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Abstract
Compliant mechanisms are the state-of-the-art in precision Compliant Parallelogram Stage (CPS) due to their
many beneficial features. However, the translational motion of CPS is accompanied by parasitic displacement
and coupling error in these mechanisms. In this paper, the parasitic displacements are analysed by firstly
applying the pseudo-rigid-body theory to One-Degree of Freedom (1-DoF) CPS. Then the theoretical model
of the Coupling Error Transfer Matrix (CETM) is presented on a Three-Degree of Freedom (3-DoF) serial
CPS. Moreover, the general forms of CETM are developed for the various configurations of 3-DoF-compliant
mechanisms. In addition, the coupling error model is validated through experiment on a 1-DoF CPS.
Meanwhile, the analytical results are validated with Finite Element Analysis (FEA) by comparing the parasitic
displacements on each coordination axial direction. Compared with the analysis results between theoretical
calculation and the FEA method, the maximum difference of the parasitic displacement is about 0.18 uµ and
the relative error of about 6.22%. This result offers effective ways to calculate and compensate for the coupling
errors and serves to facilitate further work regarding the precision analysis of compliant mechanisms.
Keywords: Compliant Parallelogram stage, Parasitic displacement, Coupling error, Transfer matrix.

1. Introduction

Compliant mechanisms constitute a crucial branch of modern mechanics which applies elastic
deformation of flexible materials to transmit motion and power [1]. Compared with traditional rigid
mechanisms, compliant mechanisms have many advantages, such as zero backlash, lubrication-
free, no friction and wear, smooth and continuous motion, compact structures and displacement
resolution up to 1 nm [2]. Therefore, they have been extensively employed in high-precision
applications such as surgical tools, micro-grippers, micro/nano manipulators and even precise
measurement mechanisms.

Flexure hinges [3], parallel springs [4] and flexible diaphragms [5] are widely used in measure-
ment mechanisms and micro-positioning systems. For example, the compliant parallelogram plates
are employed in both the Renishaw SP80 probe and Klingelnberg K3D probe [6] that are serve
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as the translational displacement units. Over the last two decades, compliant mechanisms have
assumed increasingly critical roles in precise transmission fields. Research in the field of compliant
mechanisms is rapidly increasing due to extensive applications of Micro-Electro-Mechanical
Systems technology.

However, the accompanying parasitic motion and coupling error can adversely affect the
displacement accuracy and working characteristics during the operation of a CPS [7]. Therefore,
it is essential to analyse the reason for parasitic displacement and coupling errors in the CPS. These
efforts could establish a good foundation for taking reasonable measures to reduce the adverse
impact of coupling errors on CPSs. So far, some solutions have been proposed to increase the
motion precision of compliant mechanisms. For instance, the precise movements of displacement of
flexure hinges were negatively affected by stiffness reduction in bearing directions [8]. Meanwhile,
the manufacturing tolerances of flexible beams can adversely affect the bearing direction stiffness
and error motions. The theoretical parasitic rotational angle of the compliant module was analysed
with respect to the axial deformations of the beams [9].

Moreover, analyticalmethods have been proposed that are based on themathematical description
of compliant mechanisms. The theoretical models of the mechanisms’ natural frequency were
established by using the Lagrange equation [10]. The geometric compatibility equations were
combined to describe the coupling effects among kinematic chains [11]. Addressing the issue
of parasitic rotation in compliant mechanisms between the fixed base and motion parts, a non-
under-constrained compliant module was developed to constrain the parasitic rotation and
lost motion [12]. Furthermore, an analytical method was formulated for parasitic rotation and
displacement calculations of a CPS [13]. The actuator can obtain continuous linear motion by the
parasitic motion of the asymmetrical-trapezoid-compliant mechanisms [14].

On the other hand, the several compliant parallelogram units can be assembled in various
arrangements. Double parallelogram guide mechanisms were added at the output ends of the
bridge-type mechanisms to minimize the parasitic movements of the XY mechanism [15]. The
motion errors in the bearing direction can be reduced by arranging two parallelogram-compliant
modules in a nested parallel arrangement [16]. The existence of complex non-minimum phase
zeros was presented in two double parallelogram mechanisms [17]. Additionally, the coupling
motion of compliant parallelogram modules would be partially eliminated because the topology
structure was kineto-statically decoupled [18].

Based on previous studies, the current research on parasitic displacement and error compensa-
tion has been mostly limited to single-degree of freedom mechanisms. Meanwhile, these studies
were largely focused on the theoretical model of flexible elements and analysis of the relationship
between load and stiffness. Yet, comparatively little research has been done on the coupling error
of multi-degrees of freedom CPSs.

This paper presents a novel theoretical model of parasitic displacement and coupling error
which are the research highlights on the CPS. A series of 3-DoF CPS is proposed in Section 2. The
CETM of the 3-DoF CPS is established and the coupling-error relationships are described under
different topological structures in Section 3. The correctness of this theoretical model is verified
by the experimental investigation and FEA simulation. Finally, conclusions are given in Section 5.

2. Principle of the 3-DoF translational stage

The common compliant structural forms include flexure hinges, flexible beams [2], parallel
springs [4] and flexible diaphragms [6]. In the field of MEMS systems, flexible elements are
used as translational or guiding mechanisms with the displacement reaching the micro-meter
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level. They are often composed of a single parallelogram unit or several parallelogram units to
meet high-precision and large-stroke transmission requirements. Figure 1 shows the schematic
diagram of a serial model of the 3-DoF translational mechanism. The centre of the measuring
ball is defined as the coordinate origin 0 while the directions of the three orthogonal axes are
the x-axis, y-axis and z-axis respectively. The reverse direction of the stylus feed is defined as
the z-axis. The complex spatial movements can be decomposed and guided using the translational
motion on each axial compliant guidance unit.

Fig. 1. The series model of the 3-DoF translational stage,1) stylus, 2) the x-axial translational unit, 3) the y-axial
translational unit, 4) the z-axial translational unit, 5) the fixed base.

The displacements of each translational unit are measured through the internal sensors of
the compliant mechanisms. Hence, the geometric information is calculated according to the
measurement point information such as the size and shape of the measured objects. The input
driving force is transmitted to the compliant guidance mechanism by the stylus when the external
measuring stylus contacts the measured object. The general working stroke range of a precision 3D
scanning probe is ±1–2.5 mm, the measurement driving force is ±0.1–0.5 N and the resolution
can reach the level of 0.01–0.02 µm [19].

The sliding or rolling guide pairs were rarely used in the guiding mechanism of precision
translational motion because these guide pairs are not only dependent on the relative contact
surface to provide certain preloading force and reasonable lubrication conditions but also on some
reset devices to ensure the smoothness and continuity of guiding movement.

However, for these pairs it is difficult to meet the performance requirements of the guiding
mechanism in precise measurement or positioning systems. Ideally, the transmission process
of the translational mechanism is approach its being frictionless, gapless and compact. These
requirements are well adapted to use the Compliant Parallelogram Stage to construct miniaturized
or even miniaturized translational motion mechanisms. Hence, it is suitable as a CPS for precise
positioning or micro-measurement systems [20].

3. Coupling error of CPS

Parasitic displacement is an accompanying displacement which is generated in the vertical
direction of the main motion direction in mechanisms. The coupling effect among different motion
units can have a significant influence on the motion accuracy and performance of an integral CPS.

For example, the 3-DoF-compliant translational units of a precision scanning probe can be com-
bined in serial, parallel or serial-parallel hybrid structure. The coupling errors and parasitic displace-
ments are presented in different forms according to these various topological structures. Therefore,
it is necessary to analyse the principle of coupling errors in different configurations of CPS, and
some reasonable measures can be taken to reduce the negative impact of coupling errors on CPS.
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3.1. Parasitic displacement of 1-DoF CPS

Figure 2 shows the pseudo-rigid-body model of the 1-DoF Compliant Parallelogram Stage.
Therein the undeformed initial situation is represented by solid lines and the deformed situation is
represented by dashed lines. According to the pseudo-rigid body theory [21,22], the flexible guide
plate is equivalent to a rigid element and the flexure hinges at both ends of each guide plate are
equivalent to the ideal rotational pairs. This CPS is fixed to the base and loaded with the input
driving force F on the end of the stylus. The pseudo-rigid-body angle θ of the compliant guide
plates is caused by elastic deformation of the flexure hinges. The parasitic displacement δ in the
y-axial direction is caused by the translational displacement∆x in the x-axial direction which can
be represented as:

δ = l −
√

l2 − ∆x2, (1)
where l is the length of the compliant guide plates. The dimensionless expressionλis introduced
which is defined asλ = ∆x/l. The parameter η can be expressed asη = δ/l in the coupling error
coefficient of the CPS, then (1) can be written as:

η = 1 −
√

1 − λ2. (2)

Fig. 2. Pseudo-rigid-body model of 1-DOF CPS.

The translational displacement ∆x is along the main motion direction of the input driving
force F while the direction vector of parasitic displacement δ is perpendicular to the translational
displacement ∆x. Furthermore, the parasitic displacement δ is affected by the material and some
structural parameters of the two compliant plates. Generally, there is ∆x ≤ l in the precision
translational guidance and micro-positioning mechanisms.

If the polynomial
√

1 − λ2 is expanded by using the Taylor expansion:√
1 − λ2 = 1 −

λ2

2
+ · · · + Rn(λ) ≈ 1 −

λ2

2
. (3)

If the formula (3) is substituted into (2), the error coupling coefficient is obtained as:

η =
1
2
λ2 =

1
2

(
∆x
l

)2
≈

1
2
θ2. (4)
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In (4), the driving force F is the combined action on the compliant guide plates on both sides
of the parallelogram mechanism. The value of the pseudo-rigid-body angle θ is the ratio of the
translational displacement ∆x to the length l of compliant plates. According to the equation in the
references [23], the parasitic displacement δ can be expressed as:

δ = l − γl sin θ = l(1 − γ sin θ). (5)

Here, γ is the characteristic radius factor. A simple rule-of-thumb for γ in rough calculations
is γ = 0.85. Once γ is determined, the deflection path may be parameterized in terms of θ, the
pseudo-rigid-body angle. For this reason, the pseudo-rigid-body angle θ will increase accordingly
when the CPS is improved to achieve a large stroke, but the parasitic displacement δ will be
decreased conversely. As a result, the larger value of the pseudo-rigid-body angle θ would not
affect the estimation of parasitic displacements in compliant guiding mechanisms.

The parasitic rotation of the guiding plate occurs when the axial deformations of the two
compliant plates are considered. With a right horizontal force F acting on the translational plate,
the left compliant plate will be extended by an axial force P2 and the right compliant plate will be
compressed by another axial force P1. Parasitic displacement δ1 and δ2 are the axial deformations
of the right and the left compliant plates respectively. The parameter α is the parasitic angle of
the guiding plate and D is the distance between two compliant plates. As the symmetry of this
structure is about the y-axis, the force F and moment M acting on two compliant plates are almost
the same. From the geometry relations and balance of forces and moments in Fig. 2, the following
equations can be presented as:

M1 + M2 − Flp cosα + (Q1 +Q2)
D
2

sinα + (P1 + P2)
D
2

cosα = 0

D sinα + δ2 = δ1

∆x1 = ∆x2 = −
Q1l3

3EI
= −

Q2l3

3EI
F = P1 + P2

, (6)

where α is very small angle in small deformation. Then sinα ≈ α and cosα ≈ 1, so the parasitic
angle of this CPS can be calculated as below:

α =
F(l + lp)2

E(hlD2 + 4I)
. (7)

This type of a 1-DoF CPS is applied in precision mechanisms such as scanning probes or
precise positioning mechanisms. The range of displacement is several milli-meters and the driving
force F is relatively smaller. It is commonly as little as 0.5 N approximately. When the length
of the stylus is lp = 28 mm, the values of the other parameters are shown in following Table 3,
The calculated value of parasitic angle α is 2.08 × 10−7◦. Therefore, the parasitic motion of the
guiding plate can be negligible.

The different flexure hinges are adopted in various compliant mechanisms, such as the
rectangular flexure hinge, right-circular flexure hinge and elliptical flexure hinges. The similar
structure of a 1-DoF CPS is built with different flexure elements. The distinct stiffness of these
flexure hinges and the stiffness of a 1-DoF CPS are listed in Table 1 respectively.

Parameter t is the minimum thickness which is an important index of stiffness performance in
flexure hinges. The stiffness Khingeof the flexure hinge increases with the increase of the minimum
thickness t.
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Table 1. Stiffness of three types of compliant stages with their corresponding flexure hinges.

Types Structure of compliant units Formula for stiffness

Rectangular
flexure hinge Khinge =

Eht3

12lR

CPS built with
rectangular

flexure hinges
Kstage =

Eht3

3lR l2

Right-circular
flexure hinges Khinge =

Eh3

24

(
t + 2R√
t(t + 4R)

arctan

(
t + 2R√
t(t + 4R)

)
−

π

4

)

CPS built with
right-circular
flexure hinges

Kstage =
Eh3

6l2
(

t+2R√
t (t+4R)

arctan

(
t + 2R√
t(t + 4R)

)
−

π

4

)

Elliptical flexure
hinges

Khinge =
Eha3

y

12ax

[
12(ay/t)

4(2ay/t + 1)
(4ay/t + 1)1/2

arctan
√

4ay/t + 1

+

2(ay/t)
3

(
16ay

t

2
+ 4ay/t + 1

)
(4ay/t + 1

)2
+ 2(ay/t + 1)



−1

CPS built with
elliptical flexure

hinges

Kstage =
Eha3

y

3ax l2

[ 12(ay/t)
4(2ay/t + 1)

(4ay/t + 1)1/2
arctan

√
4ay/t + 1

+

2(ay/t)
3
(

16ay
t

2
+ 4ay/t + 1

)
(4ay/t + 1)2 + 2(ay/t + 1)


−1

Based on the theory of the Flexible Beam Bending principle, the swing angle of the single-sided
compliant guide plates is θ = Fl2/4EIθ = Fl2/4EI. The elastic modulusEshould be corrected to
the plane elastic modulus E ′ when the ratio of width b to thicknessh is more than 10 times for the
compliant guide plates, and the correction relationship is shown in (8):
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E ′ =
E

1 − µ2 . (8)

In the equation above, the parameter µ is the Poisson’s ratio for the flexible material of the
compliant guiding plates. The parasitic displacement δ of a 1-DoF on CPS can be expressed as:

δ =
F2l5

32(E ′I)2
, (9)

where E ′I is the bending stiffness and the section is a rectangle consisting of the compliant guide
plates. The moment of inertia is I = lh3/12 when the bending deformation occurs in the compliant
plates. Therefore, in such case, the expression of the parasitic displacement δ is adapted as:

δ =
9F2l5

2E ′2h6 . (10)

3.2. Coupling error of 3-DoF CPS

The higher the degree of freedom in compliant mechanisms, the more parasitic displacement
and coupling error would exist in these mechanisms. Coupling errors are an important source
of errors in compliant mechanisms such as precision probes or micro positioning systems. This
research focuses on exploring the principles of coupling error in the compliant stage and establishing
the Coupling Error Transfer Matrix (CETM). The aim is to develop the theoretical model for
improving the motion accuracy and comprehensive performance of CPS. In this section, three
units of a 1-DoF CPS were arranged in series to constitute a 3-DoF-compliant guiding mechanism
in the probe, as shown in Fig. 3. The axial direction of the stylus is defined as the z-axis. Some
insignificant factors were disregarded in this study, such as deformation of the stylus and radius
errors of the measuring ball.

Fig. 3. Serial configuration of a 3-DoF CPS.

Assuming that the ideal translational output displacements are Φ = (∆x,∆y,∆z)T given by
three sensor units that are fitted inside each compliant stage, it can be concluded that there are
coupling errors in the compliant guidance mechanism along the three coordinate axes. The CETM
of the 3-DoF-compliant parallelogram guidance mechanism is expressed as:

Γ = (δi j). (11)

In this equation, δi jrepresents the coupling error of the compliant stage in the i-axial direction,
which is caused by the motion of the compliant stage in the j-axial direction, wherei, j = x, y, z.
The actual output translational displacement of the 3-DoF-compliant translational mechanism can
be defined asΛ = (xp, yp, zp)T :

Λ = Φ + Γ, (12)
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xp
yp
zp

 =

∆x
∆y
∆z

 +

δxx δxy δxz
δyx δyy δyz
δzx δzy δzz



1
1
1

 = Φ + δi jer, (13)

where δxx , δyy , δzz are the inherent characteristic errors of the internal sensors of the CPS.
Assuming that the inessential influence of intrinsic characteristics of each sensor was ignored in
the compliant mechanism, so that there is δxx = δyy = δzz = 0, (13) can be written as:

xp
yp
zp

 =

∆x
∆y
∆z

 +


0 δxy δxz
δyx 0 δyz
δzx δzy 0



1
1
1

 = Φ + Γer . (14)

Considering the configuration relationship of the 3-DoF-compliant guidance mechanism
in Fig. 3, the three-axial translational displacement is measured respectively by each sensor which
is installed inside each stage. It is due to the parasitic displacements of the y-axial and z-axial
CPS present without those along the x-axis. The reading for the x-axial sensor only contains the
translational displacement of the x-axial CPS, resulting in δxy = 0, δxz = 0.

Meanwhile, the coupling impact of the z-axial CPS does not act on the y-axial CPS because the
parasitic displacement of the z-axial CPS is presented along y-axis while the parasitic displacement
of the x-axial CPS does not occur along the y-axial CPS, so δyx = 0, δyz = 0.

For the same reason, the parasitic displacements of the x-axial and y-axial CPS are both
present along the z-axis, thus the reading for the z-axial sensor not only comprises the translational
displacement of the z-axial CPS, but also the parasitic displacements of the x-axial and y-axial
CPS simultaneously. Therefore, the corresponding matrix elements should be considered as
δzx , 0, δzy , 0.

Therefore, the relationship expression can be obtained between the actual output translational
displacement (xp,p , zp)T and the measurement results(∆x,∆y,∆z)T along with three axes of the
compliant mechanism as follows: 

xp = ∆x
yp = ∆y + δyz

zp = ∆z + δzx + δzy

. (15)

Then the CETMΓ of this compliant parallelogram mechanism can be expressed as:

Γ =


0 0 0
0 0 δyz
δzx δzy 0

 . (16)

Based on the research conclusion of the parasitic displacement model of a 1-DoF CPS above,
the stroke ratio is λi = ∆i/li (i = x, y, z). According to formulas (1) and (9), the coupling error on
the z-axial compliant stage, which is caused by the motion of thex-axis directional CPS, can be
calculated as:

δzx =
(
1 −

√
1 − λ2

x

)
lx =

F2
x l5

x

32(E ′I)2
. (17)

For the same reason, the coupling error on the z-axial compliant stage caused by the motion of
the y-axis directional compliant parallelogram stage can be determined as:

δzy =
(
1 −

√
1 − λ2

y

)
ly =

F2
y l5

y

32(E ′I)2
. (18)
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Similarly, the coupling error on the y-axial compliant stage caused by the motion of thez-axis
directional compliant parallelogram stage can be described as:

δyz =
(
1 −

√
1 − λ2

z

)
lz =

F2
z l5

z

32(E ′I)2
. (19)

In the formula, Fx , Fy and Fz are the components of the input driving force in the three
coordinate axes respectively. The cross-sectional shape of the compliant guide plates is rectangular.
Assuming that the characteristics of the compliant guide plates are consistent in terms of the
same materials, structure and cross-sectional dimensions, the matrix of the CETM Γ can be then
expressed as the following formula (20).

From (14), it can be observed that the elements of the CETM Γwould vary because of
the different forms of the 3-DoF CPS. By substituting the results above into (12), the output
translational displacement can be obtained which contains the coupling errors Λ = (xp, yp, zp) for
the 3-DoF CPS.

Γ =
1
64


0 0 0

0 0
F2
z l5

z

(E ′I)2

F2
x l5

x

(E ′I)2
F2
y l5

y

(E ′I)2
0


. (20)

Different topological configurations of CETM can be developed if the spatial position and
connection form of several compliant mechanisms are altered in Fig. 3. The form of CETM
is independent of the combination order of the 3-DoF CPS. Nevertheless, the form of CETM is
related to the coordinate axial vectors of each compliant mechanism. The position of elements in
the CETM will change only if some compliant mechanism rotates by ±π/2 phase angle about its
own axis. The normal form of the CETM of the 3-DoF CPS is listed in Table 2.

Table 2. Forms of CETM according to the different configurations of the3-DoF CPS.

Assembly scheme Configuration of CPS Form of CETM

x → y → z


0 0 0

0 0 δyz

δzx δzy 0


x-axial CPS rotates

π

2
→ y → z


0 0 0

δyx 0 0

δzx δzy 0


x → y-axial CPS rotates

π

2
→ z


0 δxy 0

0 0 0

δzx δzy 0


x → y → z-axial CPS

rotates
π

2


0 0 δxz

0 0 0

δzx δzy 0
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For multi-DoF CPS with parallel relationship, the connection and the coupling relationship
should be analysed first, the CETM as in (14) can be established according to the combination
form of the CPS.

For instance, as shown in Fig. 3, the CETM will remain the 3× 3 matrix, while the y-axial CPS
is parallel to the x-axial CPS. Then the coupling impact of the y-axial CPM on the z-axial CPS
is the same as that is the effect on the x-axial CPM, so δzy = 0 and δzx = 0. Similarly, there are
δzx , 0 and δzy , 0 when the x-axial CPM is parallel to the y-axial CPS in the 3-DoF CPS.

4. FEM and experimental investigation

The prototype of the 1-DoF CPS was fabricated and evaluated with varying experimental
parameters. Furthermore, the validation of analytical results of the coupling error model was
provided by a FEA simulation in commercial ANSYS Workbench software.

4.1. Analysis of 1-DoF CPS

The right-circular flexure hinge was constructed with the performance parameters and
dimensions listed in Table 3. The compliant guide plates were fabricated with the wire-electrode
cutting technique which offers a manufacturing tolerance of ±2 µm. The other components of
the assembly, including the translational plates and fixed base, were fabricated by traditional
machining.

Table 3. Parameters of the flexure hinge and compliant plate.

Parameter name Symbol Value Unit

Elastic modulus of the flexure element E 1.95×1011 GPa

Poisson’s ratio of the flexure element µ 0.30 -

Length of the compliant plate l 50.00 mm

Thickness of the compliant plate h 0.30 mm

Radius of the flexure hinges R 1.50 mm

Thickness of the compliant plate t 1.00 mm

Distance between two compliant plates D 50 mm

Stainless steels with Young’s modulus of E = 195 GPa was selected as the material for the
compliant guide plates and aluminium alloy with Young’s modulus of E = 73 GPa was selected as
the material of the translational plate and the fixed plate respectively. Besides the stylus, the whole
size (length × width × height) of the 1-DoF compliant mechanism is 50 mm × 50 mm × 55 mm.

As shown in Fig. 4, the fixed constraints were applied above and below of the mounting base.
Since the stiffness of the translational plates and the mounting base is much higher than that of the
compliant guide plates, all of the translational plates and mounting base including the stylus were
set to have the behaviour of utter stiffness.

The size for flexure hinges was set as 0.01 mm on the local element mesh. The input driving
force was added matching the overall stiffness of the compliant mechanism so that the range of the
force was 0–1 N and the step-size was 0.1 N.
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a) b)

Fig. 4. Finite element results for the 1-DoF CPS (a) Translational displacements in x-axis, (b) Parasitic displacements in z-
axis.

According to the FEA simulation, the maximum translational displacement in the x-axis was
1.7607 mm and the maximum parasitic displacement was 0.003 mm over the full travel range of
the external driving force, respectively.

Fig. 5. Experimental setup and its components 1) CPS, 2) sensor, 3) stylus, 4) mounting base, 5) 1-DoF CPS, 6) tested object,
7) driving mechanism.

For the verification of the FEA results, an experimental setup was developed as shown in Fig. 5.
The 1-DoF compliant guiding mechanism was installed on the CNC gear measurement device.
The servo-driving unit of this experimental setup was adapted by application of a high-precision
rolling screw-nut mechanism. Two-channel displacement information was identified effectively by
LVDT differential displacement sensors.

Based on this experimental data, the theoretical curve, FEA results and the experimental
curve of the translational displacement and parasitical displacement of the CPS were drawn as
shown in Fig. 6.

According to Hook’s law, the analytical method of determining the theoretical curve of transla-
tional displacement is calculated by using the formula as ∆x = Fx/Kx , while the value of input
force Fx increase on the x-axis from 0 ∼ 1 N with the step-size of 0.5 N, then the theoretical curve
is drawn using the formula above.

In the range of the input driving force, the maximum values of the translational displacement
in theoretical calculation and experimental measurement were 1.7527 mm and 1.8013 mm,
respectively, which constituted a relative error not exceeding 2.8% in the x-axis. The maximum
values of parasitical displacement in theoretical calculation and experimental measurement were
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a) b)

Fig. 6. Analytical and FEA results on 1-DoF CPS (a) Translational displacement in the x-axis,
(b) Parasitical displacement in the z-axis.

0.0031 mm and 0.0033 mm respectively which constituted a relative error not exceeding 6.5% on
the z-axis. On the other hand, the coupling errors occurring were shown in Fig. 6. over their full
travel range in this compliant mechanism. This result verifies the accuracy and effectiveness of the
coupling error theoretical model for the 1-DoF CPS.

It can be seen that the error result keeps increasing between the theoretical method and
experiment data. The main reason is that this CETM is a relatively simplified error model where
other factors are not considered, such as nonlinearity and vibration. However, those factors would
produce errors in the result of the measurement with the increase of the driving force F during the
experimental process.

To avoid these problems, some further attempts still need to be made in the future to improve
the accuracy of the CETM, such as using lumped compliant units instead of distributed compliant
units in a large deflection-compliant mechanism.

4.2. FEA method for the 3-DOF CPS

To validate the coupling error theoretical model of the 3-DoF CPS, an FEA model was built in
ANSYS Workbench with the FEA model setup as shown in Fig. 7. Stainless steel was selected as
the material for the compliant guide plates and its performance parameters are detailed in Table 3.
Both the translational plates and fixing base have a thickness of 5 mm and the material selected
for them was aluminium alloy.

The compliant mechanisms were modelled with a size of 1 mm globally and refined in the
areas of all the flexure hinges and the compliant plates by element sizes of 0.1 mm, as can be seen
in Fig. 7. The shell elements were used to model the flexure hinges and compliant plates. The
other physical properties and mesh conditions were selected in the same way as those presented in
Section 4.1. The reference coordinate system was consistent with that shown in Fig. 3 and the fixed
support constraints were provided on both sides of the end fixing plate. The three-axial external
driving forces (Fx = 0.10 N, Fy = 0.10 N, Fz = 0.10 N) were applied orthogonally along each
coordinate axis at the root of the stylus.

Furthermore, the results for the deformation cloudmap of this 3-DoF-compliant guidance mech-
anism were shown in Fig. 7. The displacements of the compliant translational plates were measured
as well as the parasitic displacements which were tracked to evaluate the coupling errors according
to (20). Similarly, the FEA methods were applied to all of the investigated compliant mechanisms.
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a)

b)

c)

Fig. 7. FEA Model Setup and Results (a) the displacement results in the x-axis,
(b) the displacement results in the y-axis, (c) the displacement results in the z-axis.

The difference is presented between the theoretical calculations and FEA maximum in Table 4
which shows the parasitic displacements in different coordinate axes as configurations in Fig. 7. The
relative error of parasitic displacement is 3.75% in the z-axial direction. Moreover, the maximum
value of coupling error is along the z-axial direction on this configuration of the 3-DoF CPS.
Utilizing (15) and (20) from the aforementioned conclusions, the translational displacements of
each axial coordinate were separated from the 3-DoF integral compliant parallelogram mechanism.

Simultaneously, a minor difference existed between the simulation results and the theoretical
calculation values. This discrepancy primarily arises from solely considering the integral defor-
mation of the compliant guidance mechanism, but without individually incorporating the local
deformation of the flexible elements in the theoretical analysis. Nevertheless, the local deformation
of these flexible elements had an insignificant effect on the motion accuracy of the whole compliant
mechanism from a macroscopic viewpoint.

Table 4. Analytical and FEA maximum displacement results for the 3-DoF CPS

Coordinate
direction

Translational
displacements (mm)

Theoretical parasitic
displacements (µm)

FEA parasitic
displacements (µm)

Relative error
(%)

x-axis 1.7576 2.89 3.07 6.22
y-axis 1.7632 2.91 3.05 4.81
z-axis 1.7689 2.93 3.04 3.7
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Moreover, the results of the FEA analysis for the 3-DoF-compliant guidance mechanism
slightly exceed those from the theoretical calculation analysis. The major reason is that the FEA
analysis not only accounted for the deformation of the flexible elements but also included the
deformation of other rigid components. Actually, the relatively minor elastic deformations were
caused by other rigid components under the action of external driving forces.

Furthermore, the research result shows that these measures are effective in mitigating coupling
errors, such as reducing the input driving force F and the length l of the compliant guide plates,
increasing the thickness h of the compliant plates and selecting the flexible materials with relatively
high elastic modulus E . Simultaneous utilizing a reasonable connection configuration can help
diminish the negative impact of coupling errors on various coordinate axes.

The main contribution of this work is that a novel CETM is proposed according to the
different connection configurations of the 3-DoF CPS. This research also provides several
feasible and effective approaches to improving the motion accuracy and performances of other
multi-dimensional compliant mechanisms.

5. Conclusions

The original contributions of this paper are summarized at the end of Section 1. The main
conclusions drawn from this work are as follows:

1. Proposing the 3-DoF series CPS based on the 1-DoF compliant mechanisms.
2. Analyses of the parasitic displacement and coupling error are conducted applying the

pseudo-rigid- body theory and flexible beam bending theory.
3. Establishing the CETM for the 3-DoF CPS and analysing it as corresponding to the different

topological configurations.
4. Demonstrating that the configuration of the CETM is independent of the combination order

of 3-DoF CPS but related to the coordinate axial vectors of each compliant mechanism.
5. Analysing the integral deformation of different configurations of the 3-DoF-compliant

mechanism through FEA method analysis. The analysis result shows that the relative error
of the integral deformation is small. Furthermore, the correctness of the coupling error
theory model is well verified by FEA method analysis and experiment investigation.

6. The proposed methodology is not only applicable to the 3-DoF CPS but also provides
theoretical foundation for parasitic displacement and coupling errors assessment in other
multi-dimensional compliant mechanisms.

In the subsequent work, the physical prototype and experimental setup will be built on the
3-DoF CPS. Meanwhile, further investigations will be conducted on the coupling errors of
multi-dimensional compliant mechanisms and different topological structures.
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