for optimizing energy production, especially in environ-

ments with variable cloud cover and diffuse light 

conditions. The proposed BM-DT algorithm performs the 

adaptation within 660 ms on average based on microclimatic 

conditions parameters, whereas P&O method adaptation 

time is 990 ms on average with microclimatic data. 

6. Conclusions 

A new method to track the MPP by sub-interval prediction 

using the BM-DT method for a PV array under DI and 

different urban microclimatic conditions is presented in this 

paper. The proposed SIPT method is verified through 

software simulations. These simulations have confirmed its 

validity regarding attaining the MPP with greater accuracy 

and convergence. Experimental verifications were carried 

out to confirm the validity of the proposed SIPT and BM-

DT methods. It is shown that there was an excellent 

congruence between the results obtained through 

simulations and experimental work. Moreover, it has been 

shown that the time taken by the proposed method has an 

MPP of 660 ms using a low-cost digital signal controller. 

The performance of the presented method with changes in 

ID and urban microclimatic condition levels is excellent 

with appealing convergence; in addition, the efficiency in 

power extraction with different ID levels and urban 

microclimatic conditions is more than 99%.  

Moreover, due to an excellent estimation of MPP and 

the proposed technique good reliability and robustness, the 

user can extract optimal power from PV modules with very 

good efficiency. Further, as the adaptation time is very 

short without any divergence in tracking compared with 

other techniques, the user can obtain a very good overall 

efficiency in power extraction using the proposed BM-DT 

method. Finally, as the system is configured around a low-

cost digital signal controller with less complexity and 

computation, the overall cost of the MPP tracker using the 

proposed technique is lower and affordable to any user. 
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