
INTRODUCTION

The convergence of Gondwana and Laurassia dur-

ing the Paleozoic, including subduction and continental

collision, produced a wide variety of magmatic and

metamorphic rocks from the Bohemian Massif in the

east to the Massif Central in the west. Due to intensive

heating and melting of the crust and/or the mantle,

caused by burial or decompression during late-orogenic

extension, many granitic intrusions formed, often de-

riving their melts from heterogeneous sources (e.g. Fin-

ger et al. 1997; Finger et al. 2009; Siebel et al. 2003;

Förster and Romer 2010). The granitoid bodies are most

abundant in the Moldanubian Zone of the orogenic belt
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ABSTRACT:

Lisowiec, K., Budzyń, B., Słaby, E., Schulz, B., and Renno, A.D. 2014. Th-U-total Pb timing constraints on the em-

placement of the granitoid pluton of Stolpen, Germany. Acta Geologica Polonica, 64 (4), 457–472. Warszawa.

Monazite from the Stolpen monzogranite (SE Germany) was studied to constrain the Th-U-total Pb age of pluton

formation. Monazite grains demonstrate subtle to distinct patchy zoning related to slight compositional variations.

Textural and compositional characteristics indicate that the monazite formed in a single magmatic event in a slightly

heterogeneous system, and was only weakly affected by secondary alteration, which did not disturb the Th-U-Pb sys-

tem. Chemical dating of the monazite gave a consistent age of 299 ± 1.7 Ma. The current study presents the first

geochronological data for the Stolpen granite. It provides evidence that Stolpen is the youngest Variscan granitic in-

trusion in the Lusatian Granodiorite Complex and indicates that magmatic activity related to post-collisional exten-

sion in this region lasted at least 5my longer than previously assumed. 
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(the main part of the Bohemian Massif) and less abun-

dant in the Saxo-Thuringian and Teplá-Barrandian zones

(e.g. Finger et al. 1997; Oberc-Dziedzic et al. 2013).

They differ in petrography, geochemistry and

geochronology (Finger et al. 1997); therefore a careful

study of all the types is crucial to understanding their

evolution and global mantle-crust interactions related to

orogenic and post-orogenic movements. 

The ages of the Variscan granitoids have been con-

strained in numerous papers using various methods in-

cluding the Single Zircon Evaporation method (e.g.

Kröner et al. 1994; Siebel et al. 2003), whole rock Rb-

Sr (e.g. Kröner et al. 1994; Finger et al. 1997), the U-

Pb method in zircon and monazite (e.g. Gerdes et al.
2003; Klein et al. 2008; Finger et al. 1997; Oberc-

Dziedzic et al. 2013; Kryza et al. 2012) and Th-U-to-

tal Pb of uraninite and Re-Os of molybdenite (Förster

et al. 2012). All these methods are not interchangeable

with each other and may document slightly different

stages of the magmatic/metamorphic events. Fluid

overprint further complicates the use of some of them,

e.g. U-Pb ages of zircon or monazite due to remobi-

lization of Pb. 

One of the most rapid and widely used methods of

age determination is Th-U-total Pb dating of monazite.

Monazite is a LREE-rich phosphate [(REE,Th,U)PO

4

]

which incorporates significant amounts of Ce, La, Sm

and Nd, as well as other elements such as Y, Th and U.

Thelast two are particularly important in terms of using

monazite for Th-U-Pb dating. Because monazite occurs

in various types of magmatic, metamorphic and sedi-

mentary rocks, it can be used to constrain the timing of

geological processes such as magma crystallization

and metamorphism or to define the age of protholith(s)

(Williams et al. 2007). Diffusion of major and trace el-

ements in monazite is very slow (Cherniak and Pyle

2008; Cherniak et al. 2004a; Cherniak et al. 2004b; 

Parrish 1990), therefore it can preserve compositional

zoning which records different stages of crystallization

or metamorphic deformation. Due to the fact that mon-

azite contains negligible amounts of common Pb rela-

tive to radiogenic Pb (Parrish 1990), it is possible to use

the chemical Th-U-total Pb method employing an elec-

tron microprobe to constrain its age (Jercinovic and

Williams 2005; Jercinovic et al. 2008; Konečný 2004;

Montel et al. 1996; Pyle et al. 2005; Spear et al. 2009;

Suzuki and Adachi 1991, 1994; Suzuki and Kato 2008).

Although chemical dating of monazite is mostly used

in metamorphic petrology (Finger and Krenn 2007;

Kohn et al. 2005; Liu et al. 2007; Rosa-Costa et al.
2008; Tickyj et al. 2004; Williams et al. 2007), it has

also found applications in constraining the ages of

magmatic events with high precision (Just et al. 2011).

The resistance of monazite to complete alteration

and its ability to preserve its growth textures provide

an  opportunity to reach deep into the magmatic his-

tory.

One region of the Variscan Orogenic Belt where

granitic intrusions are rather scarce is the Lusatian Gra-

nodiorite Complex (LGC), located in the eastern part of

the Saxo-Thuringian Zone. It experienced only minor

metamorphism and deformation during the Variscan

orogeny (Kröner et al. 1994). It contains only several

late-Variscan granitoid bodies, most of which have been

studied in terms of geochemistry and geochronology

(Kröner et al. 1994; Hammer et al. 1999; Förster et al.
2012). However there is one pluton,– the  Stolpen gran-

itoid,, which cannot be precisely situated within the in-

trusion sequence of the Lusatian Block due to a lack of

geochronological data. This study reports monazite U-

Th-Pb timing constraints on the formation of the Stolpen

pluton.. The analyzed monazite formed mostly at the

magmatic stages of pluton formation; however, as in-

filtration by post-magmatic fluids has been already doc-

umented (Lisowiec et al. 2013), the samples were care-

fully studied to minimize the influence of fluid-alteration

on the calculated ages.

GEOLOGICAL SETTING

The granitoid pluton of Stolpen is located in the

southern part of the Lusatian Granodiorite Complex

which comprises the central part of the Lusatian An-

ticlinal Zone at the NE margin of the Bohemian Mas-

sif (Text-fig. 1). The pluton is slightly SE-NW elon-

gated, which is the main direction of shearing during

the Variscan orogenesis (Krentz in Kozdrój et al.
2001). Magma emplacement used tectonic faults that

were formed during and after orogenic movements.

The pluton intruded Cadomian to Early-Palaeozoic

(600–490 Ma) magmatic – tonalitic to syenogranitic in

composition, locally metamorphosed rocks. The en-

velope of the complex consists of upper-Proterozoic

sedimentary rocks, mostly greywackes and pelites.

The Stolpen granite belongs to the group of late- to

post-Variscan intrusions in the Lusatian Granodiorite

Complex which contains also the amphibole granites

of Wiesa and Grossschweidnitz and the biotite granite

of Königshain-Arnsdorf, with ages constrained by zir-

con-evaporation method at 304 ± 10 Ma, 312 ± 10 Ma

and Th-U-total Pb dating of uraninite and molybden-

ite at 327–328 Ma, respectively (Kröner et al. 1994;

Förster et al. 2012). 

Knowledge of the petrogenesis of the Stolpen gran-

ite is very limited; however Hammer et al. (1999) sug-



gest that it originated from a crustal magma. The melt-

ing process was induced by an upwelling mantle diapir

preceded by a fluid front. The fluids were responsible for

crustal magma enrichment in LILE and HFSE. An ac-

cessory mineral study was consistent with such an hy-

pothesis but did not exclude other possibilities (Lisowiec

et al. 2013). Hammer et al. (1999) place the pluton

among other Variscan granitic intrusions  but do not give

an exact age. It is therefore unknown where exactly it is

positioned among other Variscan intrusions in the re-

gion. 

The pluton consists mostly of medium- to coarse-

grained monzogranite of peraluminous character

(Hammer et al. 1999). Whole-rock geochemistry was

documented by Hammer et al. (1999) and is presented

in Table 1. The authors also report an average Th/U ra-

tio of 4.4. Granite samples used in this study were

taken from the SW part of the magmatic body, which

consists of a quite homogenous, medium-grained fa-

cies. The mineralogy of the granite is quite typical, the

main assemblage containing quartz, alkali-feldspar,

plagioclase, biotite and small amounts of muscovite.

Quartz forms two populations: older large crystals and

younger small crystals occurring as inclusions in other

minerals or located interstitially. Alkali-feldspar is K-

rich with a subordinate Na-rich (anorthoclase) com-

ponent, whilst the  plagioclase composition is almost

pure albite, rarely oligoclase (Ab<20%). The pure al-

bitic composition may suggest secondary post-mag-

matic crystal-fluid interaction. Plagioclase often ex-

hibits weak zonation. Alkali-feldspar shows a strong

perthitization and is often replaced by plagioclase (al-

bite) on the margins, which again may be related to re-

action with fluids. Similarly the other phases show

pristine magmatic compositions affected by interaction

with fluids. Biotite underwent almost total chloritiza-

tion and its FeO content reaches ~43 wt%. Rarely its

margins are replaced by muscovite. Accessory miner-

als present in the granite are fluorite, zircon, mon-

azite (with a high contribution from a cheralite com-

ponent), titanite, allanite, apatite, xenotime, Y-rich

silicates and Y-Ti-phases, Th-rich minerals (oxides

and silicates), Nb-Ta minerals (mostly columbite), Fe-

oxides and secondary REE-carbonates. Fluorite is the

most abundant accessory mineral and forms three pop-

ulations: homogenous, more or less regularly zoned

and patchy. Individual populations show no specific

textural positions. Y-rich minerals are represented
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Text-fig. 1. Sketch of the study area (after Kozdrój et al. 2001) with sampling locations. AR1, AR3 – 51°0’58.77“ N, 14°7’27.71“ E

Table 1. Whole-rock chemical composition of the Stolpen monzogranite (from

Hammer et al. 1999). Element oxides are given in wt [%], trace elements in [ppm].

Element/ 
oxide Content Element Content Element Content 

SiO2 75.60 Cs 4.5 U 7.8 

TiO2 0.17 Cu 8 V 13 

Al2O3 13.00 Ga 23 Y 58 

Fe2O3 1.50 Hf 5.0 Zn 32 

MnO 0.03 Li 57 Zr 174 

MgO 0.19 Nb 28 La 33 

CaO 0.70 Ni 6 Ce 75 

Na2O 3.60 Pb 28 Nd 36 

K2O 4.50 Rb 254 Sm 7.2 

P2O5 0.05 Sc 4.2 Eu 0.32 

Ba 220 Sr 36 Tb 1.30 

Co 1.2 Ta 2.56 Yb 3.9 

Cr 5 Th 29.6 Lu 0.56 
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mostly by strongly zoned hingganite–(Y) and

aeschynite–(Y) (Lisowiec et al. 2013). Zircon, mon-

azite and xenotime sometimes form intergrowths. The

accessory mineral assemblage (mostly zircon and mon-

azite) and the evidence of magmatic and post-mag-

matic processes that it carries  has been studied by

Lisowiec et al. (2013). Some parts throughout the plu-

ton have more aplitic or pegmatitic character with

nearly the same mineral composition as the granite. In

the area we can find also numerous andesitic (and one

rhyolitic) dykes which are situated in the vicinity of the

pluton or intruded within the granite. 

ANALYTICAL METHODS

Granite samples were initially crushed in a jaw

crusher, than fragmented using a Selfrag high voltage

pulse power fragmentation. Afterwards, the two small-

est fractions of 500–250 μm and 80–250 μm were used

for separation in heavy liquids. The mineral separates

were mounted in epoxy and polished. 

Backscattered electron (BSE) images were made

using a Quanta 600 FEG-MLA600F field emission

scanning electron microscope (SEM) equipped with

two energy dispersive spectrometers (EDS) at the In-

stitute of Mineralogy, TU Bergakademie Freiberg, Ger-

many. The analytical conditions were as follows: ac-

celerating voltage 20 kV, with some exceptions when

15, 25 or 30 kV were used, and a 200 μA beam current

with the beam focused on the sample coated with car-

bon. 

Analyses of Th, U, Pb for the calculation of mon-

azite ages, as well as Y, REE, Ca, Si, P, Sr, Al and As for

corrections and evaluation of the mineral chemistry,

were carried out using a Cameca SX-100 electron mi-

croprobe at the Department of Electron Microanalysis

in the State Geological Institute of Dionýz Štúr in

Bratislava. The analytical methods for age determination

followed procedures presented in Petrik and Konečný

(2009). To obtain the optimum c/s/nA (counts per sec-

onds divided by sample current) and to minimize surface

damage the following analytical conditions were used:

accelerating voltage 15 KV, sample current 180 nA,

counting times: Pb of 300 s, Th 35 s, U 80 s, Y 40 s, REE

10–50 s, except Lu 100 s, P, S, Al, Si and Ca 10 s, Sr 20

s, As 120 s. Calibrations were performed using synthetic

and natural standards: REE and Y were taken from

phosphates XPO

4

, Th from ThO

2

, Pb from PbCO

3

, U

from UO

2

, Ca and Si from wollastonite, As from GaAs,

S from barite and Al from Al

2

O

3

.The resulting ages were

calculated using the statistical approach of Montel et al.
(1996). 

RESULTS AND DISCUSSION

Textures and chemical composition of monazite 

Monazite is quite abundant in the accessory mineral

assemblage of the Stolpen granite (Lisowiec et al. 2013).

Generally it forms sub- to anhedral 10–20 μm inclusions

in fluorite and K-feldspar. It often occurs also in the rock

matrix as subhedral crystals up to 300 μm in size. The

whole population of monazite grains represents a wide

spectrum of growth textures, from nearly homogenous

to irregularly zoned, spongy and strongly dissolved

(Text-fig. 2), evidence of fluid overprint (Lisowiec et al.
2013). The penetrating fluids were enriched in fluorine,

Ca, Y and CO

2

, based on the high abundance of sec-

ondary fluorite and Y-rich silicates. Such a fluid  com-

position enabled the remobilization of trace elements

from the monazite grains which were later incorpo-

rated into secondary accessory phases. Alterations in

monazite include mostly enhanced huttonite and cher-

alite substitutions. The monazite crystals forming in-

clusions in fluorite are partly corroded at the contact

with the host mineral. Small monazite grains occasion-

ally overgrow zircon margins. 

Because of the alteration, careful selection of the

grains and evaluation of their chemistry had to be un-

dertaken prior to any chemical dating analysis. Twelve

monazite grains, which represent the most ‘pure’ mon-

azite end-member, were selected for age determination

(Text-fig. 3). The monazite grains show very subtle

(Text-fig. 3abe) to distinctly patchy zoning (Text-fig.

3dgh). Dark patches in BSE imaging are often located

along rims (Text-fig. 3cdghjl). Locations of the spot

measurements were chosen carefully to avoid any con-

tribution of potentially fluid-altered domains; therefore,

Text-fig. 2. T Representative BSE images of monazite grains and their textu-

res; a – monazite grain with the most homogenous texture showing only very

subtle patchy zoning; b, c – monazite grains with more distinct patchy zoning; 

d – monazite grain with a very strongly resorbed texture



where it was possible, at a safe distance from margins

and cracks. However, both types of zones, BSE-bright

and BSE-dark, were investigated in order to assess the

potential difference in chemical composition and age

characteristics, which in some cases meant analyzing

small patches close to margins or crevices. 

The chemical composition of the entire monazite

population shows their affinity to the monazite-hut-

tonite series, with the main substitution mechanism:

Si

4+

+ Th

4+

(U

4+

)= REE

3+

+ P

5+

(Text-fig. 4ab). Grains

with subtle patchy zoning show only slight differences

in element concentrations (AAR1-mz1x, mz1 and mz3

in Table 2). Th, U and Pb contents in a single grain vary

in the ranges 3.00 wt.%, 0.30 wt.% and 0.05 wt.%, re-

spectively. Monazite grains showing more distinct zon-

ing demonstrate stronger variations in composition,

mostly in Th, U,Pb, Y and La. The highest chemical gra-

dient can be observed in grain AAR1-mz9 where the

BSE-dark rim is strongly depleted in Th and Pb (spot 4

and 5); and AAR3-mz2, where the BSE-bright patch
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Text-fig. 3. BSE images of twelve analyzed grains with measured points and calculated ages; a, b, e, f and i – grains with subtle patchy zoning and slight variations in

chemical composition; c, d, g, h, j, k and l – grains with more distinct patchy zoning and more significant variations in chemical composition; in grains c, d, g, h, j, k, l 

BSE-dark zones are located on the margins or along cracks



(spot 3) is highly enriched in Y, U and HREE, and de-

pleted in LREE. BSE-dark parts of the grains are usu-

ally depleted in Th, U and Pb, interpreted as related to

decreasing availability of Th and U during monazite

growth. Depletion in these elements is coupled with en-

richment in LREE. There is no correlation between Th

and heavier lanthanides or yttrium (Text-fig. 4cd). 

The growth textures along with the chemical com-

position of monazite grains were studied carefully in

terms of primary vs. secondary origin to ensure the

quality of the age data. Grains with very subtle patchy

zoning and a low chemical gradient are undoubtedly of

primary magmatic origin. In cases where the BSE in-

tensity shows more distinct differences between the

zones, the possibility of BSE-dark patches (depleted in

Th, U and Pb) being altered by secondary hydrothermal

processes has to be taken into account. These examples

include mainly grains mz2, mz5, mz7 and mz10,where

the patchy character is slightly more pronounced. Dark

patches are usually associated with crystal margins or

cracks. Several measurement points are located on the

BSE-dark patches and margins; however their compo-

sition does not reveal any significant post-magmatic

fluid overprint. These domains are indeed depleted in

Th, U and Pb, but the degree of depletion is compara-

ble for all three elements. Such a feature is not likely to

take place during fluid alteration which usually results

in preferential depletion (or enrichment) in one or two

of these components, most usually only Pb (e.g.

Williams et al. 2011; Harlov et al. 2011). The compo-

sitional variations, especially the Th-, Pb- and U-con-

tents, can be therefore attributed most probably to fluc-

tuations in melt composition during crystal growth.

Binary plots carry further evidence of the negligible con-

tribution of fluid overprint. Th vs. Si diagrams (Text-fig.

4a) are well correlated and almost all points lay within

the thin correlation line. Furthermore, points represent-

ing both BSE-bright and BSE-dark domains form the

same trend on the plots (Text-fig. 4abc). The only dis-

tinction of the BSE-bright zones relative to BSE-dark

ones is the enrichment in light-  and especially heavy-

rare earth elements,  and Th, U and Pb. Numerous stud-

ies have shown that zones affected by post-magmatic

fluid alteration display a distinct chemical pattern, dis-

tinguishable from the domains formed at the magmatic

stage and therefore allowing a straightforward location
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Text-fig. 4. Chemical composition plots of monazite grains; a, b – plots showing the main substitution mechanism in the structure of monazite : Si

4+

+ Th

4+

(U

4+

)= REE

3+

+ P

5+

; c – LREE vs. Th plot showing decreasing LREE content with increasing Th abundance; d – HREE vs. Th plot showing no correlation between these elements
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on binary diagrams (Poitrasson et al. 2000; Harlov et al.
2002; Williams et al. 2011; Seydoux-Guillaume et al.
2012). Unfortunately no measurement spots were lo-

cated in thin BSE-dark domains near the cracks, so the

nature of element depletion is unknown. However, as

they were not included in the dating, their potential hy-

drothermal origin did not affect the age calculations.

Taking into account both the compositional and textural

characteristics of the grains, a magmatic origin is sug-

gested for the entire population of monazites used for

chemical dating. Places where fluid overprint is a pos-

sibility (cracks or lobate margins) either show a com-

position which is not significantly altered or were care-

fully avoided in the selection of the measurement spots. 

Monazite ages

The monazite chemical dating yielded an uniform

age of 299 ± 1.7 Ma (2σ) (Text-fig. 5ab) for the whole

population. Single spot ages range from 281 Ma to 318

Ma. No systematic difference between the ages calcu-

lated for BSE-dark and BSE-bright zones of the entire

monazite population can be observed. Both composi-

tional domains demonstrate similar age distribution

(289–318 Ma for BSE-ark zones and 291–318 Ma for

BSE-bright zones). In single grains the ages calculated

for BSE-dark zones are either younger or older from

those calculated for BSE-bright, depending on the grain.

A systematic age difference between BSE-dark and

BSE-bright zones might suggest an involvement of a

secondary process affecting the monazite chemistry

and, consequently, the ages obtained; however, no such

feature is observed. In cases where BSE-dark zones

might have originated from fluid infiltration (indicated

by an irregular, lobate boundary of the margin), e.g. in

grain AAR1-mz5, point 2 (Text-fig. 3g), the younger age

of 295 Ma may be considered to be a result of selective

leaching of Pb by F-bearing fluids (Williams et al.
2011), but no definite interpretation can be proposed

based on only one analysis. In the case of grain AR-mz9,

where the upper margin is depleted in Th, U and Pb, the

age calculated for spots 4 and 5 is older than for the rest

of the grain as well as the majority of measured points.

Such case could be explained by fluid-aided removal of

Th from the grain margin, but, as in the previous ex-

ample, there is not sufficient evidence to confirm or ex-

clude this  suggestion. Selective leaching of Th, U or Pb

by hydrothermal fluids may disturb the Th-U-Pb system

and, therefore, yield an unrealistic age or even totally re-

set the Th-U-Pb clock (Bosse et al. 2009; Williams et al.
2011;  Seydoux-Guillaume et al. 2012). The domains

which are texturally suspected of being altered by post-

magmatic fluids include BSE-dark cracks and some lo-

bate grain margins. However, as mentioned above, com-

positional evidence of fluid-mediated alteration is

scarce. As no measurement spots were located in the

BSE-dark zones along the cracks, the potential disrup-

tion of the Th-U-Pb system by these domains was

avoided. In the case of the margins, single examples

show younger ages (e.g. AAR1-mz5, point 2). However,

their number is insufficient to visibly disturb the age cal-

culated for the whole population. Looking at textural,

compositional and geochronological data, it can be

stated that the studied monazite formed during one

magmatic episode in a slightly heterogeneous magma

and was moderately affected by post-magmatic fluids.

Such an overlap of processes was already documented

by the accessory mineral study of the Stolpen granite

(Lisowiec et al. 2013). The selection of spots eliminated

the effect of fluid alteration and thecalculated age can be

treated as the magmatic age of monazite crystallization.

However meaningful the obtained age is (textural

evidence, high precision and geotectonic context point

to its high reliability), it must be stressed that electron

microprobe dating of monazite is not the most precise

dating method (compared to SHRIMP or TIMS). The

age precision depends on the precision of the micro-

probe measurement itself and there is a number of an-

alytical factors influencing the measurement error, such

as counting statistics, background measurements, peak

overlap corrections etc. (Pyle et al. 2005; Williams et al.

KATARZYNA LISOWIEC ET AL.
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Text-fig. 5. Results of age calculation (with two abnormal ages substracted); 

a – histogram of monazite Th-U-Pb ages; b –total Pb vs. Th* (wt%) isochron

diagram, where Th* is Th + U equivalents expressed as Th. Isochrons are cal-

culated from regression forced through zero as proposed by Montel et al. (1996)



2006). Therefore the calculated age and its precision

must be treated with caution. 

Another important issue that must be taken into ac-

count when using minerals for dating is the stage at what

the mineral appears during magmatic differentiation.

Monazite usually starts to crystallize in the middle to late

stages so that it records only exactly this time. As men-

tioned earlier, monazite occurs both as inclusions in ei-

ther feldspar of fluorite and as large crystals in the rock

matrix, which represent subsequent monazite genera-

tions. However, chemical dating was performed on

heavy mineral separates, so the textural context of the

studied monazite grains is lost. Nevertheless, it can be

assumed that the separated monazite crystals (which are

not intergrown with any other minerals) represent most

probably the ‘matrix’ population, which is more prone

to be released during crushing and heavy liquid separa-

tion. Consequently, this population reflects most likely

the beginning of monazite crystallization. Therefore

the age of 299 ± 1.7 Ma records the early stages of mon-

azite formation. However, as monazite usually starts to

crystallize in the middle to late stages of magma differ-

entiation, the calculated age must be considered as a

minimum age of the intrusion as granitoid plutons may

form over wide time spans.

Variscan magmatism of Saxo-Thuringian zone of

the Bohemian Massif

The monazite age is the first obtained for the Stolpen

magmatic body. It confirms the previous suggestion

that the Stolpen granite is one of the late-Variscan in-

trusions in the Lusatian Granodiorite Complex (Ham-

mer et al. 1999). The magmatic activity started most

probably earlier than the obtained age; as it lasted until

at least 299 ± 1.7 Ma, the granite may be regarded as one

of the youngest plutons in the whole intrusive sequence

within the Saxo-Thuringian and Moldanubian zones.

This information is particularly important for the deter-

mination of the whole path of evolution of the magma-

tism during the convergence of Gondwana and Laurus-

sia (Matte 1986; Ziegler 1986; Finger and Steyrer 1990;

Matte et al. 1990; Dallmeyer et al. 1995; Franke 2000;

Franke et al. 2005). The Lusatian Complex belongs to

the mid-European segment of the Variscan orogenic

belt. The belt,which resulted from continent-continent

collision, shows the emplacement of many granitic bod-

ies (Finger et al. 1997). The greatest magmatic activity

took place during the Late Carboniferous and was re-

lated to transpressional-transtensional tectonics (Fin-

ger and Steyrer 1990; Diot et al. 1995; Mazur and Alek-

sandrowski 2001). The plutons located at the northern

extreme of the Bohemian Massif  were emplaced dur-

ing this period. They are all composite bodies of mixed

mantle-crust origin (Gerdes et al. 2000; Janousek et al.
2004, Finger et al. 1997; Słaby and Martin 2008).

Within these plutons, the Stolpen granite seems to pres-

ent the final stage of a long lasting magmatism.

In general, two stages of  granite emplacement

within the Saxo-Thuringian and Moldanubian zones

can be distinguished. Förster and Romer (2010) con-

cluded that igneous activity in the Saxo-Thuringian

Zone, including the northern and northwestern part of

the Bohemian Massif, occurred at 335–320 Ma and

305–280 Ma. Some of the plutons, e.g. the granitoid

pluton of Karkonosze, formed over several My, with

the oldest rocks from this intrusion dated at 319–320

Ma (U-Pb in zircon,  Žák et al. 2013), and the youngest

at 302 ± 4 Ma (U-Pb in zircon, Kusiak et al. 2014).

Finger et al. (2009) and Siebel et al. (2003) studied the

Moldanubian part of the Bohemian Massif and also

distinguished two major intrusive events; one more vo-

luminous between 328–320 Ma, and the second one,

less voluminous, between 317–310 Ma. Moreover,

Finger et al. (2009) subdivided Variscan granitoid in-

trusions into five groups of granite belts characterized

by slightly different ages, geotectonic settings and

magma generation mechanisms. The oldest are: “North

Variscan Granite Belt”, “Central Bohemian Granite

Belt” and “Durbachitic Granites”, with ages of ca.

330 to 350 Ma, 360 to 335 Ma and 335 to 340 Ma, re-

spectively. Intrusions with a younger age (330 to 310

Ma) include the south-western sector of the Bohemian

Massif, and the granites from the western Erzgebirge

and Fichtelgebirge. According to Finger et al. (2009)

they form a coherent plutonic belt (“Saxo-Danubian

Granitic Belt”), formed most probably due to the de-

lamination of lithospheric mantle (Bird 1979). The

fifth group, involving the youngest granites located in

the Sudetes, is called the “Sudetic Granite Belt” (in-

cluding e.g., Karkonosze Massif, Strzegom-Sobotka

Massif, Strzelin Massif and Kłodzko-Złoty Stok Mas-

sif; Mazur et al. 2007) and is dated at ca. 315 to 300

Ma. Gerdes et al. (2003) reported a bimodal timing of

magmatism in the South Bohemian Massif, with the

first pulse at 331–323 Ma (with a higher mantle input)

and the second, less significant, at 319–315 Ma. Ac-

cording to Siebel et al. (2010), one of the youngest

magmatic impulses in the Bohemian Massif was the

Fichtelgebirge intrusive complex, with U-Pb zircon

ages ranging from 291.2 ± 6.4 Ma to 298.5 ± 3.9 Ma

for different types of granites comprising the intrusion.

Late-Variscan granitoids from the Erzgebirge fall

within the older group of intrusions (Romer et al.
2010), whereas the younger magmatic event is ab-

sent. The ages of the amphibole-bearing granitoids
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from the Lusatian Granodiorite Complex (granitoids

from Wiesa – 304 ± 10 Ma and Klienschweidnitz – 312

± 10 Ma) place these intrusions within the youngest

stage of magmatic activity. The granite of Königshain

was dated first by Hammer et al. (1999) at 315 ± 6 Ma

using zircon-evaporation method and would also be-

long to the younger set of intrusions. However Th-U-

total Pb dating of uraninite and molybdenite by Förster

et al. (2012) yielded older ages of 328.6 ± 1.9 Ma for

uraninite and 327 ± 1.3 Ma, 327.6 ± 1.3 Ma for molyb-

denite, indicating that the magmatic processes in the

LGC started approximately at the same time as the

older igneous events in other parts of the Saxo-

Thuringian Zone and the Bohemian Massif. The gran-

itoid pluton of Stolpen, with monazite age of 299 ± 1.7

Ma seems to be younger than its neighbour and be-

longs to the second impulse of magmatic activity in the

Saxo-Thuringian Zone (Förster and Römer 2010). The

age difference between the Stolpen and Königshain in-

trusions, which cannot be fully estimated based on

present data, is difficult to explain, especially as these

two plutons are located in one geotectonic unit. It is

possible that the studied samples were taken from the

youngest part of the pluton, whereas the main body

formed some million years  before. Nevertheless the

Stolpen granite, or at least part of it, is the youngest in-

trusion in the Lusatian Granodiorite Complex, indi-

cating that the magmatic activity in this region lasted

at least 5 my longer than previously  estimated. 

According to previous studies of the biotite-bearing

granitoid intrusions from the Lusatian Granodiorite

Complex, magma generation mechanisms involved

melting of the lower crust triggered by a mantle diapir

(enriching the granitoid rocks in LILE and HFSE), ac-

companied by post-collisional extension (Hammer et al.
1999) in the case of the Stolpen granite, and crust melt-

ing in a compressional regime in case of the Königshain

granite (Eidam et al. 1991). Amphibole-bearing grani-

toids (from Wiesa and Kleinschweidnitz) formed due to

melting of metasomatized mafic lower crust (probably

tholeiitic, Hammer et al. 1999). The melting of the

lower crust, in the case of both biotite- and amphibole-

bearing granites, was induced probably by delamination

processes, as proposed by Hammer et al. (1999). A

similar scenario for the Late Carboniferous – Early Per-

mian magmatism in Central Europe is also suggested by

more recent studies of Finger et al. (2009), Słaby et al.
(2010) and Turniak et al. (2014). Finger et al. (2009)

proposed a delamination model for the formation of the

Saxo-Danubian granitoids, which extend along the NE

and SW margins of the Bohemian Massif. Late Variscan

Lusatian granitoids (including Stolpen) may be consid-

ered as the most northerly  part of this belt, but the

younger age of the Stolpen granite is not in accord with

the older rocks formed south-west of the pluton (e.g. in

the Erzgebirge). Studies of the Strzegom–Sobotka Mas-

sif (Turniak et al. 2014) belonging to the Sudetic

Granitic Belt, have suggested a close relationship to

post-Variscan bimodal volcanism. The heat required

for melting of the lower crust was supplied by the ascent

of mantle-derived basaltic magmas. The mechanisms

possibly responsible for melting of the lithospheric

mantle include decompression related to lithospheric ex-

tension/rifting and delamination and the convective re-

moval of the thickened mantle. Perhaps similar mech-

anisms operated in the LGC, which is a western

prolongation of the Sudetic Granitic Belt. An interest-

ing comparison can be also made with the granitic rocks

(dated at ~300 Ma) associated with the Kraków-Lublin-

iec Fault Zone (located to the East of the Variscides)

which is a prolongation of the Elbe Line (near which the

Stolpen granite is located). Słaby et al. (2010) proposed

a two-stage origin, involving: (1) transpressional regime

accompanied by crustal thickening, delamination of the

lithospheric mantle and mantle metasomatism , and (2)

transtensional regime causing partial melting of upper

metasomatized mantle and lower mafic crust. Therefore,

it seems that similar processes may have caused grani-

toid formation along the Elbe Zone and its extension to

the Kraków-Lubliniec Fault Zone. The age of the

Stolpen granite agrees with such an assumption. 

Magmatism in the Bohemian Massif is characterized

by magmas derived from at least two sources: mantle

and crust (Finger et al. 1997; Janousek et al. 2004;

Gerdes et al. 2000; Siebel et al. 2003; Słaby and Mar-

tin 2008). It is noticeable that with progressive evolution

of the magmatism, the contribution of the mantle source

diminished and the peraluminosity of magmas in-

creased. However mantle activity did not disappear en-

tirely; it is present in a form of late mafic dykes. The

Mantle source also contributed continuously with fluids,

whose signature is discernible in the granite alterations

products and granite pegmatites (e.g. Martin 2006), as

is also seen in the case of the Stolpen granite (Lisowiec

et al. 2013). The delamination scenario supports man-

tle-crust interactions, which may involve mixing be-

tween crust- and mantle-derived melts (as suggested for

some granites from the Saxo-Danubian Granitic Belt,

Finger et al. 2009) or can be limited to heat transfer and

influx of mantle-derived fluids. 

The Stolpen granite fits the general features of

magma evolution in the Bohemian Massif. Both the ob-

tained monazite age and magma affinity fit to the late

stage of Variscan magmatism outline. The peraluminous

character of the Stolpen granite and the only slight con-

tribution of mantle fluids (Hammer et al. 1999; Lisowiec
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et al. 2013) suggest that at the end of the emplacement

of Variscan granitoids the interaction between the man-

tle and the crust was limited, but noticeable. The tectonic

setting of the Stolpen pluton near the Stolpen-Klotzsche

Fault indicates that the mechanism of emplacement

along older shear zones was similar to those of other

granites from the LGC, as e.g., the Königshain granite

(Förster et al. 2012). 

CONCLUSIONS

Chemical dating results of monazite point to  a crys-

tallization age related to the late magmatic stages of the

formation of the Stolpen granite. Although textural data

point to some weak secondary alteration present in the

monazite grains, domains and spots for analysis were

chosen so as to minimize the contribution of fluid-in-

duced components. Chemical composition and dating

results of the analyzed domains do not indicate post-

magmatic processes.

The Th-U-total Pb monazite age of 299 ± 1.7 Ma in-

dicates that the Stolpen granite is the youngest late

Variscan intrusion present in the Lusatian Granodiorite

Complex and one of the youngest  of the Variscan

granitic bodies in the Saxo-Thuringian Zone and the Bo-

hemian Massif. It suggests that shear zones created dur-

ing the Variscan Orogenesis in the LGC were still active

at that time and enabled the emplacement of the granitic

magma in upper parts of the crust. The young age of the

granite and its location may suggest some affinity to

other aspects of Late Carboniferous – Early Permian

magmatism of Central Europe that formed due to lithos-

pheric mantle-crust interactions in a changeable trans-

pressional-transtensional regime and the following mag-

matic flare-up. Therefore, a similar magma generation

mechanism can be proposed for the Stolpen

granite;however such assumption remains only a hy-

pothesis, which must be verified by further studies. 

This study reports the first precise geochronological

data on the Stolpen Granite and allows a better under-

standing of the evolution of the late Variscan magmatism

in the LGC and in the whole Bohemian Massif. 
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