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ABSTRACT:

Lisowiec, K., Budzyn, B., Staby, E., Schulz, B., and Renno, A.D. 2014. Th-U-total Pb timing constraints on the em-
placement of the granitoid pluton of Stolpen, Germany. Acta Geologica Polonica, 64 (4), 457—472. Warszawa.

Monazite from the Stolpen monzogranite (SE Germany) was studied to constrain the Th-U-total Pb age of pluton
formation. Monazite grains demonstrate subtle to distinct patchy zoning related to slight compositional variations.
Textural and compositional characteristics indicate that the monazite formed in a single magmatic event in a slightly
heterogeneous system, and was only weakly affected by secondary alteration, which did not disturb the Th-U-Pb sys-
tem. Chemical dating of the monazite gave a consistent age of 299 + 1.7 Ma. The current study presents the first
geochronological data for the Stolpen granite. It provides evidence that Stolpen is the youngest Variscan granitic in-
trusion in the Lusatian Granodiorite Complex and indicates that magmatic activity related to post-collisional exten-
sion in this region lasted at least 5Smy longer than previously assumed.

Key words: Monazite, Th-U-Pb chemical dating; Lusatian Granodiorite Complex; Stolpen
Granite; Variscan granitoids.
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INTRODUCTION

The convergence of Gondwana and Laurassia dur-
ing the Paleozoic, including subduction and continental
collision, produced a wide variety of magmatic and
metamorphic rocks from the Bohemian Massif in the
east to the Massif Central in the west. Due to intensive

heating and melting of the crust and/or the mantle,
caused by burial or decompression during late-orogenic
extension, many granitic intrusions formed, often de-
riving their melts from heterogeneous sources (e.g. Fin-
ger et al. 1997; Finger et al. 2009; Siebel et al. 2003;
Forster and Romer 2010). The granitoid bodies are most
abundant in the Moldanubian Zone of the orogenic belt
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(the main part of the Bohemian Massif) and less abun-
dant in the Saxo-Thuringian and Tepla-Barrandian zones
(e.g. Finger et al. 1997; Oberc-Dziedzic et al. 2013).
They differ in petrography, geochemistry and
geochronology (Finger et al. 1997); therefore a careful
study of all the types is crucial to understanding their
evolution and global mantle-crust interactions related to
orogenic and post-orogenic movements.

The ages of the Variscan granitoids have been con-
strained in numerous papers using various methods in-
cluding the Single Zircon Evaporation method (e.g.
Kroner et al. 1994; Siebel et al. 2003), whole rock Rb-
Sr (e.g. Kroner et al. 1994; Finger et al. 1997), the U-
Pb method in zircon and monazite (e.g. Gerdes ef al.
2003; Klein et al. 2008; Finger et al. 1997; Oberc-
Dziedzic et al. 2013; Kryza et al. 2012) and Th-U-to-
tal Pb of uraninite and Re-Os of molybdenite (Forster
et al. 2012). All these methods are not interchangeable
with each other and may document slightly different
stages of the magmatic/metamorphic events. Fluid
overprint further complicates the use of some of them,
e.g. U-Pb ages of zircon or monazite due to remobi-
lization of Pb.

One of the most rapid and widely used methods of
age determination is Th-U-total Pb dating of monazite.
Monazite is a LREE-rich phosphate [(REE,Th,U)PO,]
which incorporates significant amounts of Ce, La, Sm
and Nd, as well as other elements such as Y, Th and U.
Thelast two are particularly important in terms of using
monazite for Th-U-Pb dating. Because monazite occurs
in various types of magmatic, metamorphic and sedi-
mentary rocks, it can be used to constrain the timing of
geological processes such as magma crystallization
and metamorphism or to define the age of protholith(s)
(Williams et al. 2007). Diffusion of major and trace el-
ements in monazite is very slow (Cherniak and Pyle
2008; Cherniak et al. 2004a; Cherniak et al. 2004b;
Parrish 1990), therefore it can preserve compositional
zoning which records different stages of crystallization
or metamorphic deformation. Due to the fact that mon-
azite contains negligible amounts of common Pb rela-
tive to radiogenic Pb (Parrish 1990), it is possible to use
the chemical Th-U-total Pb method employing an elec-
tron microprobe to constrain its age (Jercinovic and
Williams 2005; Jercinovic et al. 2008; Kone¢ny 2004;
Montel et al. 1996; Pyle et al. 2005; Spear et al. 2009;
Suzuki and Adachi 1991, 1994; Suzuki and Kato 2008).
Although chemical dating of monazite is mostly used
in metamorphic petrology (Finger and Krenn 2007;
Kohn et al. 2005; Liu et al. 2007; Rosa-Costa et al.
2008; Tickyj et al. 2004; Williams et al. 2007), it has
also found applications in constraining the ages of
magmatic events with high precision (Just et al. 2011).

The resistance of monazite to complete alteration
and its ability to preserve its growth textures provide
an opportunity to reach deep into the magmatic his-
tory.

One region of the Variscan Orogenic Belt where
granitic intrusions are rather scarce is the Lusatian Gra-
nodiorite Complex (LGC), located in the eastern part of
the Saxo-Thuringian Zone. It experienced only minor
metamorphism and deformation during the Variscan
orogeny (Kroner et al. 1994). It contains only several
late-Variscan granitoid bodies, most of which have been
studied in terms of geochemistry and geochronology
(Kroner et al. 1994; Hammer et al. 1999; Forster et al.
2012). However there is one pluton,— the Stolpen gran-
itoid,, which cannot be precisely situated within the in-
trusion sequence of the Lusatian Block due to a lack of
geochronological data. This study reports monazite U-
Th-Pb timing constraints on the formation of the Stolpen
pluton.. The analyzed monazite formed mostly at the
magmatic stages of pluton formation; however, as in-
filtration by post-magmatic fluids has been already doc-
umented (Lisowiec ef al. 2013), the samples were care-
fully studied to minimize the influence of fluid-alteration
on the calculated ages.

GEOLOGICAL SETTING

The granitoid pluton of Stolpen is located in the
southern part of the Lusatian Granodiorite Complex
which comprises the central part of the Lusatian An-
ticlinal Zone at the NE margin of the Bohemian Mas-
sif (Text-fig. 1). The pluton is slightly SE-NW elon-
gated, which is the main direction of shearing during
the Variscan orogenesis (Krentz in Kozdroj et al.
2001). Magma emplacement used tectonic faults that
were formed during and after orogenic movements.
The pluton intruded Cadomian to Early-Palaeozoic
(600490 Ma) magmatic — tonalitic to syenogranitic in
composition, locally metamorphosed rocks. The en-
velope of the complex consists of upper-Proterozoic
sedimentary rocks, mostly greywackes and pelites.
The Stolpen granite belongs to the group of late- to
post-Variscan intrusions in the Lusatian Granodiorite
Complex which contains also the amphibole granites
of Wiesa and Grossschweidnitz and the biotite granite
of Konigshain-Arnsdorf, with ages constrained by zir-
con-evaporation method at 304 = 10 Ma, 312 + 10 Ma
and Th-U-total Pb dating of uraninite and molybden-
ite at 327-328 Ma, respectively (Kroner ef al. 1994;
Forster et al. 2012).

Knowledge of the petrogenesis of the Stolpen gran-
ite is very limited; however Hammer et al. (1999) sug-
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Text-fig. 1. Sketch of the study area (after Kozdroj et al. 2001) with sampling locations. AR1, AR3 — 51°0°58.77* N, 14°7°27.71“ E

gest that it originated from a crustal magma. The melt-
ing process was induced by an upwelling mantle diapir
preceded by a fluid front. The fluids were responsible for
crustal magma enrichment in LILE and HFSE. An ac-
cessory mineral study was consistent with such an hy-
pothesis but did not exclude other possibilities (Lisowiec
et al. 2013). Hammer et al. (1999) place the pluton
among other Variscan granitic intrusions but do not give
an exact age. It is therefore unknown where exactly it is
positioned among other Variscan intrusions in the re-
gion.

The pluton consists mostly of medium- to coarse-
grained monzogranite of peraluminous character
(Hammer et al. 1999). Whole-rock geochemistry was
documented by Hammer et al. (1999) and is presented
in Table 1. The authors also report an average Th/U ra-
tio of 4.4. Granite samples used in this study were
taken from the SW part of the magmatic body, which
consists of a quite homogenous, medium-grained fa-
cies. The mineralogy of the granite is quite typical, the
main assemblage containing quartz, alkali-feldspar,
plagioclase, biotite and small amounts of muscovite.
Quartz forms two populations: older large crystals and
younger small crystals occurring as inclusions in other
minerals or located interstitially. Alkali-feldspar is K-
rich with a subordinate Na-rich (anorthoclase) com-
ponent, whilst the plagioclase composition is almost
pure albite, rarely oligoclase (Ab<20%). The pure al-
bitic composition may suggest secondary post-mag-
matic crystal-fluid interaction. Plagioclase often ex-
hibits weak zonation. Alkali-feldspar shows a strong
perthitization and is often replaced by plagioclase (al-
bite) on the margins, which again may be related to re-
action with fluids. Similarly the other phases show
pristine magmatic compositions affected by interaction

with fluids. Biotite underwent almost total chloritiza-
tion and its FeO content reaches ~43 wt%. Rarely its
margins are replaced by muscovite. Accessory miner-
als present in the granite are fluorite, zircon, mon-
azite (with a high contribution from a cheralite com-
ponent), titanite, allanite, apatite, xenotime, Y-rich
silicates and Y-Ti-phases, Th-rich minerals (oxides
and silicates), Nb-Ta minerals (mostly columbite), Fe-
oxides and secondary REE-carbonates. Fluorite is the
most abundant accessory mineral and forms three pop-
ulations: homogenous, more or less regularly zoned
and patchy. Individual populations show no specific
textural positions. Y-rich minerals are represented

Elen}ent/ Content | Element | Content | Element | Content
oxide
SiO, 75.60 Cs 4.5 U 7.8
TiO, 0.17 Cu 8 A% 13
ALO; 13.00 Ga 23 Y 58
Fe,0; 1.50 Hf 5.0 Zn 32
MnO 0.03 Li 57 Zr 174
MgO 0.19 Nb 28 La 33
CaO 0.70 Ni 6 Ce 75
Na,O 3.60 Pb 28 Nd 36
K, O 4.50 Rb 254 Sm 7.2
P,0s 0.05 Sc 4.2 Eu 0.32
Ba 220 Sr 36 Tb 1.30
Co 1.2 Ta 2.56 Yb 3.9
Cr 5 Th 29.6 Lu 0.56

Table 1. Whole-rock chemical composition of the Stolpen monzogranite (from
Hammer et al. 1999). Element oxides are given in wt [%], trace elements in [ppm].
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mostly by strongly zoned hingganite—(Y) and
aeschynite—(Y) (Lisowiec et al. 2013). Zircon, mon-
azite and xenotime sometimes form intergrowths. The
accessory mineral assemblage (mostly zircon and mon-
azite) and the evidence of magmatic and post-mag-
matic processes that it carries has been studied by
Lisowiec et al. (2013). Some parts throughout the plu-
ton have more aplitic or pegmatitic character with
nearly the same mineral composition as the granite. In
the area we can find also numerous andesitic (and one
rhyolitic) dykes which are situated in the vicinity of the
pluton or intruded within the granite.

ANALYTICAL METHODS

Granite samples were initially crushed in a jaw
crusher, than fragmented using a Selfrag high voltage
pulse power fragmentation. Afterwards, the two small-
est fractions of 500-250 um and 80-250 um were used
for separation in heavy liquids. The mineral separates
were mounted in epoxy and polished.

Backscattered electron (BSE) images were made
using a Quanta 600 FEG-MLAG0OOF field emission
scanning electron microscope (SEM) equipped with
two energy dispersive spectrometers (EDS) at the In-
stitute of Mineralogy, TU Bergakademie Freiberg, Ger-
many. The analytical conditions were as follows: ac-
celerating voltage 20 kV, with some exceptions when
15, 25 or 30 kV were used, and a 200 pA beam current
with the beam focused on the sample coated with car-
bon.

Analyses of Th, U, Pb for the calculation of mon-
azite ages, as well as Y, REE, Ca, Si, P, Sr, Al and As for
corrections and evaluation of the mineral chemistry,
were carried out using a Cameca SX-100 electron mi-
croprobe at the Department of Electron Microanalysis
in the State Geological Institute of Dionyz Stir in
Bratislava. The analytical methods for age determination
followed procedures presented in Petrik and Konecny
(2009). To obtain the optimum c/s/nA (counts per sec-
onds divided by sample current) and to minimize surface
damage the following analytical conditions were used:
accelerating voltage 15 KV, sample current 180 nA,
counting times: Pb of 300 s, Th 35s,U 805, Y 40 s, REE
10-50s, except Lu 100 s, P, S, Al, Si and Ca 10 s, Sr 20
s, As 120 s. Calibrations were performed using synthetic
and natural standards: REE and Y were taken from
phosphates XPO,, Th from ThO,, Pb from PbCO;, U
from UO,, Ca and Si from wollastonite, As from GaAs,
S from barite and Al from Al,O,.The resulting ages were
calculated using the statistical approach of Montel et al.
(1996).

RESULTS AND DISCUSSION
Textures and chemical composition of monazite

Monazite is quite abundant in the accessory mineral
assemblage of the Stolpen granite (Lisowiec ef al. 2013).
Generally it forms sub- to anhedral 10-20 pm inclusions
in fluorite and K-feldspar. It often occurs also in the rock
matrix as subhedral crystals up to 300 pum in size. The
whole population of monazite grains represents a wide
spectrum of growth textures, from nearly homogenous
to irregularly zoned, spongy and strongly dissolved
(Text-fig. 2), evidence of fluid overprint (Lisowiec et al.
2013). The penetrating fluids were enriched in fluorine,
Ca, Y and CO,, based on the high abundance of sec-
ondary fluorite and Y-rich silicates. Such a fluid com-
position enabled the remobilization of trace elements
from the monazite grains which were later incorpo-
rated into secondary accessory phases. Alterations in
monazite include mostly enhanced huttonite and cher-
alite substitutions. The monazite crystals forming in-
clusions in fluorite are partly corroded at the contact
with the host mineral. Small monazite grains occasion-
ally overgrow zircon margins.

Because of the alteration, careful selection of the
grains and evaluation of their chemistry had to be un-
dertaken prior to any chemical dating analysis. Twelve
monazite grains, which represent the most ‘pure’ mon-
azite end-member, were selected for age determination
(Text-fig. 3). The monazite grains show very subtle
(Text-fig. 3abe) to distinctly patchy zoning (Text-fig.
3dgh). Dark patches in BSE imaging are often located
along rims (Text-fig. 3cdghjl). Locations of the spot
measurements were chosen carefully to avoid any con-
tribution of potentially fluid-altered domains; therefore,

AAR1 - mz1

E AAR1 - mz1a u

Text-fig. 2. T Representative BSE images of monazite grains and their textu-
res; a —monazite grain with the most homogenous texture showing only very
subtle patchy zoning; b, c — monazite grains with more distinct patchy zoning;

d — monazite grain with a very strongly resorbed texture
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Text-fig. 3. BSE images of twelve analyzed grains with measured points and calculated ages; a, b, e, f and i — grains with subtle patchy zoning and slight variations in

chemical composition; ¢, d, g, h, j, k and | — grains with more distinct patchy zoning and more significant variations in chemical composition; in grains ¢, d, g, h, j, k, |

BSE-dark zones are located on the margins or along cracks

where it was possible, at a safe distance from margins
and cracks. However, both types of zones, BSE-bright
and BSE-dark, were investigated in order to assess the
potential difference in chemical composition and age
characteristics, which in some cases meant analyzing
small patches close to margins or crevices.

The chemical composition of the entire monazite
population shows their affinity to the monazite-hut-
tonite series, with the main substitution mechanism:
Si** + Th* (U*)= REE** + P> (Text-fig. 4ab). Grains

with subtle patchy zoning show only slight differences
in element concentrations (AAR1-mz1x, mz1 and mz3
in Table 2). Th, U and Pb contents in a single grain vary
in the ranges 3.00 wt.%, 0.30 wt.% and 0.05 wt.%, re-
spectively. Monazite grains showing more distinct zon-
ing demonstrate stronger variations in composition,
mostly in Th, U,Pb, Y and La. The highest chemical gra-
dient can be observed in grain AAR1-mz9 where the
BSE-dark rim is strongly depleted in Th and Pb (spot 4
and 5); and AAR3-mz2, where the BSE-bright patch
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Text-fig. 4. Chemical composition plots of monazite grains; a, b — plots showing the main substitution mechanism in the structure of monazite : Si* + Th* (U*)= REE*'

+P%*; ¢ — LREE vs. Th plot showing decreasing LREE content with increasing Th abundance; d — HREE vs. Th plot showing no correlation between these elements

(spot 3) is highly enriched in Y, U and HREE, and de-
pleted in LREE. BSE-dark parts of the grains are usu-
ally depleted in Th, U and Pb, interpreted as related to
decreasing availability of Th and U during monazite
growth. Depletion in these elements is coupled with en-
richment in LREE. There is no correlation between Th
and heavier lanthanides or yttrium (Text-fig. 4cd).

The growth textures along with the chemical com-
position of monazite grains were studied carefully in
terms of primary vs. secondary origin to ensure the
quality of the age data. Grains with very subtle patchy
zoning and a low chemical gradient are undoubtedly of
primary magmatic origin. In cases where the BSE in-
tensity shows more distinct differences between the
zones, the possibility of BSE-dark patches (depleted in
Th, U and Pb) being altered by secondary hydrothermal
processes has to be taken into account. These examples
include mainly grains mz2, mz5, mz7 and mz10,where
the patchy character is slightly more pronounced. Dark
patches are usually associated with crystal margins or
cracks. Several measurement points are located on the
BSE-dark patches and margins; however their compo-
sition does not reveal any significant post-magmatic

fluid overprint. These domains are indeed depleted in
Th, U and Pb, but the degree of depletion is compara-
ble for all three elements. Such a feature is not likely to
take place during fluid alteration which usually results
in preferential depletion (or enrichment) in one or two
of these components, most usually only Pb (e.g.
Williams et al. 2011; Harlov ef al. 2011). The compo-
sitional variations, especially the Th-, Pb- and U-con-
tents, can be therefore attributed most probably to fluc-
tuations in melt composition during crystal growth.
Binary plots carry further evidence of the negligible con-
tribution of fluid overprint. Th vs. Si diagrams (Text-fig.
4a) are well correlated and almost all points lay within
the thin correlation line. Furthermore, points represent-
ing both BSE-bright and BSE-dark domains form the
same trend on the plots (Text-fig. 4abc). The only dis-
tinction of the BSE-bright zones relative to BSE-dark
ones is the enrichment in light- and especially heavy-
rare earth elements, and Th, U and Pb. Numerous stud-
ies have shown that zones affected by post-magmatic
fluid alteration display a distinct chemical pattern, dis-
tinguishable from the domains formed at the magmatic
stage and therefore allowing a straightforward location
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on binary diagrams (Poitrasson ez al. 2000; Harlov ez al.
2002; Williams et al. 2011; Seydoux-Guillaume et al.
2012). Unfortunately no measurement spots were lo-
cated in thin BSE-dark domains near the cracks, so the
nature of element depletion is unknown. However, as
they were not included in the dating, their potential hy-
drothermal origin did not affect the age calculations.
Taking into account both the compositional and textural
characteristics of the grains, a magmatic origin is sug-
gested for the entire population of monazites used for
chemical dating. Places where fluid overprint is a pos-
sibility (cracks or lobate margins) either show a com-
position which is not significantly altered or were care-
fully avoided in the selection of the measurement spots.

Monazite ages

The monazite chemical dating yielded an uniform
age of 299 + 1.7 Ma (20) (Text-fig. Sab) for the whole
population. Single spot ages range from 281 Ma to 318
Ma. No systematic difference between the ages calcu-
lated for BSE-dark and BSE-bright zones of the entire
monazite population can be observed. Both composi-
tional domains demonstrate similar age distribution
(289-318 Ma for BSE-ark zones and 291-318 Ma for
BSE-bright zones). In single grains the ages calculated
for BSE-dark zones are either younger or older from
those calculated for BSE-bright, depending on the grain.

35
(2]

30 4 2ge:299:1.7 Ma
MSWD:1.33
25 o number: 63

20

Number

15 9

10 A

280 290 300 310 320 330
Age [Ma]

0.25

0.20 1 age:299+ 1.7 Ma

0.15 +

Pb

0.10 y=0.013x + 0.004

2=,
. R?=0.9836

0.00

0 2 4 6 8 10 12 14 16
Th*
Text-fig. 5. Results of age calculation (with two abnormal ages substracted);
a — histogram of monazite Th-U-Pb ages; b —total Pb vs. Th* (wt%) isochron

diagram, where Th* is Th + U equivalents expressed as Th. Isochrons are cal-

culated from regression forced through zero as proposed by Montel et al. (1996)

A systematic age difference between BSE-dark and
BSE-bright zones might suggest an involvement of a
secondary process affecting the monazite chemistry
and, consequently, the ages obtained; however, no such
feature is observed. In cases where BSE-dark zones
might have originated from fluid infiltration (indicated
by an irregular, lobate boundary of the margin), e.g. in
grain AAR1-mz5, point 2 (Text-fig. 3g), the younger age
0f 295 Ma may be considered to be a result of selective
leaching of Pb by F-bearing fluids (Williams et al.
2011), but no definite interpretation can be proposed
based on only one analysis. In the case of grain AR-mz9,
where the upper margin is depleted in Th, U and Pb, the
age calculated for spots 4 and 5 is older than for the rest
of the grain as well as the majority of measured points.
Such case could be explained by fluid-aided removal of
Th from the grain margin, but, as in the previous ex-
ample, there is not sufficient evidence to confirm or ex-
clude this suggestion. Selective leaching of Th, U or Pb
by hydrothermal fluids may disturb the Th-U-Pb system
and, therefore, yield an unrealistic age or even totally re-
set the Th-U-Pb clock (Bosse et al. 2009; Williams et al.
2011; Seydoux-Guillaume ef al. 2012). The domains
which are texturally suspected of being altered by post-
magmatic fluids include BSE-dark cracks and some lo-
bate grain margins. However, as mentioned above, com-
positional evidence of fluid-mediated alteration is
scarce. As no measurement spots were located in the
BSE-dark zones along the cracks, the potential disrup-
tion of the Th-U-Pb system by these domains was
avoided. In the case of the margins, single examples
show younger ages (e.g. AAR1-mz5, point 2). However,
their number is insufficient to visibly disturb the age cal-
culated for the whole population. Looking at textural,
compositional and geochronological data, it can be
stated that the studied monazite formed during one
magmatic episode in a slightly heterogeneous magma
and was moderately affected by post-magmatic fluids.
Such an overlap of processes was already documented
by the accessory mineral study of the Stolpen granite
(Lisowiec et al. 2013). The selection of spots eliminated
the effect of fluid alteration and thecalculated age can be
treated as the magmatic age of monazite crystallization.

However meaningful the obtained age is (textural
evidence, high precision and geotectonic context point
to its high reliability), it must be stressed that electron
microprobe dating of monazite is not the most precise
dating method (compared to SHRIMP or TIMS). The
age precision depends on the precision of the micro-
probe measurement itself and there is a number of an-
alytical factors influencing the measurement error, such
as counting statistics, background measurements, peak
overlap corrections etc. (Pyle et al. 2005; Williams et al.
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2006). Therefore the calculated age and its precision
must be treated with caution.

Another important issue that must be taken into ac-
count when using minerals for dating is the stage at what
the mineral appears during magmatic differentiation.
Monazite usually starts to crystallize in the middle to late
stages so that it records only exactly this time. As men-
tioned earlier, monazite occurs both as inclusions in ei-
ther feldspar of fluorite and as large crystals in the rock
matrix, which represent subsequent monazite genera-
tions. However, chemical dating was performed on
heavy mineral separates, so the textural context of the
studied monazite grains is lost. Nevertheless, it can be
assumed that the separated monazite crystals (which are
not intergrown with any other minerals) represent most
probably the ‘matrix’ population, which is more prone
to be released during crushing and heavy liquid separa-
tion. Consequently, this population reflects most likely
the beginning of monazite crystallization. Therefore
the age 0f 299 + 1.7 Ma records the early stages of mon-
azite formation. However, as monazite usually starts to
crystallize in the middle to late stages of magma differ-
entiation, the calculated age must be considered as a
minimum age of the intrusion as granitoid plutons may
form over wide time spans.

Variscan magmatism of Saxo-Thuringian zone of
the Bohemian Massif

The monazite age is the first obtained for the Stolpen
magmatic body. It confirms the previous suggestion
that the Stolpen granite is one of the late-Variscan in-
trusions in the Lusatian Granodiorite Complex (Ham-
mer et al. 1999). The magmatic activity started most
probably earlier than the obtained age; as it lasted until
at least 299 & 1.7 Ma, the granite may be regarded as one
of the youngest plutons in the whole intrusive sequence
within the Saxo-Thuringian and Moldanubian zones.
This information is particularly important for the deter-
mination of the whole path of evolution of the magma-
tism during the convergence of Gondwana and Laurus-
sia (Matte 1986; Ziegler 1986; Finger and Steyrer 1990;
Matte et al. 1990; Dallmeyer et al. 1995; Franke 2000;
Franke et al. 2005). The Lusatian Complex belongs to
the mid-European segment of the Variscan orogenic
belt. The belt,which resulted from continent-continent
collision, shows the emplacement of many granitic bod-
ies (Finger et al. 1997). The greatest magmatic activity
took place during the Late Carboniferous and was re-
lated to transpressional-transtensional tectonics (Fin-
ger and Steyrer 1990; Diot et al. 1995; Mazur and Alek-
sandrowski 2001). The plutons located at the northern
extreme of the Bohemian Massif were emplaced dur-

ing this period. They are all composite bodies of mixed
mantle-crust origin (Gerdes et al. 2000; Janousek et al.
2004, Finger et al. 1997; Staby and Martin 2008).
Within these plutons, the Stolpen granite seems to pres-
ent the final stage of a long lasting magmatism.

In general, two stages of granite emplacement
within the Saxo-Thuringian and Moldanubian zones
can be distinguished. Forster and Romer (2010) con-
cluded that igneous activity in the Saxo-Thuringian
Zone, including the northern and northwestern part of
the Bohemian Massif, occurred at 335-320 Ma and
305-280 Ma. Some of the plutons, e.g. the granitoid
pluton of Karkonosze, formed over several My, with
the oldest rocks from this intrusion dated at 319-320
Ma (U-Pb in zircon, Zak et al. 2013), and the youngest
at 302 + 4 Ma (U-Pb in zircon, Kusiak et al. 2014).
Finger et al. (2009) and Siebel et al. (2003) studied the
Moldanubian part of the Bohemian Massif and also
distinguished two major intrusive events; one more vo-
luminous between 328-320 Ma, and the second one,
less voluminous, between 317-310 Ma. Moreover,
Finger et al. (2009) subdivided Variscan granitoid in-
trusions into five groups of granite belts characterized
by slightly different ages, geotectonic settings and
magma generation mechanisms. The oldest are: “North
Variscan Granite Belt”, “Central Bohemian Granite
Belt” and “Durbachitic Granites”, with ages of ca.
330 to 350 Ma, 360 to 335 Ma and 335 to 340 Ma, re-
spectively. Intrusions with a younger age (330 to 310
Ma) include the south-western sector of the Bohemian
Massif, and the granites from the western Erzgebirge
and Fichtelgebirge. According to Finger et al. (2009)
they form a coherent plutonic belt (“Saxo-Danubian
Granitic Belt”), formed most probably due to the de-
lamination of lithospheric mantle (Bird 1979). The
fifth group, involving the youngest granites located in
the Sudetes, is called the “Sudetic Granite Belt” (in-
cluding e.g., Karkonosze Massif, Strzegom-Sobotka
Massif, Strzelin Massif and Ktodzko-Ztoty Stok Mas-
sif; Mazur et al. 2007) and is dated at ca. 315 to 300
Ma. Gerdes et al. (2003) reported a bimodal timing of
magmatism in the South Bohemian Massif, with the
first pulse at 331-323 Ma (with a higher mantle input)
and the second, less significant, at 319—315 Ma. Ac-
cording to Siebel et al. (2010), one of the youngest
magmatic impulses in the Bohemian Massif was the
Fichtelgebirge intrusive complex, with U-Pb zircon
ages ranging from 291.2 + 6.4 Ma to 298.5 + 3.9 Ma
for different types of granites comprising the intrusion.
Late-Variscan granitoids from the Erzgebirge fall
within the older group of intrusions (Romer et al.
2010), whereas the younger magmatic event is ab-
sent. The ages of the amphibole-bearing granitoids
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from the Lusatian Granodiorite Complex (granitoids
from Wiesa — 304 & 10 Ma and Klienschweidnitz — 312
+ 10 Ma) place these intrusions within the youngest
stage of magmatic activity. The granite of Kdnigshain
was dated first by Hammer ef al. (1999) at 315 + 6 Ma
using zircon-evaporation method and would also be-
long to the younger set of intrusions. However Th-U-
total Pb dating of uraninite and molybdenite by Forster
et al. (2012) yielded older ages of 328.6 + 1.9 Ma for
uraninite and 327 + 1.3 Ma, 327.6 + 1.3 Ma for molyb-
denite, indicating that the magmatic processes in the
LGC started approximately at the same time as the
older igneous events in other parts of the Saxo-
Thuringian Zone and the Bohemian Massif. The gran-
itoid pluton of Stolpen, with monazite age 0f 299 = 1.7
Ma seems to be younger than its neighbour and be-
longs to the second impulse of magmatic activity in the
Saxo-Thuringian Zone (Forster and Romer 2010). The
age difference between the Stolpen and K&nigshain in-
trusions, which cannot be fully estimated based on
present data, is difficult to explain, especially as these
two plutons are located in one geotectonic unit. It is
possible that the studied samples were taken from the
youngest part of the pluton, whereas the main body
formed some million years before. Nevertheless the
Stolpen granite, or at least part of it, is the youngest in-
trusion in the Lusatian Granodiorite Complex, indi-
cating that the magmatic activity in this region lasted
at least 5 my longer than previously estimated.
According to previous studies of the biotite-bearing
granitoid intrusions from the Lusatian Granodiorite
Complex, magma generation mechanisms involved
melting of the lower crust triggered by a mantle diapir
(enriching the granitoid rocks in LILE and HFSE), ac-
companied by post-collisional extension (Hammer ef al.
1999) in the case of the Stolpen granite, and crust melt-
ing in a compressional regime in case of the Konigshain
granite (Eidam et al. 1991). Amphibole-bearing grani-
toids (from Wiesa and Kleinschweidnitz) formed due to
melting of metasomatized mafic lower crust (probably
tholeiitic, Hammer et al. 1999). The melting of the
lower crust, in the case of both biotite- and amphibole-
bearing granites, was induced probably by delamination
processes, as proposed by Hammer ef al. (1999). A
similar scenario for the Late Carboniferous — Early Per-
mian magmatism in Central Europe is also suggested by
more recent studies of Finger et al. (2009), Staby et al.
(2010) and Turniak et al. (2014). Finger et al. (2009)
proposed a delamination model for the formation of the
Saxo-Danubian granitoids, which extend along the NE
and SW margins of the Bohemian Massif. Late Variscan
Lusatian granitoids (including Stolpen) may be consid-
ered as the most northerly part of this belt, but the

younger age of the Stolpen granite is not in accord with
the older rocks formed south-west of the pluton (e.g. in
the Erzgebirge). Studies of the Strzegom—Sobotka Mas-
sif (Turniak ef al. 2014) belonging to the Sudetic
Granitic Belt, have suggested a close relationship to
post-Variscan bimodal volcanism. The heat required
for melting of the lower crust was supplied by the ascent
of mantle-derived basaltic magmas. The mechanisms
possibly responsible for melting of the lithospheric
mantle include decompression related to lithospheric ex-
tension/rifting and delamination and the convective re-
moval of the thickened mantle. Perhaps similar mech-
anisms operated in the LGC, which is a western
prolongation of the Sudetic Granitic Belt. An interest-
ing comparison can be also made with the granitic rocks
(dated at ~300 Ma) associated with the Krakow-Lublin-
iec Fault Zone (located to the East of the Variscides)
which is a prolongation of the Elbe Line (near which the
Stolpen granite is located). Staby et al. (2010) proposed
a two-stage origin, involving: (1) transpressional regime
accompanied by crustal thickening, delamination of the
lithospheric mantle and mantle metasomatism , and (2)
transtensional regime causing partial melting of upper
metasomatized mantle and lower mafic crust. Therefore,
it seems that similar processes may have caused grani-
toid formation along the Elbe Zone and its extension to
the Krakéw-Lubliniec Fault Zone. The age of the
Stolpen granite agrees with such an assumption.

Magmatism in the Bohemian Massif is characterized
by magmas derived from at least two sources: mantle
and crust (Finger et al. 1997; Janousek et al. 2004;
Gerdes et al. 2000; Siebel et al. 2003; Staby and Mar-
tin 2008). It is noticeable that with progressive evolution
of the magmatism, the contribution of the mantle source
diminished and the peraluminosity of magmas in-
creased. However mantle activity did not disappear en-
tirely; it is present in a form of late mafic dykes. The
Mantle source also contributed continuously with fluids,
whose signature is discernible in the granite alterations
products and granite pegmatites (e.g. Martin 2006), as
is also seen in the case of the Stolpen granite (Lisowiec
et al. 2013). The delamination scenario supports man-
tle-crust interactions, which may involve mixing be-
tween crust- and mantle-derived melts (as suggested for
some granites from the Saxo-Danubian Granitic Belt,
Finger et al. 2009) or can be limited to heat transfer and
influx of mantle-derived fluids.

The Stolpen granite fits the general features of
magma evolution in the Bohemian Massif. Both the ob-
tained monazite age and magma affinity fit to the late
stage of Variscan magmatism outline. The peraluminous
character of the Stolpen granite and the only slight con-
tribution of mantle fluids (Hammer et al. 1999; Lisowiec
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et al. 2013) suggest that at the end of the emplacement
of Variscan granitoids the interaction between the man-
tle and the crust was limited, but noticeable. The tectonic
setting of the Stolpen pluton near the Stolpen-Klotzsche
Fault indicates that the mechanism of emplacement
along older shear zones was similar to those of other
granites from the LGC, as e.g., the Konigshain granite
(Forster et al. 2012).

CONCLUSIONS

Chemical dating results of monazite point to a crys-
tallization age related to the late magmatic stages of the
formation of the Stolpen granite. Although textural data
point to some weak secondary alteration present in the
monazite grains, domains and spots for analysis were
chosen so as to minimize the contribution of fluid-in-
duced components. Chemical composition and dating
results of the analyzed domains do not indicate post-
magmatic processes.

The Th-U-total Pb monazite age 0of299 + 1.7 Ma in-
dicates that the Stolpen granite is the youngest late
Variscan intrusion present in the Lusatian Granodiorite
Complex and one of the youngest of the Variscan
granitic bodies in the Saxo-Thuringian Zone and the Bo-
hemian Massif. It suggests that shear zones created dur-
ing the Variscan Orogenesis in the LGC were still active
at that time and enabled the emplacement of the granitic
magma in upper parts of the crust. The young age of the
granite and its location may suggest some affinity to
other aspects of Late Carboniferous — Early Permian
magmatism of Central Europe that formed due to lithos-
pheric mantle-crust interactions in a changeable trans-
pressional-transtensional regime and the following mag-
matic flare-up. Therefore, a similar magma generation
mechanism can be proposed for the Stolpen
granite;however such assumption remains only a hy-
pothesis, which must be verified by further studies.

This study reports the first precise geochronological
data on the Stolpen Granite and allows a better under-
standing of the evolution of the late Variscan magmatism
in the LGC and in the whole Bohemian Massif.
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