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Some applications of fractional order calculus
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Abstract. This paper presents some recent results in the area of application of fractional order system models. After the introduction to
the dynamic systems modelling with the fractional order calculus the paper concentrates on the possibilities of using this approach to the
modelling of real-world phenomena. Two examples of such systems are considered. First one is the ultracapacitor where fractional order
models turn out to be more precise in the wider range of frequencies than other models used so far. Another example is the beam heating
problem where again the fractional order model allows to obtain better modelling accuracy. The theroetical models were tested experimentally

and the results of these experiments are described in the paper.
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1. Introduction

Although the application of fractional order differentials and
integrals is a matter of recent decades the theory of fractional
calculus has quite a long and prominent history. In fact, one
may trace it back to the very origins of differential calculus
itself. However, its complexity prevented it from being used
in practice until only very recently. In the last decades, the
results of work on the theory of chaos revealed some relations
with fractional derivatives and integrals. This in turn renewed
interest in the field. Some fundamental facts of the fraction-
al calculus theory and its properties may be found in e.g.,
[1, 2]. As far as the applications of fractional calculus are
concerned there is a large volume of research on viscoelas-
ticity/damping, see e.g., [3, 4] and chaos/fractals, see e.g.,
[S]. Also, other areas of science and technology have started
to pay more attention to these concepts and it may be not-
ed that fractional calculus is being adopted in the fields of
signal processing, system modelling and identification, and
control to name just a few. What is most interesting from
our point of view is the application of fractional calculus in
the last two areas. Several researchers on automatic control
have proposed control algorithms both in frequency [6, 7] and
time [8] domains based on the concepts of fractional calculus.
This work is still in a fairly early stage and a lot remains to
be done.

One of the fundamental problems in control is the stabil-
ity analysis of the dynamic system. The stability problem for
linear, continuous-time, fractional order state-space systems
has been considered for some time and some properties and
stability results for these systems are presented and discussed
e.g. in [9] and [10].

For the discrete-time fractional order systems however the
discussion of this problem is much less common. There are
very few results dealing with the stability of such systems. It is
even more so for the state-space description of these systems.
Some basic results of defining the fractional order state-space
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systems are presented in e.g. [11]. Some remarks on poles
and zeros of fractional order systems are given in [12].

Also other system properties for fractional order systems
like controlability and observability have been addressed only
in recent year (see e.g. [13]).

Two recent good expositions of the fractional order calcu-
lus and its applications can be found e.g. in [14] and [15].

The aim of this paper is to summarise some theoretical
developments in the area of fractional order systems, and most
notably to present some research results of application of these
models to several physical phenomena like ultracapacitors,
and the beam heating problem.

2. Fractional order differential calculus
introduction

Differential calculus is only the generalization of full integer
order integral and differential calculus to real or even com-
plex order. In the section below main definitions of fractional
order integrals and derivatives are presented.

2.1. Definition of fractional order differ-integral. In this
paper the following definition of the fractional order deriva-
tive [1, 2] is used.

Definition 1. Riemann-Liouville definition of fractional order
differ-integral:

1 am

RL [ —
ath(t)_F(m—Oé)E

j (t—7)m=oT f(r)dr,

a

where
m—1l1<a<meN

and o € R (R is the set of real numbers) is a fractional order
of the differ-integral of the function f(t).
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The Laplace transform of the R-L fractional order differ-
integral is given as follows:

a <0,

a >0,

s ={T00 L

"

S sEDX~F=1£(0) are the initial conditions
k=0

terms,andn — 1 <a<neN.

where F'(s) =

Definition 2. Caputo’s definition of fractional order differ-
integral:

1 Fm(r)
(o —m) / (t —r)otl-m

a

Dy f(t) = dr,

where
m—1l<a<meN and aelR

is a fractional order of the differ-integral of the function f(t).
The Laplace transform of the differ-integral of Definition 2

is given as:

n—1

LI DY f()] = s*F(s) = >_ s~ fB(0)

k=0

where
n—1l1<a<neN.

Rieman-Liouville and Caputo definitions are pretty close.
The difference is the order of initial conditions (IC). In Caputo
definition these conditions are of integer order which makes
them easier to interpret. This is not the case of R-L definition
where the IC are of fractional order.

As stated above all of the definitions of fractional order
calculus mentioned are in many respects equivalent and for
a > 0 give results of the fractional order derivative, for o < 0
fractional order integral and for o = 0 the function itself. This
is why these definitions are called differ-integrals definitions.

Different approach to differ-integral of non-integer order
was presented by Griinwald-Letnikov:

Definition 3. Griinwald-Letnikov definition of fractional order
differ-integral:

LD A(0) = Jing 7 S (%) 2 - ),

The variation of this definition is used in the next part of
the article.

2.2. Fractional order integrator. Let us assume the follow-
ing transfer function of a fractional order integrator

1

C) = g (1)
The spectral transfer function of (1) is
1 1
G(jw) = —— = . @
(Tjw) (Tw)e (cos goz + jsin ga)
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The magnitude of the transfer function is given as follows [16]

(cos2 T + sin® Ea)
_ 2 2 ) 1

which yields
M(w) =20log A(w) = —a201og(T) — a20log(w). (4)
The phase properties are obtained from the following:
1 T
p(w) = arg {WJ a} = —045-

The Bode diagram of the fractional order integrator for
different values of « is presented in Fig. 1.
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Fig. 1. Bode diagrams of siﬂ systems for a = 0.5,0.7,1

2.3. Transfer function e(T9)" and its Bode diagram. Let
us assume the following transfer function

G(s) = T 5)
for which the spectral transfer function is given by
Gljw) = e(Tiw)® _ o(Tw)*(cos Fa+jsin Fa) (6)
The magnitude of the transfer function is given as follows
Alw) = elTw)"cos 5o @)
which gives
M (w) = 20log(eT«)” cos 5, (8)
The phase properties are given as follows:

p(w) = (Tw)“sin ga.

The Bode diagram of this transfer function for different
values of T" and o = 0.5 is presented in Fig. 2.
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The interpretation of the transfer function e~ (T is not

as easy as the interpretation of the e~ () function. Looking
at the frequency response it can be noted that this is not a pure
delay system where the phase shift changes exponentially, but
there is also a non-zero effect in the magnitude.

3. Fractional order state-space system

The continuous time state-space system is given by the fol-
lowing definition:

Definition 4. Linear continuous fractional order state-space
system is given as a following set of equations:

GL D%x(t) = Ex(t) + Fu(t), )

y = Gz(t) + Hu(t), (10)

where E € RVXN P e RNxm G e RPN H € RPX™ m
is a number of outputs, p is a number of inputs, N is a number
d*x(t)
d @
a system order o € R.
In order to present the discrete fractional order state-space
system, let us define the shifted G-L definition of the frac-

tional order differ-integral, which is a variant of classical G-L
approach:

of state equations, a is a fractional order derivative of

Definition 5. The shifted Griinwald-Letnikov definition of
fractional order differ-integral is given as follows: [17]

t/h+1
S6L,Dpa(t) = lim = 3 (1) (O.‘)a:(t (- 1)),

=0 J

where, o € R, as previously defined is a fractional degree.
The binomial term in Definition 5 can be obtained from
the following relation:

a ) J1 for 7=0
j - a(afl).;j:!(ocfjJrl) for j> 0

In order to introduce discrete fractional order state-space
system, let us substitute Definition 5 into 4. This gives

Y
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h—o he j (12)
= EBx(t) + Fu(t),
y = Gz(t) + Hu(t). (13)

Analogically we can define shifted fractional order differ-
ence:

Definition 6. Shifted fractional order difference is given as
follows:

k+1 a
A%rpiq = Z(—l)J (j)xk—jﬂa

Jj=0

where, o € R, is a fractional degree, R, is the set of real
numbers and k£ € N (N, is the set of natural numbers) is
the number of a sample for which the approximation of the
derivative is calculated.

Using the Eq. (12) with some relatively small value of h
we can obtain the following structure of the discrete fractional
order state-space model. In the general case the values of the
discrete system matrices are not the same as in continuous
case and have to be found by the discretization process or by
identification.

Definition 7. The linear discrete fractional order system in
state-space representation is given as follows:

Aa.%'k_,_l = Axy + Buy, (14)

k1
e
Thr1 = A% — Z(—UJ <j)$kj+1 (15)

j=1

yr = Cxy + Dug, (16)

where o € R is a system order.

The value of fractional order difference of state vector for
time instant k 4+ 1 is obtained according to (14), from this
value the state vector x4 is calculated using relation (15).
The output equation is given by (16).

For practical realization the number of samples taken into
consideration has to be reduced to the predefined number L.
In this case the Eq. (15) is rewritten as

L
-«
Tpp1 = Ay — »_(—1) <j)£6k—j+1, a7

Jj=1

where L is a number of samples taken into account, called
memory length and with assumption that xx = 0 for £ < 0.

The system given by the Definition 7 can be rewritten as
an infinite dimensional system in the following way

Definition 8. The infinite dimensional form of the linear dis-
crete fractional order state-space system is defined as follows
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Tk41 Tk
me || e 5
Th—1 | Th—2 + B,
T
|
k= Tp—2 |’
where
(A+Ta) —(=1)2I(3) —(=1)°I(5)
I 0 0
A= 0 I 0 :
B
0
B=|,|. C=[c 00 }

where I is the identity matrix.

4. Fractional order difference equation

In order to identify the system parameters the difference equa-
tion describing input-output dynamic relation is more conve-
nient than the state-space representation. Let the system equa-
tions (14) and (16) be rewritten using Z transform with zero
initial conditions (z; = 0 for j < 0) as follows:

2A%(2) X (2) = AX(2) + BU(z)

Y(z) = CX(2).
This immediately gives for a Single-Input-Single-Output
case the relation
Y(z)
U(z)

where zA%(z) is a polynomial of z given as follows:

20 (z) = ]il(—l)j (O.[)z_j“.

=0 J

= C(I(zA%(2)) — A)~'B,

This leads to the relation

(2A%(z) — zp,N=1) - .. (2A%(2) — 2p,1)

(zA%(2) — zg,N) - .- (2A%(2) — 2z4,1)

(18)

B belszlAa(Nfl)(Z) N bO
C 2NAN(Z) o+ a1 2A%(2) +ag
where 2z, for K = 1...N are the eigenvalues of the ma-

trix A and are associated with the system poles, zp ) for
k=1...N —1 are associated with the zeros of the system.
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Then, the Fractional Difference Equation is as follows:
AaNyk + aN—lAa(Nil)yk—l + -+ agYk—N =
= bN,lAa(N_l)uk,1 + -+ bouk—n,

where parameters ay and by for k = 0... N —1 are the entries
of the system matrices, eg. in the canonical form.

5. Fractional order discrete systems
identification

The fractional difference equation model of a dynamic system
presented in Sec. 4 can form a basis for a control law. How-
ever, in order to construct any control law it is essential to
know the parameters of the model. Using difference equation
defined in previous section it is possible to determine para-
meters of the estimation process in the following way. This
reasoning is in principle a version of the RLS approach to
parametric identification.

o = —AN-1y_y —Yk—N (19)
ANty up—nN | (20)

o7 — [ an_1 ... ay by_i bo } Q1)
Vi = A%y | 22)

The parameters may be obtained by solving the equation
(usually overdetermined)

(23)

The use of the approach is demonstrated in the following
Section.

5.1. Identification example. The continuous time state-space
system (12), (13) is given by the following matrices:

0 1 0
E = 5 F= B
-2 -3 1
G:[z 3}, H:[o}, a=05
The transfer function of the system has the form:
3595 +2 -1 4
G(s) = = .
() st +3s05 42 0541 + §0-5 + 2

The step response of the system is
h(t) — —t0'5E0_571(—t0'5) 4 4t0'5E0_571(—t0'5),

where E,, g is a Mittag-LefHler function.
In parametric identification of this system the following
discrete transfer function form is assumed:

bleO'S(Z) + bo

G(z) = 24
(2) 22A1(2) 4+ a12A%3(2) 4+ ag 24)

which is rewritten in the form
o = [ =A% yep1, —yr, A%Pupir, ug ] (25)

Bull. Pol. Ac.: Tech. 58(4) 2010
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oT:[al aw by bo] (26)

vi=| Ay | @7)

Solving the equation (23) we obtain the following para-

meters:

a1 = —0.5867,  ap = —0.1705,

b1 = 0.6181, bo = 0.1677.

This gives the following discrete time model

B 0 1
| —0.1705 —0.5867 |’

0
], a=0.5
1

B =

C=| 01677 06181 |, D=]0].

The comparison of the step response of continuous and
identified discrete time model is presented in Fig. 3. As it can
be seen the accuracy of the identification is very high, the
responses are nearly the same.

1

0.9¢

0.81 i
0.7} - output of orginal system 4

—— output of system from identification

0.6 input |
0.5F J
0.4+

0.3+ 4
0.2F i
0.1H 4

0 | | L | | | I | |
0 1 2 3 4 5 6 7 8 9 10

time [s]
Fig. 3. Step response of continuous system for o = 0.5 and inden-
tificated model

6. Mathematical description of heating process

The heating process of a semi-infinite beam can be described
by the following partial differential equation [18]

8—QT(t A) = CLQQT(t A) (28)
o= T o T
with the following boundary conditions:
T(0,\) =0, T(t,0) = u(t),

where T'(t,A) is a temperature of the beam at time instant
t and coordinate A, and a is a parameter which depends on
beam parameters like heat conductibility and density.
Let us assume the following equation where the boundary
conditions are the same as in (28):
0 05

= T(t,N).

(29)
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0
By applying the derivative X to both sides of the equation
the following relation is obtained:

82 60.5 B
Using again Eq. (29) we achieve
62 5 60'5 60.5

This finally gives the traditional heat transfer partial differen-
tial Eq. (28).
Using the following notation

HEN) = 2100,

oA (32)

where H (t,\) is the heat flux at time ¢ and length coordinate
A, the following equation is obtained:

0.5

H(t,)\) = G/W

T(t,\). 33)

Hence by first order differentiation with respect to A of
both side of previous equation and using Eq. (32) the follow-
ing fractional order partial differential equation, describing
heat flux transfer is achieved:

0 20>

= H(t, ).

(34)
Applying the Laplace transformation with respect to ¢ to this
equation we obtain

QH(S, ) =as®H(s,\) —o D; %2 H(0, \).

B3 (35)

The solution of this equation (for H(0,\) = 0) is given as
follows

H(s,\) = e " H(s,0), (36)

from where the following relation describing the heat transfer
with respect to the heat flux is obtained

T(s,\) = easo'sAH(s,O).

(37)

7. Practical example of ultracapacitor
frequency domain modelling

Ultracapacitors are large capacity and power density electrical
energy storage devices. This large capacity is due to a very
complicated internal structure, which has effect in its dynam-
ics. Many authors use the different RC models to perform
modelling of ultracapacitor which are accurate only for a lim-
ited range of frequencies. A more effective approach is based
on using the fractional order model which gives highly accu-
rate results of modelling over a wide range of frequencies.
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7.1. Ultracapacitor modelling. To model ultracapacitor the
experimental setup (Fig. 4) containing the electronic circuit
with ultracapacitor connected to the DS1104 Control Card
was built.

R R i(t)
OPA 544 >
+
u(t) Uye(t) T Gye

Tudac(t)
1 1 1 1

Fig. 4. Electronic circuit used in experiments with ultracapacitors

It is composed of the operational amplifier OPA544, re-
sistor 180€2 and ultracapacitors produced by Panasonic® of
nominal capacity 0.047F, 0.1F, 0.33F. OPA 544 is a high cur-
rent operational amplifier and works in the voltage follower
configuration. This circuit is used for both continuous and
discrete modelling.

The identification was based on Bode diagrams matching.
Bode diagram of the model was tuned to the diagram of the
ultracapacitor achieved from measurements. As a result of this
research, the authors obtained parameters of the model.

Uuyc(8)

I(s) R

Fig. 5. Ultracapacitor equivalent model i.e. the G, element of Fig. 4

Spectral transfer function of the modelled system is de-
fined as:
Uuc(jw)
I(jw)
where U,.(jw) is a spectral transform of capacitor voltage
and I(jw) is a spectral transform of the capacitor current.
The Bode diagram was obtained from the following rela-
tions:

M(w) = 20log (

Guc (]w) =

Ac(w) B
Ai(w)> ; p(w) = pi(w) — pu(w).

As a theoretical model of capacity of the ultracapcitor the
following transfer function was used:
(Ts+ 1)~

Cs

and the whole transfer function of the ultracapacitor presented
in Fig. 5 is:

Guc(s) = (38)

(Ts+ 1)~
1
=(Ts+ 1) +Cs

;39

where R is self-discharge resistance and R, is resistance of
ultracapacitor.
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The parameters achieved in the identification by diagrams
matching are presented in Table 1.

Table 1
capacitor Rc T C R o
0.047F 32Q 5.1138 0.05 0.11MQ2 0.6
0.1F 38Q2 13.6628 0.1 0.14MQ2 0.6
0.33F 272 5277674 027  047MQ 0.6

These parameters can be compared with physical para-
meters measured directly from ultracapacitors by means of
step response of the circuit. The results of the comparison are
shown in Table 2.

Table 2
capacitor Re C R
0.047F 320 0.06 0.06M 2
0.1F 42Q 0.1 0.15M Q2
0.33F 28 027  0.24MQ

As may be seen, the parameters of the fractional order
model are very close to the measured values.

The comparison of the measured data and theoretical Bode
diagrams is presented in Figs. 6, 7 and 8.

T
65| ¢ plant diagram
60 = theoretical diagram

55

s
&

e

L

L L L
30 S

100 ! I L L I
10° 107 107" 10° 10' 10° 10°
Frequency [Hz]

Fig. 6. Measured and theoretical Bode diagrams of ultracapacitor
0.047F

¢ plant diagram
= theoretical diagram

40 4

1 L 1 1 L
30 -3 2 -1

10°
Frequency [Hz]

arg(G(jo)) [°]

100 . I L L I
10° 107 107" 10' 10° 10°

Freque‘ﬁocy [Hz]
Fig. 7. Measured and theoretical Bode diagrams of ultracapacitor
0.1F
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=4 ¢ plant diagram
——theoretical diagram

arg(G(jm) [°]

4 o L . - !
107 107 107!

Freque‘g;:y [Hz]
Fig. 8. Measured and theoretical Bode diagrams of ultracapacitor
0.33F

7.2. Meaning of T parameter. Knowledge about 7" parame-
ter explains a very important phenomenon of an ultracapacitor.
The meaning of this parameter is presented below.

The spectral transfer function of the system given by Equa-

tion (38) is given as follows:
. (Tjw+ 1)~
Ge =

() Cjw

The magnitude of this spectral transfer function is

)2 a/2
aiy = T2

this magnitude can be compared with magnitude of the tradi-
tional capacitor

(Tw)> +1)/2 1
Cw T Clw

(40)

which yields
c

where C” is the capacity equivalent of the ultracapacitor for
given frequency w. This equivalent capacity illustrates what
capacity the traditional capacitor should have in order to have
the same magnitude for a desired value of frequency.

For any o we have

C' = (41)

c for w< %

= 42)
c 1
—f Z
Tw)ye " Y7 T

The frequency f. for which the capacity equivalent de-
creases 2°/2 times is given as follows
1
Je= 21T

and values of them, for tested ultracapacitors, are summarized
in Table 3.

(43)

Table 3
capacitor T felHz]
0.047F 5.1138 0.0311
0.1F 13.6628 0.0117
0.33F 52.7674 0.0030

Bull. Pol. Ac.: Tech. 58(4) 2010

Figures 9, 10 and 11 present values of the equivalent ca-
pacity as the function of frequency for the capacitors presented
above. As it can be seen, the values of the capacity equiva-
lent highly decrease when frequency of the sinusoidal signal
increases. This can be a very important feature for engineers
in the design process of systems that use ultracapacitors.

| ——equivalent capacity‘

0.04

0.03

0.02

equivalent capacity [F]

0.01

0 .
107 107 107 10° 10' 10° 10°
Frequency [Hz]
Fig. 9. Equivalent capacity C’ of ultracapacitor 0.047F

0.1

0.00] | — equivalent capacity

0.08

0.07

0.06

0.05

0.04

0.03f

equivalent capacity [F]

0.02

0.01

10° 10’ 10° 10°
Frequency [Hz]
Fig. 10. Equivalent capacity C’ of ultracapacitor 0.1F

0.25 . . . r :
| —— equivalent capacity
0.2t g

T
>
=
& o015
Q
S
(&)
-
C
Q2 o1t 1
©
=
=}
o3
@

0.05} g

107° 1072 107" 10° 10' 10° 10°

Frequency [Hz]
Fig. 11. Equivalent capacity C’ of ultracapacitor 0.33F
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7.3. Ultracapacitor discrete time identification. In para-
metric identification of this data the following discrete transfer
function form is assumed as follows:

_ ba22AN(2) 4+ b12A%5(2) + by

G(Z) - Z2A1(Z) + CLlZAO'S(Z) + CLO (4‘4)

which is rewritten in the form
or = —A%yer1, —yk, AMupA%Pupi,up ] (45)
eT = [ a1 Qo bQ b1 bo } (46)
Yi=| Ay, | )

By solving the equation (23) we have obtained the follow-
ing discrete time model

1
A= 0 o o5=|"],
—0.006333  —0.037401 1
C= [ 0.025055 0.004997 } :

D= [ 0.227795 } . a=05

« output of orginal system
— output of system from identification
== input

v]

L | | I I 1 L I
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
time [s]

Fig. 12. Step response of the system with known and identified pa-
rameters

0.05

—— identification error
0.041 g

0.031

(V]

-0.01

-0.02

-0.03|

-0.04

-0.05

0 0.5 1 1.5 2
time [s]

Fig. 13. Error between the step responses of the system with known

and identified parameters
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The comparison of the measured step response and iden-
tified the discrete time model step response is presented in
Figs. 12 and 13. As it could be seen the accuracy of the
identification is very high, the responses are nearly the same.

8. Experimental verification of heating process
model

The heat distribution process modelling by fractional order
PDEs and their respective counterparts in frequency domain
has been verified by the experiments with real physical ther-
mal system. The results obtained from the model proposed
have been compared with those obtained from the experiment.

8.1. Experimental setup. The experimental setup contains:

1. dSPACE DS1103 PPC card with a PC

2. Electronic interface with OPA 549 power amplifier

3. thermoelectric (Peltier) module SCTB NORD TM-127-1.0-
3.9-MS

4. 6 temperature sensors LM35DH

and its idea is presented in Fig. 14. The placement of the
temperature sensors is depicted in Fig. 15.

fan
heatsink )
Peltier module
N
N
Pel.module ten—~|
Sensors
© [
O
© temperature
Sensors
beam
A

Fig. 14. The experimental setup

A3
Ao
T(tv >\1) >\1
O

H(t,0)

T(t, Xo) (. /\3>/'

Fig. 15. Sensors placement on the beam
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8.2. Modelling results. The transfer function based on
Eq. (37) is given as follows (the additional parameters are
used for modelling unknowns relations eg. current-heat flux):

T(s,\) T,
H(s,0) 805

For desired values of A = {\], A\;, A5} corresponding to three
sensors mounted on the beam, the set of transfer functions is
obtained. Values of )] are regularized for \] =

The transfer function (48) was derived with the assump-
tion that the heat is not emitted to the outside of the beam.
This does not happen in a real plant, so we have to adjust
the transfer functions by replacing the fractional (0.5) order
integrator by the fractional (0.5) order inertia unit. In such a
case the transfer function has the following form:

T(s,\) T
H(s,0) (T3s)%5+1

For A = A the following parameters of the transfer function
were achieved using Bode diagram matching:

Ty =1.758, To=12.875, Ty = 88.799.

e}\(TgS)O’S

G\, s) = 48)

)\(TgS)O'S

G\, s) = e (49)

For other values of )\ the same parameters were used. The A
values used are: A} = 1, \; = 2.6, \; = 4.55. The results of
modeling are presented in Fig. 16. It may be observed that the
measured data for real thermal plant match quite accurately
the values obtained from the model in the range of frequencies
from f = 1073 Hz to f = 0.25-10~! Hz. This is especially
the case for A = \; (see top plots of magnitude and angle in
Fig. 16). However, for other values of \ the accuracy of mod-
elling is also very good (see middle and bottom magnitude
and angle plots in Fig. 16).

= —_ |G x‘,jm)\ measured

L
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““““““““ —8—|G(,jo)| modeled
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angle(G(jw)) [°]

xa,jw measured

(
(
(
(
(
(
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Fig. 16. Bode diagrams of measurements and modelling results

9. Conclusions

The paper presents some practical applications of fraction-
al order calculus in the area of modelling physical systems.
Firstly, a brief description of major theoretical developments
in the area of modelling of physical systems with the dicrete-
time fractional order models is given. After the short intro-
duction to fractional order calculus the fractional order state-
space system is recalled in this context and the identification

Bull. Pol. Ac.: Tech. 58(4) 2010

problem solution is proposed. The major part of the paper
describes the results of implementation of fractional order
models to physical systems. The modelling of ultracapitors by
the fractional order transfer function turned out to be much
more accurate than the previously used methods of RC lines.
Also the beam heating problem has been much more pre-
cisely described when the fractional order models had been
used.
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