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Abstract
Induction motors (IMs) are the most widely used electrical machines in industrial applications. However,
they are subject to various mechanical and electrical faults. Eccentricity faults are among the common
mechanical faults of IMs. This study compares the performance of four commonly used machine learning
(ML) methods, including k-nearest neighbours (k-NN), decision tree (DT), support vector machine (SVM),
and random forest (RF) along with the statistical features in detecting eccentricity faults of IMs with an
automated machine learning (AutoML) model. The aim of using AutoML in this study is to fully automate
the process of detection of eccentricity faults of IMs by selecting the classifier with the highest accuracy rate
and shortest computation time along with the most effective feature(s). The eccentricity fault analysed in
this study was experimentally implemented in the laboratory. Three-axis vibration signals were collected for
healthy and eccentricity-faulty IMs. In the proposed study the three-axis vibration signals are pre-processed
to determine the statistical features that are used as input to the ML methods. The proposed study offers the
best ML method among the four studied algorithms and the need for expert knowledge of ML and eccentricity
fault detection. The proposed AutoML model offers the DT method along with the z-axis rms feature for the
highest accuracy rate and the shortest computation time in detecting the eccentricity fault.
Keywords: Induction motors, eccentricity faults, machine learning techniques, fault detection, vibration
analysis, AutoML.

1. Introduction

Electrical motors are the most widely used electrical machines in industrial applications.
Induction motors (IMs) are the most popular electrical motors. IMs are preferred due to their
low cost, high reliability, and simplicity. However, despite their advantages, IMs are not free
from faults. Unexpected faults of IMs can lead to interruptions in production lines, significant
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financial losses, and reduced revenues. The accurate detection and diagnosis of faults of IMs
prevent undesired results and long downtimes [1]. The faults in IMs can be broadly classified
into mechanical and electrical ones. The mechanical faults in IMs include air gap eccentricity,
misalignment, bearing faults, and gearbox-related faults. The electrical faults are related to the
stator and rotor. Stator-related faults consist of open-circuit, short-circuit, and insulation failure,
while rotor-related ones consist of broken rotor bars and broken or cracked end-rings. There are
various surveys on the distribution and root cause of faults of IMs [2–4]. These surveys show that
the distribution and root cause of faults vary with the power rating and the supply voltage of IMs.
The distribution of the faults in 0.75 kW to 150 kW IMs is given in Fig. 1 [4].

Fig. 1. Distribution of faults in IMs.

Eccentricity faults occur due to an imbalanced distance in the air gap between the rotor and
stator. Due to the short air-gap distance of IMs, the changes originating from eccentricity in the air
gap are more important than in other machines. Even though the percentage of eccentricity faults
is comparatively lower than the percentage of other faults of IMs, they may lead to other types of
faults, such as bearing faults and bending of the motor shaft, which in turn, may lead to excessive
vibration and increased temperature. In addition, the rotor may rub the stator and damage the
lamination and windings [5–7]. Therefore, this study focuses on the detection of eccentricity faults.

The fault diagnosis methods in IMs can be classified as model-based, signature-extraction-
based, and knowledge-based. The model-based methods are based on the mathematical models
of IMs. The signature-extraction-based methods extract the relevant signatures from monitoring
signals. The knowledge-based methods are based on ML models used in this study.

The most widely utilized monitoring signals for detecting faults of IMs include stator current,
voltage, vibration, air-gap torque, angular speed, instantaneous power, and magnetic flux signals.
The monitoring signals can be processed in the time-domain, frequency-domain [8, 9], or time-
frequency [10–13] domains to detect the faults of IMs. Statistical features such as rms, crest factor,
kurtosis, spectral kurtosis, skewness, peak value, p2p value, shape factor, impulse factor, and clear-
ance factor are employed in the time-domain analysis to assess the health of IMs [14]. The frequency-
domain methods provide successful results in the analysis of stationary signals. Nevertheless, they
are ineffective in analysing nonstationary signals where the spectrum and period of the signals
change. In the analysis of nonstationary signals, time-frequency analysis methods are preferred.

The Fast Fourier transform (FFT) based methods are among the commonly used frequency-
domain-based signal processing methods [15]. Continuous wavelet transform (CWT) [16], empir-
ical mode decomposition (EMD) [17, 18], discrete wavelet transform (DWT) [19, 20], and wavelet
packet transform (WPT) [21] and their variants are commonly used time-frequency domainmethods.
Time-domain methods use statistical features along with ML models in the detection of faults.
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An experimental comparison of various ML-based classification methods for detecting rotor
faults of IMs is presented in [22]. The study uses time-domain and frequency-domain features of
current signals. The performance of the study is evaluated by processing the stator current signals
of an IM under various loading levels based on ML classification methods. A comprehensive
review of condition monitoring of IMs based on ML methods is presented in [23].

The widely used ML methods are k-NN, DT [24], SVM [25], RF methods [26], principal
component analysis (PCA) [27], artificial neural networks (ANN) [28–30], and singular value
decomposition (SVD) [31].

The use of ML for a specific detecting or classification task requires expert knowledge in the
field of both the task and ML to choose the appropriate classifier and the best feature(s) with
respect to accuracy rate and computation time. Manually selecting the appropriate classifier and
the best feature(s) for the detection of faults of IMs with various signals requires expert knowledge
and a longer computation time.

The proposed study compares the performance of four MLmethods, including k-NN, DT, SVM,
and RF, using the AutoML model to detect the eccentricity faults of IMs using three-axis vibration
signals concerning the accuracy rate and computation time along with the statistical features.

The contribution of the proposed study is to determine the most effective feature(s) and the ML
method with the highest accuracy rate and shortest computation time automatically and reduce the
need for expert knowledge in fault detection.

The paper is organized as follows: Section 2 briefly reviews the classification methods and data
pre-processing. Sections 3 and 4 describe the implementation of the eccentricity faults and data
collection system, respectively. The details of the proposed AutoML model are given in Section 5.
The results and the performance of the proposed method are described in Section 6. The paper
concludes with Section 7.

2. Classification methods and data pre-processing

Machine learning methods have been widely used in detecting and classifying faults of IMs
in recent years [32]. ML methods are mainly preferred in analysing vibration signals (which are
nonstationary) for the detection of faults of IMs.

2.1. Classification methods

Four different ML-based classification methods, including k-NN, DT, SVM, and RF, are used
in this study. Each of these methods is described below.

2.1.1. K-nearest neighbours

The k-NN algorithm is a supervised ML algorithm. Recently, it has been widely used to
solve classification problems. The k-NN algorithm is a nonparametric classifier. It does not need
a training model for implementation and is therefore referred to as a lazy learner. Each dataset is
labelled based on its n-classifications. The method evaluates the similarity among new and present
datasets. The k parameter, generally an odd number, is the number of nearest neighbours [33].
A sample classification process of the k-NN algorithm structure is given in Fig. 2. The k parameter
of the k-NN algorithm is tuned by an iterative search method. The search method is performed
on a randomly selected twofold separate dataset called train and test in each iteration. The k-NN
classification tasks are performed for both the test and training dataset separately by varying the
value of k from 2 to 10, as shown in Fig. 3. The value of k is chosen as 3 based on the results given
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Fig. 2. A sample classification process of the k-NN algorithm.

Fig. 3. Determination of the k parameter in the k-NN classifier model in the proposed study.

in Fig. 3. The new data class is determined by calculating the distance to its 3-nearest neighbours.
Euclidean, Manhattan, and Minkowski are the distance methods used in k-NN. The Euclidean
distance method is used in this study. It can be calculated in (1) and (2).

d(p, q) =

√√
n∑
i=1
(pi − qi)2, (1)

d =
√
(q1 − p1)2 + (p2 − q2)2, (2)

where pi is the existing data point, qi is the new data point, n is the number of dimensions, and
d is the Euclidean distance.

2.1.2. Decision tree

The decision tree, a widely used classification algorithm in data mining and ML [24], reaches
a decision and conclusion with a tree model. The tree model has nodes and branches. Branches
are formed by the decisions made at the node. The last nodes of the tree are called leaf nodes.
A classification label is assigned to the leaf nodes. Optimum points separate the classes. Figure 4
shows the separation process of the classes in the DT algorithm. The location of the data based on
the optimum points is evaluated with the DT. The classification is evaluated at the extreme point
of the DT. DT naturally supports classification problems with more than two classes. The most
commonly used measures for DT are the Entropy and Gini indexes given in (3) and (4) [34].

E = −
n∑
i=1

xi log2(xi), (3)

Gini = 1 −
n∑
i=1

x2
i , (4)

where xi is the probability corresponding to n possible states.
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Fig. 4. Sample of the separation process of the classes in the DT algorithm.

2.1.3. Support vector machine

Support vector machine is a statistical learning theory-based, effective, and flexible supervised
ML algorithm widely used in classifying, regression, and detecting outliers [ [35]. As can be
seen in Fig. 5, SVM generates hyperplanes that correctly separate the classes. Support vectors
can be defined as the data points closest to the hyperplane. The location of the dividing line is
determined based on data points. The optimal hyperplane (OH) is the decision plane that divides
the different classes. Max. Margin is the maximum distance between support vectors of other
classes (Fig. 5). The classes above the positive hyperplane (PH) belong to healthy and those below
the negative hyperplane (NH) belong to faulty (healthy class refers to healthy IM, faulty class
refers to eccentricity-faulty IM). The OH, PH, NH, and maximum margin can be calculated by (5).
This study uses a support vector classifier (SVC) based on the SVM library.

OH; ®w · ®x + b = 0,
PH; ®w · ®x + b = 1,
NH; ®w · ®x + b = −1,
max, marg = 2/‖w‖,

(5)

where ®w is the weight, ®x is the data value, and b is the bias.

Fig. 5. A sample of the decision plane that divides the different classes in the SVM algorithm.
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2.1.4. Random forest

Random forest is a tree-based ensemble learning method [36] that uses multiple decision tree
structures to make decisions. Each node in the DT operates on a random subset of features to
calculate the output. The structure of the RF classifier used in the proposed study is given in Fig. 6,
and details of the RF can be found in [26].

Fig. 6. RF algorithm structure.

The parameters of classifiers, including k-NN, DT, SVC, and RF, used in the proposed study
are given in Table 1. The values of the parameters were chosen by trial and error with respect to
the optimum performance of classifiers.

Table 1. Parameters of classifiers.

Classifier Parameter Value

k-NN

k 3
weights uniform
algorithm auto
metric Euclidean

DT max_depth 5
SVC kernel linear

RF
n_estimators 10
max_depth 5

2.2. Data pre-processing

At the data pre-processing stage, p2p, rms, skewness, kurtosis, crest factor and mean features
are calculated and used as input to each ML classifier. Each of these features is given below.

2.2.1. Peak to peak

Peak-to-peak is the difference between the highest and the lowest value of the amplitude of
a signal. In this study, the p2p value of the vibration signal is calculated and used as input to the
classification methods.
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2.2.2. Root mean square

The root mean square of a signal is called rms. The rms of a discrete signal or distribution
with N samples is given in (6).

xrms =

√√√
1
N

N∑
i=1
|xi |2. (6)

2.2.3. Skewness and kurtosis

Skewness is a measure of symmetry in the distribution of a dataset. If the distribution of the
dataset looks the same to the right and left of the centre point, it is said to be symmetric. The term
“positively skewed” or “right skewed” refers to a distribution concentrated to the left with its tail
on the right side. If the distribution is concentrated to the right and with its tail on the left side, it
is called a “negatively skewed” or “left skewed” distribution. If the skewness of the distribution is
between −0.5 and 0.5, the results are called to be symmetrical. The data are highly skewed if the
skewness is less than −1 or greater than 1. The skewness of a symmetrical distribution is 0.

Kurtosis is a measure of outliers present in the distribution of a dataset. It determines whether
a dataset has a light or heavy tail compared to normal distribution. Heavy tails or outliers are
common in datasets with a high kurtosis value. Low kurtosis datasets tend to have light tails or no
outliers. The skewness (s) and kurtosis (k) values of a dataset or a signal (x) can be calculated as
given in (7) and (8), respectively.

s =
N

(N − 1)(N − 2)

N∑
i=1

(xi − µ)3

σ3 , (7)

k =

(
N(N + 1)

(N − 1)(N − 2)(N − 3)

N∑
i=1

(xi − µ)4

σ4

)
−

3(N − 1)2

(N − 2)(N − 3)
, (8)

where N is the total number of samples, µ is the mean, and σ is the standard deviation.

2.2.4. Crest factor

Crest factor of a signal is the ratio of the peak value of a signal to its rms value. It is
a measurement of the extreme peaks of a signal. The crest factor (c f ) of a signal (x) can be
calculated by (9).

c f =
|xpeak |

xrms
. (9)

2.2.5. Mean

Mean is the sum of the values of the N sample of a signal divided by the number of samples. It
can be calculated as given in (10).

µ =
1
N

N∑
i=1

xi . (10)

In this study, the rms, p2p, kurtosis, skewness, crest factor, and mean features of the three-axis
vibration signals of a three-phase, 3-kW, two-pole IM under 100% loading level are used as input
to the k-NN, DT, SVM, and RF classifiers to detect the eccentricity fault. The implementation of
the eccentricity fault of IM is given in the next section.
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3. Implementation of eccentricity fault

Eccentricity faults occur in IMs due to an imbalanced distance in the air gap between the rotor
and stator. Eccentricity faults are classified into static, dynamic, or mixed [37]. The rotor and
stator centres are not aligned in static eccentricity.

The dynamic eccentricity fault means that the rotor and the stator centres are not aligned, and
the air gap length varies as the rotor rotates. The rotor rotates around both the rotor and stator
centres. The mixed eccentricity fault contains static and dynamic eccentricity faults, and the rotor
rotates around a centre different from the stator and rotor centres. The types of eccentricity faults
are graphically illustrated in Fig. 7.

Fig. 7. Types of eccentricity: (a) healthy, (b) static eccentricity, (c) dynamic eccentricity, and (d) mixed eccentricity.

Fig. 8. Dimensions of the designed bushings.
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The eccentricity fault analysed in the proposed study has been implemented by widening
the housing of the bearings of the IM. The centre of the rotation is shifted 0.2 mm by using
bushings produced from a polylactic acid (PLA) filament by 3D printing. Figure 8 shows the
dimensions of the designed bushings. The details of the implementation of the eccentricity faults
are given in [38].

4. Data collection system

A picture of the experimental test bench and the schematics of the data collection system
are given in Fig. 9 and Fig. 10, respectively [38, 39]. A two-pole, 3-kW IM was used in the
experimental study. A 5-kVA synchronous generator and a variable resistive load were used

Fig. 9. Experimental test bench.

Fig. 10. Schematic of the experimental test bench.
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to load the IM. A three-axis accelerometer (PCB356A31), along with an amplifier, were used
to measure the vibration signals. The measured vibration signals were recorded by a National
Instrument (NI) cDAQ 9174 data acquisition system through a NI 9227 module with a sampling
frequency of 25 kHz. The data were collected in two test cases. In the first case, the vibration
signals were recorded from the motor in a healthy condition. In the second, the vibration signals
were recorded from the eccentricity faulty motor. The IM was loaded at 100% and running at
2850 rpm in both cases.

Three-axis (x, y, z) vibration signals were recorded for 41 seconds with a sampling frequency
of 25 kHz. The signals were divided into packages of 0.1 seconds (2500 samples). Figure 11
shows the z-axis normalized vibration signal with a duration of 0.1 seconds. The features of each
package are calculated, and the results are used to compose a dataset of 410 rows.

Fig. 11. Z-axis vibration signal.

The p2p, rms, skewness, kurtosis, crest factor, and mean values of the signal were calculated for
each row. A dataset with 820 rows (410 rows from healthy motor and 410 rows from eccentricity-
faulty motor) representing these features was obtained. Seventy percent (70%) of the dataset was
used for training, and 30% of the dataset was used for testing.

5. AutoML

The proposed AutoML model is given in Fig. 12. It is an automated solution to classification
problems that reduce the manual efforts of experts in the field of fault detection in IMs. The aim
of using AutoML in this study is to fully automate the process of detection of eccentricity fault in
IMs by selecting the classifier with the highest accuracy rate and shortest computation time along
with the most effective feature(s). In the detection process of faults in IMs it may not be necessary
to use many statistical features which require long computational time. Some features may not
contribute to the accuracy rate of the detection process of the faults. It may be necessary to detect
and/or eliminate the statistical features in the training process that have no significant effect on
the accuracy rate of the detection of faults manually in order to reduce the computational time.
The proposed AutoML first detects the most effective feature(s). Then it uses these features in the
testing process in order to reduce the computational time. Therefore, using the proposed AutoML
model reduces the overall computational time of the fault detection process.
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Fig. 12. Proposed AutoML model.

6. Results

An AutoML model was used to diagnose the eccentricity fault of an IM based on three-axis
vibration signals (Fig. 12). The AutoML model automatically selects the most effective statistical
feature(s) (among p2p, rms, skewness, kurtosis, crest factor, and mean) and the classifier with
the highest accuracy and shortest computation time. The fault detection module uses selected
statistical feature(s) and classifier as input with the new dataset to detect eccentricity fault.

A confusion matrix was used to assess the performance of each classifier (along with statistical
features) run by the AutoML model. The confusion matrices of the classification ML methods of
the vibration signals of the z-axis are given in Fig. 13. Label-1 describes the healthy motor, and
Label-2 describes the eccentricity-faulty motor. The results show that the rms feature provides
the highest accuracy rate (100%) in all four classifiers. It can be seen in Fig. 13 that the k-NN
algorithm predicted 97 of 123 data samples of healthy motors correctly, and 26 data samples were
predicted incorrectly for the z-axis p2p feature. Out of 123 data samples of the eccentricity faulty
motor, 95 were predicted correctly and 28 were predicted incorrectly. Thus, the average accuracy
of the k-NN model for the z-axis p2p feature is 78.0488%, as shown in Fig. 13. The accuracy rates
of the other classifiers concerning statistical features (p2p, rms, skewness, kurtosis, crest factor
and mean) can be seen in Fig. 14.

The proposed AutoML model asses the performance of the four classifiers based on these
results along with the computational time automatically.

The results are given in Table 2 and Fig. 15. It can be seen in Table 2 that 100% accuracy
is achieved in all classifiers for the rms feature on the x, y, and z-axis. The variation of the
rms level of three-axis vibration signals (healthy and eccentricity faulty) with respect to time
is shown in Fig. 16. The p2p and kurtosis features in the x-axis provide 100% accuracy in all
classifiers. The DT method with z-axis rms feature provides the highest accuracy rate and the
shortest computation time.
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Fig. 13. Z-axis confusion matrix (1: healthy, 2: faulty).
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Fig. 14. Accuracy rates of the four classifiers for all features.

Table 2. Accuracy rates and computation times.

Classifiers k-NN DT SVC RF

Axis Features Acc.
%

Computation
time (ms)

Acc.
%

Computation
time (ms)

Acc.
%

Computation
time (ms)

Acc.
%

Computation
time (ms)

x

p2p 100.0 0.27599 100.0 0.41840 100.0 0.81929 100.0 6.45560
rms 100.0 0.28550 100.0 0.55220 100.0 0.71800 100.0 6.20580

skewness 98.78 0.48739 99.18 0.76020 99.59 2.51289 99.18 9.66030
kurtosis 100.0 0.30470 100.0 0.57490 100.0 0.88449 100.0 6.66619

crest factor 88.62 0.30919 87.80 0.61649 91.46 2.88339 89.02 7.32989
mean 76.02 0.50439 76.83 0.84809 53.25 6.70240 77.24 7.42250

y

p2p 84.96 0.31549 84.55 0.49739 87.00 3.86299 85.37 7.61540
rms 100.0 0.39599 100.0 0.50620 100.0 0.89520 100.0 6.63830

skewness 98.78 0.29029 97.97 0.45840 98.78 1.36980 96.75 6.71940
kurtosis 83.33 0.30259 86.59 0.55210 87.00 2.55489 86.18 7.06109

crest factor 52.03 0.28500 56.10 0.71570 63.00 5.70450 61.38 6.96750
mean 70.73 0.29349 73.17 0.48080 45.12 5.33049 73.98 7.17030

z

p2p 78.05 0.27829 78.46 0.54360 80.49 3.98959 80.08 6.75470
rms 100.0 0.28330 100.0 0.22620 100.0 0.83749 100.0 6.04900

skewness 53.25 0.26860 58.94 0.51310 52.44 5.50910 56.10 6.89360
kurtosis 85.37 0.28739 84.96 0.44789 84.96 2.59359 85.77 6.84169

crest factor 71.95 0.28320 73.58 0.60120 71.95 4.06170 73.98 7.40819
mean 64.23 0.27590 64.63 0.55240 53.66 5.34979 65.04 6.88089
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Fig. 15. Computation times of the classifiers with respect to features.

Fig. 16. Rms levels of three-axis vibration signals.

7. Conclusions

Eccentricity faults are among the common mechanical faults in IMs. There are various methods
of monitoring and detecting eccentricity faults in IMs. ML methods are among the most effective
detection methods. This study proposed an AutoML model that compares the performance of four
ML methods, including k-NN, DT, SVC, and RF, in the detection of eccentricity faults in IMs.

The performance of each ML method (as given in Fig. 15) in detecting eccentricity faults was
compared with the proposed AutoMLmodel. The classifier with the highest accuracy and the short-
est computation time was selected automatically by the proposed AutoML method. The proposed
method offers the best ML method with appropriate statistical feature(s) among the four studied
algorithms and reduces the need for expert knowledge of ML and eccentricity fault detection.

The results show that the x-axis p2p, x-axis rms, x-axis kurtosis, y-axis rms and z-axis rms
features of the vibration signals provide the highest accuracy rates (100%) in all ML methods.
The y-axis mean feature provides the lowest accuracy rate in SVC. The SVC classifier gives
higher accuracy rates in the x-axis crest factor, y-axis kurtosis, and y-axis crest factor in all ML
methods, as shown in Fig. 14. It can also be seen that the accuracy rate of the RF method is higher
in the x-axis mean, y-axis mean, and z-axis mean features in all ML methods. The proposed
AutoML model offers the DT method and z-axis rms feature as input to the fault detection module
in this study for the highest accuracy rate and the shortest computation time in the detection
of eccentricity fault.
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Even though the proposed AutoML model is used for the detection of eccentricity faults in
IM by using the four ML methods, it can be used to detect other faults in IMs, including bearing
faults, misalignment, and broken rotor bars with other ML methods. In this study, vibration signals
are used for the detection of the faults. The proposed model can also be used with other signals,
including current, voltage, torque, etc.
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