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Abstract
The gas-liquid two-phase acoustic emission (AE) signal contains rich flow information, but it is also
accompanied by a large number of interference signals. To accurately extract the characteristics of gas-liquid
two-phase flow, the removal of interference signals is very important. In this paper, AE technology is used to
detect the signal of gas-liquid two-phase flow in a vertical pipeline. The support degree of the sensor is checked
by the trust function to confirm the consistency of the sensor and eliminate wrong data. The decomposition
level of the wavelet base and wavelet transform is determined by four parameters such as the signal-to-noise
ratio. By comparing the wavelet exponential window smoothing method and the wavelet soft threshold
method, the wavelet exponential window smoothing method which is more suitable for the denoising effect
is selected, and the real-time denoising effect is evaluated by using the measurement dynamic uncertainty
theory. The results show that the wavelet exponential window denoising method improves the signal-to-noise
ratio, reduces the energy leakage during denoising, and significantly improves the pseudo-Gibbs phenomenon,
while dynamic uncertainty can effectively evaluate the denoising effect of AE signals.
Keywords: acoustic emission, dynamic uncertainty, gas-liquid two-phase flow, wavelet transform.

1. Introduction

Acoustic emission technology, as a new means of measurement, can be used to evaluate the
state of materials or detect the integrity of structures by detecting and analysing the tiny sound
waves generated by materials or systems under stress. This technology is widely used in various
industries because of its non-invasive, real-time monitoring ability, and high sensitivity [1–5].
Also, some studies focus on AE signal characteristics [6–9] and cover AE signal analysis [10–12].
With the progress of science and technology and the deepening of research, acoustic emission
technology has been further expanded in other application fields, one of which is the research
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and application in the field of multiphase flow [13–21]. Many efforts have been made in the field
of gas-liquid two-phase flow in multiphase flow. Li et al. [22] designed a multi-sensor based
on near-infrared, an AE sensor, and a throat tube and applied it to gas-liquid two-phase flow,
proposing a new gas volume fraction model. Diao, Xu et al. [23] proposed a variational mode
decomposition method for detecting the existence and importance of leakage in fluid pipelines by
improving signal denoising on the basis of adequate signal processing of AE signals.

One of the main challenges of AE signal analysis is the existence of noise. In the actual
acquisition process, there are different mechanical and electromagnetic noises in the environment.
If the existing noise cannot be effectively eliminated, the accuracy of the signal is affected,
thus in recent years, researchers have employed various denoising techniques for processing
acoustic emission signals. Liu, Tong et al. [24] utilized the AE-WPD method for acoustic emission
denoising. Yu, Aiping et al. [25] applied SOM neural networks for machine learning-based acoustic
emission denoising, achieving significantly improved filtering effects compared to hardware-based
filters. Kim, Jinki et al. [26] proposed an online acoustic emission signal den[ising strategy using
stochastic resonance (SR) in bistable system arrays. These studies have facilitated the extraction
of useful information by effectively denoising acoustic emission signals. Therefore, the successful
application of AE technology in gas-liquid two-phase flow is determined by how to extract and
remove redundant interference information and how to identify useful information from AE signals.

Based on this, the present study adopts the method of combining wavelet transform and the
exponential window smoothing method to carry out AE signal denoising processing and combines
the uncertainty and diversity of AE signals. In this paper, the idea of dynamic uncertainty is
innovatively incorporated into the evaluation of AE denoising effect, and it is concluded that the
noise removal method using the wavelet exponential window smoothing method improves the
signal-to-noise ratio compared with the noise removal method using wavelet soft thresholding,
and dynamic uncertainty can be used to evaluate the noise removal effect of AE signals.

The remaining parts of this paper are organized as follows. In Section 2, the theoretical
foundation of this paper is introduced. In Section 3, we establish the experimental system for
the acoustic emission experiments. In Section 4, we process and analyse the experimental data,
demonstrating the superiority of the wavelet thresholding method for denoising. In Section 5,
we analyse the dynamic uncertainty of the collected data, accurately reflecting the real-time
capabilities after denoising, and confirm the feasibility of using dynamic uncertainty as a metric
for evaluating the effectiveness of the denoising process.

2. Theoretical basis

The basic model of exponential smoothing is as follows:

sk,t (t) = a f (t) + (1 − a)sk,t (t − 1) (1)

where f (t) is the number of advance periods predicted, a is the weight coefficient and the range is
from 0 to 1.

The parameters are expressed as follows:
sk,t (1) = a f (t) + (1 − a)sk,t (t − 1)(1)

sk,t (2) = ask,t (1) + (1 − a)sk,t (t − 1)(2)

sk,t (3) = ask,t (2) + (1 − a)sk,t (t − 1)(3)
, (2)
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where sk,t (1), sk,t (2), s(3)
k,t

are the first, the second, the third exponential smoothing values corre-
sponding to the t-th.

ft+m = Ak,t + Bk,tm +
1
2

Ck,tm2, k = 1, 2, 3, . . . ,
Ak,t = 3sk,t (1) − 3sk,t (2) + sk,t (3)

Bk,t =
ak,t

2(1 − ak,t )
[(6 − 5ak,t )sk,t (1) − (10 − 8ak,t )s

(2)
k,t
+ (4 − 3ak,t )sk,t (3)

Ck,t =
ak,t

2(1 − ak,t )
(sk,t (1) − 2sk,t (2) + sk,t (3))

, (3)

where Ak,t , Bk,t , Ck,t is the t-th prediction coefficient, and m is the forecast lead time coefficient.
Because of constant updating of the forecast data, the exponential smoothing method is widely

used in the economy. The model provides a good predictive effect on the data with a certain trend,
non-linearity, multi-factors and long-term. Data have the same characteristics in flow noise, so
exponential smoothing can be considered the best method to predict and update data in flow noise.
According to the wavelet theory, flow noise signal can be divided into two parts, one is composed
of wavelet function and the other is composed of the scale function.

f (t) =
n∑
j=1

∑
k∈z

d j
k
Ψj,k(t) +

∑
k∈z

cnk φ j,k(t), (4)

where n is the number of the decomposition level, d j
k
is the k component of the j level, cN

k
is

the decomposition scale coefficient,Ψj,k(t) is a basic wavelet function and φ j,k(t) is the scaling
function. In this paper, the wavelet function is a db function (compactly supported orthogonal
wavelet), and the scaling function is the exponential window smoothing function [27].

The binary discrete wavelet function generated by the wavelet generating function is ex-
pressed as:

Ψj,k(t) = 2−j/2Ψ (2−j − k), (5)

withΨ (t) being a band-pass filter, in which the db function of the wavelet function is expressed as:

Ψj,k(t) =
n−1∑
k=0

Cn+k+1
k Y k (6)

The essential part of the scaling function is the exponential smoothing function. The time
domain varies sharply and a narrow time window is adopted for non-stationary signals. The
frequency domain window is narrow and the temporal resolution is improved. This is stated as:

|φ̂(w)|2 =

∞∑
j=1
|φ̂(2jw)|2, (7)

Øj,k(t) = aY (t) + (1 − a)Øj,k(t − 1). (8)

The basic wavelet function is used to decompose and the exponential window smoothing
function is used to predict and update the signal [28, 29]. The reconstructed information can then
be obtained by substituting the updated coefficients into (4).

f (t) =
n∑
j=1

∑
k∈z

d j
k

(n−1∑
k=0

Cn+k+1
k Y k

)
+

∑
k∈z

aY (t) + (1 − a)Øj,k(t − 1). (9)
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3. Construction of the acoustic emission experimental system

Acoustic emission technology uses a piezoelectric probe mounted on the surface of a material
or component to receive elastic waves and convert them into electrical signals. Then the subsequent
circuit to process is used and the detected electrical signal is displayed from which the internal
conditions of materials or components are obtained.

3.1. Construction of the experimental system

The experiments were conducted using the multi-phase flow experimental platform of Hebei
University. Gas-liquid two-phase flow noise was acquired using the sensor highway III AE instru-
ment (manufactured by the American Physical Acoustics). The sampling rate was set at 5MHz, with
a total of 1048500 sampling points. The experimental probe’s mounting position and the principle
behind acquiring flow noise are illustrated in Fig. 1. P1, P2, P3, and P4 correspond to Sensors
1, 2, 3, and 4 respectively. In the presence of two-phase flow in the pipeline, interactions between
liquid-liquid interfaces, gas-liquid interfaces, and the gas-liquid wall generate acoustic emission
(AE) signals that reflect the underlying mechanisms governing two-phase flow behaviour. Utilizing
the piezoelectric effect within the AE sensor probe, these two-phase flow noise signals are converted
into electrical signals. Subsequently, weak electrical signals are amplified through the utilization
of a sensor highway III acquisition device which records and displays them via a signal acquisition
system before converting analogue signals into digital ones for transmission to a desktop computer.

Fig. 1. Schematic diagram of flow noise acquisition.

3.2. Experimental Test

To study the de-noising method, an AE detection system is used to measure the static and flow
conditions of single-phase water.

The actual test system is shown in Fig. 2.

Fig. 2. Actual test system.
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4. Data analysis

The principle of wavelet transforms and exponential window smoothing is used to evaluate
the dynamic uncertainty of noise signal in this paper. Firstly, the data from each sensor probe is
read in, and the degree of support between sensors is determined by the trust function. When each
sensor meets the support level, the data is retained; when it does not meet the requirements, the
data is discarded. Then, the wavelet basis function and the decomposition level are confirmed,
and the signal-to-noise ratio is used as the de-noising effect. The basis of evaluation is to ensure
that data information is not lost. This is done by determining the input sensor data, setting the
wavelet analysis de-noising parameters, and then starting wavelet exponential window smoothing
de-noising. The effectiveness of de-noising is evaluated by dynamic uncertainty.

4.1. Sensor detection

The measurement data of unstable performance cannot be determined for sensors. Jia et al
used confidence distance to compare the measured data and to check the validity of the sensor [30].
While Akhoundi used a confidence function (2σ) to express the trust between sensors [31].

The confidence function of 2σ is used to express the trust degree among sensors in this paper.
The calculation formula is as follows:

di j = exp
[− 1

2
(xi−x j )

2

(2σi )
2 ], (10)

where xi and xj are measured values and σi is deviation.
The obtained data are then solved to obtain the variance of the support degree of the sensor.

Specific values are shown in Table 1.

Table 1. Support level solution parameter (v).

Serial number 1 2 3 4

Measured value 0.0040 0.0040 0.0011 0.0005

σ2 variance (e–7) 0.0103 0.0045 0.0047 0.0076

The data in Table 1 is taken into the 2σ confidence function to calculate the trust matrix.

di j =


1.0000 0.9811 0.0028 0.9839
0.9577 1.0000 0.0000 0.8522
0.0000 0.0000 1.0000 0.0000
0.9783 0.9091 0.0008 1.0000

 (11)

From the trust matrix, it is apparent that the mutual support degree between Sensor 1 and Sensor 2
is high, while the support degree of Sensor 4 is relatively low, and the support degree of Sensor 3 is
zero. Therefore, it can be determined that Sensor 3 is the fault sensor.

4.2. Selection of Wavelet Functions

For the choice of a wavelet function, the property of the wavelet function is theoretically
analysed, and the signal-to-noise ratio of the wavelet function is compared from the angle of
measurement value.
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By comparing the orthogonality, biorthogonality, compact support, symmetry and regularity
of five wavelets, the properties of the continuous wavelet transform, and discrete wavelet transform,
it can be concluded that the Haar function has no regularity, the dB function has no symmetry,
approximate regularity, bior’s property has no orthogonality and regularity, coif has approximate
symmetry. The db function has no regularity, and sym has approximate symmetry and no regularity.
The specific properties are shown in Table 2.

Table 2. Comparison of wavelet properties

Function Haar db bior coif sym
Orthogonality X X × X X

Biorthogonality X X X X X

Compact support X X X X X

Symmetry X × X – –
Regularity × – × × ×

From the theoretical point of view, the flow noise signal measured by the AE system is
continuous. To satisfy the signal integrity as much as possible, three wavelets, db, sym and coif,
are selected.

Using coif, rbio, Haar, birothogonal, db, symlets and dmey as the wavelet generating functions,
and based on the default decomposition level of five layers, the soft threshold processing method
is used to de-noise, after which the corresponding data is obtained.

The root means square error (RMSE), signal-to-noise ratio (SNR), smoothness index (r)
and correlation coefficient (R) of the evaluation methods of wavelet de-noising quality have been
previously used [32–35] as the evaluation indexes for determining the superiority of wavelet.

The root means square error:

RMSE =

√√
1
n

n∑
i=1
[ f (i) − f̂ (i)]

2
, (12)

The signal-to-noise ratio (SNR):

SNR = 10 × log

n∑
i=1
[ f (i)]2

n∑
i=1
[ f (i) − f̂ (i)]2

, (13)

The smoothness index (r):

r =

n−1∑
i=1
[ f̂ (i + 1) − f̂ (i)]2

n−1∑
i=1
[ f̂ (i + 1) − f (i)]2

, (14)

The correlation coefficient (R):

R =
COV( f (i), f̂ (i))

σf (i)σf̂ (i)

, (15)

where n is the length, f (i) is the original signal, and f̂ (i) is the data obtained after de-noising.
The RMSE is close to zero, indicating a better de-noising effect. SNR is the ratio of energy to

noise energy of data signals, and the criterion is that the larger the SNR is, the better.
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When the cross-correlation number is enlarged by 10 times, the evaluation criterion is that the
correlation number is closer to 10, the better. The smoothness index can reflect the smoothness of
the reconstructed signal. Because the original signal has a good correlation, therefore, smoothness
is an important index to judge the effect of anomaly data processing. The smaller the smoothness,
the better the effect of anomaly data processing.

Using the wavelet generating function coiflets, rbio, Haar, birothogonal, db, symlets, dmey in
the wavelet is based on the default decomposition level of the five, applying the soft-threshold
processing method to de-noise.

From the Fig. 3, it can be seeing that the peak values of RMSE, SNR, R and r are reflected in
bior and rbio functions, while coif, db, fk and sym functions are relatively stable. Coif, db and
sym are three kinds of wavelet basis functions, and the evaluation criteria of these three kinds of
wavelet basis functions are compared again.

a) RMSE change curve

b) SNR change curve

Fig. 3. Coefficient change diagram.
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c) R change curve

d) r change curve

Fig. 3. [cont.]

As can be seen in Table 3, db1 demonstrated the lowest RMSE, the highest SNR, a cross-
correlation coefficient R close to 10, and a satisfactory smoothness index r. In comparison to other
wavelet basis functions, signals processed with the db basis function exhibited superior overall
performance.

Table 3. Evaluation index.

Function RMSE SNR R r
coif1 0.90822×10−4 13.6823 9.1264 0.98969×10−4

coif2 0.90827×10−4 13.6819 9.1641 0.441350×10−4

coif3 0.90827×10−4 13.6819 9.1658 0.396330×10−4

coif4 0.90826×10−4 13.6820 9.1543 0.386223×10−4

coif5 0.90824×10−4 13.6822 9.1362 0.384440×10−4
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Table 3. [cont.]

Function RMSE SNR R r
db1 0.90796×10−4 13.6848 9.1699 0.769570×10−4

db2 0.90817×10−4 13.6828 9.0830 1.072400×10−4

db3 0.90826×10−4 13.6820 9.1533 0.552710×10−4

db4 0.90827×10−4 13.6819 9.1651 0.451070×10−4

db5 0.90822×10−4 13.6824 9.1212 0.426450×10−4

db6 0.90823×10−4 13.6823 9.1326 0.407490×10−4

db7 0.90827×10−4 13.6819 9.1660 0.391100×10−4

db8 0.90824×10−4 13.6822 9.1366 0.392480×10−4

db9 0.90821×10−4 13.6824 9.1188 0.392700×10−4

db10 0.90826×10−4 13.6820 9.1553 0.381420×10−4

sym2 0.90817×10−4 13.6828 9.0830 1.072400×10−4

sym3 0.90826×10−4 13.6820 9.1533 0.552710×10−4

sym4 0.90827×10−4 13.6819 9.1614 0.460940×10−4

sym5 0.90821×10−4 13.6824 9.1181 0.427190×10−4

sym6 0.90826×10−4 13.6820 9.1597 0.401010×10−4

sym7 0.90825×10−4 13.6821 9.1478 0.395890×10−4

sym8 0.90826×10−4 13.6819 9.1591 0.386670×10−4

4.3. Selection of wavelet decomposition layers

With db1 as the wavelet function, the soft threshold method is used for wavelet de-noising.
After data reconstruction, the de-noised data is derived, and the signal-to-noise ratio is used as an
index for selecting the number of wavelet decomposition layers.

In the case of different layers of wavelet basis function db1, the processed data and the original
signal data are substituted into the signal-to-noise ratio formula to obtain the variation of the
signal-to-noise ratio of db1 with the increase of the number of decomposition layers it goes
through. It can be seen from Table 4 that the signal-to-noise ratio shows a gradual decreasing trend

Table 4. Evaluation index after db1 layering.

Function RMSE SNR R r
db1-1 0.65278×10−4 16.5508 0.6997 0.571300000000

db1-2 0.83772×10−4 14.3842 0.3993 0.107200000000

db1-3 0.88770×10−4 13.8809 0.237 0.014800000000

db1-4 0.90111×10−4 13.7506 0.1656 0.003800000000

db1-5 0.90796×10−4 13.6848 0.1121 0.000769570000

db1-6 0.91074×10−4 13.6583 0.0807 0.000201920000

db1-7 0.91221×10−4 13.6443 0.0576 0.000050340000

db1-8 0.91295×10−4 13.6373 0.0413 0.000012812000

db1-9 0.91332×10−4 13.6337 0.0298 0.000003146600

db1-10 0.91350×10−4 13.6320 0.0223 0.000000852220
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with the increase of the number of layers. The signal-to-noise ratio data changes greatly from the
first layer to the fourth layer and tends to be stable from the sixth layer to the twelfth layer.

In the case of AE noise, disturbance noise mainly exists in low-frequency signals, and the
main flow noise exists in high-frequency signals. In wavelet de-noising, with the increase of
decomposition layers, the de-noising of low-frequency signals is further optimized. At the same
time, from the point of view of data calculation, the decomposition level to the 6th level can be
seen as the best. Therefore, it can be concluded that the optimal number of wavelet decomposition
layers is 6. Finally, it is determined that the wavelet function used for de-noising is db1, and the
decomposition layer is 6 layers.

4.4. Wavelet exponential smoothing method for de-noising

For the data collected by AE, it has the characteristics of real-time and a large sample size.
In the process of data processing, measurement and calculation of a period fragment is usually
performed. When the time fragment is intercepted, energy leakage will occur in the signal. In
addition, when wavelet analysis is carried out, the time domain is transformed into the frequency
domain, and energy leakage is also generated. When FFT transform is applied, there will be
a hurdle effect. These two energies cannot cancel each other. In this case, when FFT is performed
with the help of window functions, there will be a gradual and continuous reduction of energy
leakage and fence effect.

In contrast to Table 4, for different window functions, using mean square deviation and
signal-to-noise ratio as the selection conditions, it is concluded that the wavelet exponential
window smoothing method has the smallest RMSE and the largest SNR, which is suitable for
de-noising, so the window smoothing function is selected.

Table 5. Comparison of parameters.

Method RMSE SNR

Exponential 7.7181e-09 13.9567

Gaussian 8.2179e-09 13.6842

Box 8.0778e-09 13.7589

Lowess 7.9921e-09 13.8029

Sgolay 8.5919e-09 13.4927

Medfilt 8.3580e-09 13.6085

As shown in Table 5, the six-window smoothing functions, exponential window function,
Gaussian window function, box window function, Lowess window function, Savitzky–Golay filter
window function and median window function are evaluated in the process of window function
selection. To reduce energy leakage and the pseudo-Gibbs (the pseudo-Gibbs effect) [36, 37],
according to the properties of mean square deviation and signal-to-noise ratio, the smaller the
mean square deviation, the greater the signal-to-noise ratio, which shows the better de-noising
effect. By looking at Table 5 above, it can be concluded that, amongst all the six window methods,
the exponential sliding window function method has the smallest mean square deviation and the
largest signal-to-noise ratio. Therefore, the exponential sliding window method is used to further
reduce energy leakage and fence effect.

The db1 is chosen as the wavelet function, and the decomposition level is 6 layers. At the same
time, the exponential window smoothing method in soft threshold is used for de-noising. Under
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a) Original data spectrogram b) Wavelet spectrogram

c) Wavelet Gaussian window smooth spectrogram d) Wavelet box window smoothing spectrogram

e) Wavelet index window smoothing spectrogram

Fig. 4. Sonograms for different methods.

different de-noising conditions of wavelet de-noising and wavelet exponential window smoothing,
the data collected by Sensors 1, 2 and 4 with a support degree are compared by the RMSE and
SNR the results which are shown in Table 6.
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From the data in Table 6, it can be seen that the growth rate of signal-to-noise ratio of Probe 1
is 139.31%, Probe 2 is 104.02%, and Probe 4 is 88.13%.

Table 6. Comparison of parameters.

Probe Parameter Method 1 Method 2

1
RMSE 8.2665e-09 9.8950e-11
SNR 13.6585 32.6864

2
RMSE 3.8953e-09 8.3954e-11
SNR 15.9126 32.4649

4
RMSE 3.3811e-09 8.1452e-11
SNR 18.2882 34.4049

The original data and the processed data are respectively applied to chaos and the resulting
image of 3D is shown in Fig. 5.

a) Image obtained by applying initial data to chaos. b) Image obtained by applying processed data to chaos.

Fig. 5. Three-dimensional image applied to a chaotic system.

In Fig. 5, numerous sub-chaotic systems are visible without denoising, illustrating the
multidimensional chaotic nature of signals before and after denoising. Before denoising, the state
appears chaotic and disordered, making it challenging to extract effective signals. However, upon
applying the wavelet exponential window smoothing method to denoising, the resulting images
become notably clearer, with a significant reduction in chaos. This enhances multidimensional
consistency, facilitating the extraction of effective signals. The denoising efficacy demonstrated
aligns with the findings in Table 6, which also show the results of utilizing the wavelet exponential
window smoothing method. Fig. 5 vividly illustrates the denoising effectiveness of this method
through the chaos plots.

In Fig. 4, representing the sonograms for different methods, various colours are used to denote
high and low-frequency signals, transitioning from low to high frequencies. In the original signal,
low-frequency signals may be embedded within high-frequency ones. Since the test conditions
involve pure water at rest, removing low-frequency signals is necessary for data processing and
denoising. Initially, low-frequency signals are scattered within the original noisy signal. After
wavelet soft-threshold denoising, prominent low-frequency signals are removed, yet there is

648



Metrol. Meas. Syst.,Vol. 31 (2024), No. 4, pp. 637–655
DOI: 10.24425/mms.2024.152045

a noticeable energy leakage between decomposed signals. Wavelet-Gaussian window smoothing
denoising reduces the energy leakage but does not effectively handle low-frequency noise signals.
Therefore, the wavelet box smoothing denoising method is employed to eliminate low-frequency
noise. Though slightly inferior to wavelet soft-threshold denoising in preserving frequency signals,
it minimizes energy repetition between signal layers. Notably, the wavelet exponential window
smoothing denoising method effectively removes low-frequency signals and reduces energy
leakage, yielding promising results.

5. Analysis of dynamic uncertainty

For AE signal denoising, wavelet transform is a common technique, but in the process
of wavelet decomposition and reconstruction, there will be an energy leakage and the fence effect
at the critical truncation. Therefore, the evaluation of the noise removal effect is a key factor
affecting the analysis of gas-liquid two-phase flow. By summarizing the previous experience, there
are six kinds of quality evaluation of wavelet noise removal:

– RMSE is used for evaluation [34];
– Using the correlation number to evaluate [35];
– The SNR is used as the evaluation standard [36]

and the smoothness (r), which can reflect the smoothness of the reconstructed signal, is used
as the evaluation index [37]. The correlation coefficients were calculated by equal measures
and added together, and the overall evaluation method was used [38]. The denoising quality
of wavelet can be effectively evaluated by using the uncertainty of the estimation of the signal
reconstruction interval [39]. Here, we propose a new method: dynamic uncertainty is applied to
the evaluation of noise signal.

5.1. Theoretical Analysis of Wavelet Signal Evaluation Based on Dynamic Uncertainty

Usually, there are main parameters to evaluate de-noising signal: mean absolute error (MAE),
mean square error (MSE), RMSE, SNRand peak signal-to-noise ratio (PSNR).However, the energy
leakage phenomenon is mainly manifested in the process of wavelet decomposition. If only the
integrity analysis is carried out, the shortcomings of the above denoisingmethods in the intermediate
process cannot be reflected. Compared with static measurement, dynamic data collected by AE
devices has the characteristics of real-time, dynamic, and random, and its influencing factors are
more complex. In addition, the dynamic measurement itself has the advantage of improving the
accuracy of digital calculation and the reliability of measurement results. Therefore, the dynamic
uncertainty method should be selected to evaluate the dynamic denoising performance.

In order to meet the requirement of real-time evaluation in uncertainty analysis of deterministic
components, and considering factors such as variance, efficiency, and robustness, the least squares
fitting method in uncertainty theory was adopted.

Step 1: subtracting the deterministic component from the original data to obtain a residual.

v(i) = x(i) − xc(i) (16)

where x(i) is the original data, xc(i) is the deterministic component.
Step 2: The standard deviation of unit weight is taken:

µ(i) =

√√√√√√ n∑
i=1

v2(i)

n − 2
. (17)
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Step 3: The uncertainty of deterministic components of i point is obtained:

sc(i) =
{
µ2(i)
nsi(i)

(∑
t2
i + t2

i n − 2ti
∑

ti
)}2

. (18)

where n is the length of fitting data and i is the corresponding time of fitting.

si(i) =
∑

t2
i −

1
n

(∑
ti
)2
, (19)

Y (i) = ωp1Y (i − 1) + ωp2Y (i − 2) + · · · + ωppY (i − p) + ε(i), (20)

where p is the order,ωpi is the estimated parameter, ε(i) is the error term for stochastic components.
So, the final randomness uncertainty can be expressed as:

ε(i) = Y (i) − ωp1Y (i − 1) − ωp2Y (i − 2) − · · · − ωppY (i − p), (21)
sr (i) = ε(i) (22)

Step 4: the dynamic uncertainty is obtained:

s(i) =
√

s2
c(i) + s2

r (i). (23)

5.2. Data comparison

The acoustic emission signal acquisition system has 1048500 sampling points and, in order
to clearly highlight the de-noising effect, 90 sampling points were randomly intercepted. Fig. 6
shows a comparison of the original data and noise reduction data from each sensor.

a) Comparison of data from Sensor 1 b) Comparison of data Sensor 2

c) Comparison of data from Sensor 4.

Fig. 6. Comparison of sensor data.
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Since the original signal contains noise, the useful signal was obscured by it. Comparing the raw
data with the denoised data of various sensors, it is evident from Fig. 6 that the signal fluctuation
range of the raw data is large, between 6 × 10−4 V to −3 × 10−4 V. This substantial fluctuation
indicates that the sensor’s raw data contains noise signals, making it difficult to distinguish the
useful signal and affecting the accuracy and reliability of data analysis.

However, the signal processed through the wavelet index window smoothing method tends
to stabilize with a smaller fluctuation amplitude, stabilizing at around −4 × 10−4 V with almost
no fluctuation, significantly restoring the signal’s authenticity. The results demonstrate that the
wavelet index window smoothing method can effectively remove noise from useful signals, proving
the superiority of the wavelet index window smoothing method when used for denoising.

5.3. Comparison of dynamic uncertainty of data

Figure 7 shows the dynamic uncertainty obtained for Sensors 1 and 4 using both wavelet soft
thresholding for noise reduction and wavelet index window smoothing methods. It can be observed
that in the 10∼100 range, wavelet soft thresholding introduces additional discretization error,
leading to a significant energy leakage and the pseudo-Gibbs phenomenon. In contrast, wavelet
index window smoothing for noise reduction displays relatively stable performance in the 10∼100
range without significant fluctuations, indicating no obvious energy leakage or pseudo-Gibbs
phenomena.

a) Smooth dynamic uncertainty for Sensor 1. b) Smooth dynamic uncertainty for Sensor 4.

Fig. 7. Comparison of the smooth dynamic uncertainty of No. 1 and No. 4 wavelet exponential windows.

Regarding the dynamic uncertainty, through the formulas (16)–(23) in Section 5.1, it can
be calculated that the dynamic uncertainty reduction for Sensor 1 using wavelet index window
denoising compared to wavelet soft thresholding denoising is 47.9%, and for Sensor 4, it is 52.3%.
This indicates that the signal fidelity through wavelet index window denoising is better, with lower
noise and error, the signal’s fluctuation amplitude is smaller, displaying more stable and reliable
performance, and better denoising effects. Smaller amplitude changes and lower noise lead to
high-quality signal performance indicated by minimal energy leakage. Similarly, when dynamic
uncertainty is low, the signal processing within the window application and Fourier transform
process is more precise, thereby improving the pseudo-Gibbs phenomenon.
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6. Conclusions

The de-noising analysis is an important step in gas-liquid two-phase flow AE signal processing.
In this paper, AE data are obtained by experiment and the wavelet exponential window smoothing
method is used in the de-noising analysis. Dynamic uncertainty is used to evaluate the de-noising
effect. Using the trust degree function to test the degree of support of the sensor can enhance the
credibility of the experimental data. Based on the growth rate of the SNR of the probes, it is apparent
that the de-noising method using the wavelet exponent window smoothing method improves
the SNR compared with wavelet de-noising. Correct reflection of wavelet exponential window
de-noising method can reduce energy leakage in the process of de-noising, and the pseudo-Gibbs
phenomenon has been significantly improved. Based on the analysis of the experimental results,
it can be concluded that the proposed method is feasible and can be used for de-noising analysis
of gas-liquid two-phase flow AE signal processing.
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