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Abstract. This paper presents an improved Genetic Algorithm to solve the Transportation Network Design Problem (CTNDP) with interac-

tions among different links. The CTNDP is formulated in an optimal design as a bi-level programming model. A key factor in the present

approach is the combination of diploid based complex-encoding with meiosis specific features. The novel mutation operator proposed is

another improvement that leads to a better robustness and convergence stability.

The computational results obtained by comparing the performance of the proposed algorithm and other Genetic Algorithms for a test

network demonstrates its better local searching ability, as well as its high efficiency.

Finally, suggestions for further research and extensions are given.
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1. The Transportation Network Design Problem

– general description

The Transportation Network Design Problem (TNDP) in-

volves optimal decisions in determining a set of design pa-

rameters for improving an existing transportation network in

response to an increasing level of traffic demand. The gener-

al increase in flow level results in traffic congestion, delays,

higher fuel and maintenance costs, air pollution and accidents.

The improvements of a transportation network, such as

expansion of the capacities of the existing congested links,

addition or deletion of links, traffic signal control adjustment,

are made in accordance with a system optimum while consid-

ering the travel and route choice behavior of network users.

The system optimum usually represents the minimization of

the total travel time and construction costs.

The network user’s decisions correspond to a set of non-

linear relations that are formulated as an independent mathe-

matical programming problem.

In fact, a transportation network improvement involves the

interaction of two parties with own objectives: the network

planner represented by the transportation system authority and

the network users that use the provided services. The traffic

authority tries to optimize some overall objectives in the net-

work, while the network users try to minimize their travel

times/costs or perceived travel times/costs.

The decision variables of the network planner affect the

route choice behavior of network users which is based on two

equilibrium principles:

– the deterministic user equilibrium (DUE) condition [1]

wherein network users choose the route with the short-

est travel time/ the lower travel cost and equilibrium is

reached where no user can unilaterally change routes to

improve his/her own travel time or cost; assumptions of

DUE can be somewhat unrealistic because of the varia-

tions in network conditions, variations in demand and no

perfect information available for network users;

– the stochastic user equilibrium (SUE) condition [2] where

no user can unilaterally change routes to improve his/her

own perceived travel time or cost; SUE may reflect travel-

ers’ behavior more realistically than DUE. One can consid-

er that DUE is a special case of SUE, when the variance

of travel time perception is zero.

A mathematical programming model suitable for address-

ing this type of planning problem according to network eco-

nomic criteria, saving both interests in an optimal design, is

the bi-level programming model.

2. The transportation network design problem

– bi-level optimization problem

Bi-level optimization is a useful approach for problems with

conflicting objectives within a hierarchical structure.

It originated from the fields of game theory and decision

making, also describes a number of problems in transportation

planning and modeling (road network design, space localiza-

tion, traffic control, optimal congestion pricing), engineering

design (optimal structure and shape), economics (planning,

envy-free pricing, etc). A detailed list of references and var-

ious proposed methods for solving bi-level programming ap-

plications is found in [3].

Its sequential framework involves two optimization prob-

lems at different levels, where the feasible set of the first prob-

lem, called the upper-level (leader) problem, is determined by

∗e-mail: sedinu@yahoo.com

263



S. Dinu and G. Bordea

the other optimization problem, called the lower-level (fol-

lower) problem (Fig. 1). By extending this concept, one can

define multi-level programs with any number of levels.

Fig. 1. Bi-level model

In Fig. 1:

– x and y are the decision variable vectors of the upper level

and lower level, respectively;

– F(x,y) and f(x,y) are the leader’s and the follower’s objec-

tive functions, respectively;

– g(x, y) and h(x, y) are the leader’s and the follower’s con-

straints, respectively;

– X and Y represent upper and lower bounds on elements of

the vectors x and y:

X = {(x1, . . . , xn1
)T ∈

∈ Rn1 |lsj
≤ xj ≤ ldj

, j = 1, . . . , n1|},
(1)

Y = {(y1, . . . , yn2
)T ∈

∈ Rn2 |lsj
≤ xi ≤ ldj

, i = 1, . . . , n2|}.
(2)

For some particular cases of bi-level problems, the search

spaces Xand Y may introduce additional complicated require-

ments.

In Fig. 1 both the leader and the follower try to optimize

their own objective function without considering the objective

of the other one. The leader has complete information about

the follower’s optimization problem and its choice affects the

lower level.

First, the leader makes a decision by selecting a vector

x ∈ X that optimizes its objective function. Then, for the

given vector x, the follower reacts by selecting a vector y ∈ Y
that optimizes its own objective function. According to this,

the leader integrates within its optimization process the feed-

back from the follower.

The TNDP is well studied and many alternative approach-

es can be found in the literature. Most of these approach-

es formulate the TNDP as a bi-level optimization problem,

where the upper-level is to minimize the total system cost -

the network planner’s problem – and the lower level is the us-

er equilibrium (UE) problem: deterministic UE or stochastic

UE (Fig. 2).

Fig. 2. TNDP- bi-level optimization

The upper-level problem can be formulated with different

decision variables and objective functions. Based on the de-

sign variables of the upper-level problem, the resultant TNDP

can also be categorized into:

– Discrete Transportation Network Design Problem (DT-

NDP): changes are made to the network’s physical configu-

ration and involve binary design variables such as addition

of new links [4], the selection of the optimum configura-

tion of one-way and two-way routes [5] or the bus network

design problem [6].

– Continuous Transportation Network Design Problem (CT-

NDP): changes are made only to the attributes of the exist-

ing network and involves continuous design variables such

as optimal capacity enhancement for a subset of existing

links [7, 8], transit line frequencies [9], link tolls [10], etc.

Synthesizing the literature review, Chen and Alfa [4] took

into consideration the shape of the objective function and fur-

ther divided the problem into: TNDP with linear objective

function, TNDP with nonlinear objective function of which

the solutions satisfy the system-optimal criterion and TNDP

with nonlinear objective function of which the solutions sat-

isfy the user-optimal equilibrium criterion.

Both DTNDP and CTNDP defined above present in-

creased computational complexity since the number of design

variables is typically high and the set of constraints involves

non-linear formulations. Also because external effects are to

be considered.

Furthermore, even when both the leader’s problem and

the follower’s problem separately consist of convex program-

ming problems, the resulting bi-level problem itself may be

non-convex. Non-convexity suggests the possibility of multi-

ple local optima [11].

For solution approaches, several algorithms appropriate

for addressing complex, combinatorial optimization problems

have been proposed in the literature for solving both types

of problems, formulated as a bi-level optimization model.

The representative works involve: gradient-based methods and

meta-heuristic techniques (Simulated Annealing – SA, Genet-

ic Algorithms – GA, and Particle Swarm Optimization – PSO)

to produce acceptable solution for large problems.

3. Model formulation

3.1. Notations. Starting from the basic design model which

frequently occurs in the network literature, we develop an ad-

ditional approach in order to make the CTNDP more realistic.

264 Bull. Pol. Ac.: Tech. 59(3) 2011



A new genetic approach for transport network design and optimization

As it is a standard, the connected transportation network

is represented by a graph G = (N, A) defined by a set of

nodes n ∈ N and by a set of arcs a ∈ A, |A| = k.

O denotes the set of trip Origins, o ∈ O

D denotes the set of trip Destinations, d ∈ D
OD denotes the set of origin-destination pairs on the net-

work, (o, d) ∈ OD

P denotes the complete set of available paths in the net-

work

P od denotes the set of paths in the network between O−D
pair (o,d), ∀(o, d) ∈ OD

h denotes the vector of path flows, h = [hod
p ], ∀p ∈ P od,

∀(o, d) ∈ OD
Q denotes the vector of origin-destination demands, Q =

[qod], ∀(o, d) ∈ OD
where

qod =
∑

p∈P od

hod
p , (3)

∆ denotes the link-path incidence matrix, ∆ = [δod
ap],

∀a ∈ A, ∀p ∈ P od, ∀(o, d) ∈ OD
where

δod
ap =

{

1, if link a ∈ A is on path p ∈ P od

0, otherwise

Associated with each of the link a ∈ A are the follow

concepts:

f denotes the vector of link flows, f = [fa], ∀a ∈ A
fs

a denotes the flow on link a
where

fa =
∑

(o,d)∈OD

∑

p∈P od

δod
aph

od
p , ∀a ∈ A, (4)

β denotes the vector of link capacity enhancement, β = [βa],
∀a ∈ A where βa denotes the capacity enhancement of

link a ∈ A, w denotes the vector of existing link capacity,

w = [wa], ∀a ∈ A, where wa denotes the current capacity of

link a ∈ A.

Thus, the capacity after expansion will be βa + wa

t(f, β) denotes the vector of link travel cost, t(f, β) =
[ta(fa, βa)], ∀a ∈ A, where ta(fa, βa) denotes the travel cost

on link a ∈ A.

The travel cost on a link increases as the flow increases

because of traffic congestion. To allow for congestion, travel

cost on a link is described as a function of link flow fa and

capacity enhancement βa.

A common choice for the travel costs is the Bureau of

Public Roads (BPR) function [12, 13]:

ta(fa, βa) = t0a[1 + ba(fa/(βa + wa))4]

where t0 ∈ ℜA denotes the vector of free flow travel costs;

t0a denotes the free-flow travel cost on link a; ba is the con-

gestion parameter for link a and is calibrated on the basis of

speed limit and the link capacity.

Most analytical models generally suppose that the trav-

el time on a given link depends only on flow through that

link (symmetric case). However, in a number of cases, link

interactions could occur among different links.

Starting from [14] and [15] in this study we develop a trav-

el cost function by modifying the BPR travel cost function:

ta(fa, βa) =

= t0a







1 + ba

[

(fa +
∑

b∈A

εa,bfa)/(βa + wa)

]4






, ∀a ∈ A,

(5)

where 0 ≤ εa,b ≤ 1 denotes the “weighted impact factor” of

the flow on link b ∈ A to the travel cost of link a; εa,b = 0
when there is no interaction between link a and link b (the

cost on link a is not dependent on the flow on link b); εa,b = 1
when a = b.

Otherwise, the values for εa,b ranges from 0 to 1.

The greater the influence which the flow on link b has on

the travel cost on link a, the closer εa,b is to the value of 1.

The values for εa,b are specific for a given network and are

based on a one-year recorded data.

The matrix E = (εa,b) ∈ ℜAxℜA randomly generated in

our case study represents the link interactions among differ-

ent links. It is not symmetric since the cost on a link may

depend on the flow on another link in a different way than

the cost on the other link depends on the flow on that link.

Such a generalization allows for a more realistic treatment of

intersections, two-way links, multiple modes of transport as

well as distinct classes of users of the network [11].

One can note that if εa,b = 0 the function formulation

will reduce to the standard BPR travel cost function for the

symmetric case.

C denotes the vector of path travel time, C = [cod
p ],

∀p ∈ P od, ∀(o, d) ∈ OD, where the travel time on a particu-

lar path is assumed to be a summation of the corresponding

link travel times:

cod
p =

∑

a∈A

δod
apta(fa, βa), (6)

where ga(βa) denotes the investment cost function on link a;

it gives the cost of increasing a’s capacity by βa. The invest-

ment cost function adopted in this study is:

ga(βa) = daβa

where da represents the monetary cost of capacity increments

per unit of enhancement and it is known, ∀a ∈ A.

In some test problems, quadratic investment cost functions

allows to properly model the network improvement. For this

case a suitable definition could be:

ga(βa) = daβ2
a.

The solution behavior under various investment cost for-

mulations was investigated by Abdulaal and LeBlanc [7]. See

also Marcotte and Marquis [16] for further details.

θ denotes a user defined factor converting investments

costs to travel cost; in this study we set θ = 1.

B is the total available budget for network capacity im-

provements.
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3.2. Assumptions. Assumptions used in this paper for mod-

eling the CTNDP are based on those made in [17]:

1) demand for each O−D pair over some planning inter-

val is fixed and it is known a priori; it is given in the form of

an O − D matrix.

2) the link travel function ta(fa, βa), a ∈ A is strictly in-

creasing and continuously differentiable with respect to link

flow fa, a ∈ A for any fixed capacity enhancement βa, a ∈ A.

3) the investment cost function ga(βa), a ∈ A is a con-

tinuous differentiable function with respect to βa.

3.3. Formulation. The traditional objective of the Continu-

ous Network Design Problem is to determine a set of expan-

sion values βa (decision variables) that minimizes total system

cost (the sum of the total travel time cost and the investment

cost of link capacity expansions):
∑

a∈A

[ta(fa(β), βa)fa(β) + θga(βa)], (7)

where the first term gives the travel time cost and the second

term gives the government’s total investment cost (capital con-

struction costs, maintenance fees, etc.)

The flow on each link a ∈ A, fa is the user equilibri-

um flow pattern and is obtained by solving the lower level

problem.

The CTNDP under DUE based on Wardrop’s first prin-

ciple of route choice [1] can be formulated in terms of the

bi-level programming model as follows:

Upper-level problem (U):

min
β

U(f, β) =
∑

a∈A

[ta(fa(β), βa)fa(β) + θga(βa)], (8)

subject to:

βmin
a ≤ βa ≤ βmax

a , ∀a ∈ A, (9)
∑

a∈A

ga(βa) ≤ B. (10)

Lower-level problem (L):

min
f

L =
∑

a∈A

fa
∫

0

ta(z, βa)dz, (11)

subject to

fa =
∑

(o,d)∈OD

∑

p∈P od

δod
aph

od
p , ∀a ∈ A, (12)

qod =
∑

p∈P od

hod
p ∀(o, d) ∈ OD, (13)

hod
p ≥ 0, ∀p ∈ P od, ∀(o, d) ∈ OD, (14)

qod ≥ 0, ∀(o, d) ∈ OD. (15)

The solution to the above mathematical problem produces

an equilibrium traffic pattern. In the above mathematical equa-

tions, constraint (9) requires the capacity improvements at link

a be subject to an lower/upper limit βmin
a /βmax

a , while con-

straint (10) imposes the budgetary constraint.

Equation (12) is the definitional constraint that indicates

the relationship between link flow and path flow, while equa-

tion (13) indicates the demand conservation constraint.

Equations (14) and (15) indicate that the flow on each link

and respectively the O−D demand must be greater or equal

to zero.

4. Evolutionary computation in Transportation

Network Design problems

Evolutionary computation comprises a set of techniques (ge-

netic algorithms, genetic programming, evolutionary pro-

gramming and evolutionary strategies) inspired by the evolu-

tionary processes which can be observed in nature: reproduc-

tion, mutation, recombination, natural selection and survival

of the fittest.

Unlike conventional optimization methods, an evolution-

ary algorithm operates on a population applying, over the

generations, the principles of natural selection and “survival

of the fittest” to produce better solution. So it uses in the

search process an entire population – possible solutions to

the problem – and not just one point in the search space.

The algorithm performs specific operations within a

process of reproduction generated by specific operators that

are metaphorically linked with their biological correspondents

(mutation, crossover, inversion). The qualities of each individ-

ual are evaluated by means of special evaluation function (fit-

ness function). The new population (new solutions) selected

on the basis of fitness function, which replaces the previous

generation, bound for optimal and provides the best solutions

for the given issue (Fig. 3).

Fig. 3. The basic cycle in a evolutionary algorithm

Every Evolutionary Algorithm needs to find an effective

exploration/exploitation ratio of the search space. Exploration

is the capability of the algorithm to perform an expansive

search within the solution space. Exploitation is the process

of using potential solutions already identified to perform more

precisely search. Balancing exploration with exploitation in

Evolutionary Algorithms is achieved by the selection process,

by a proper crossover and mutation operators and by control

parameters of the algorithm.

One of the Evolutionary Algorithms which has shown its

potential for the solution of many different optimization prob-

lems is the Genetic Algorithm (GA). The working method of

a GA is very simple and not essentially limited by restrictive

assumption (i.e. continuity, derivative conditions, unimodal-

ity, etc.). It starts from an initial population: strings (chro-

mosomes) encoding possible solutions of the problem. Each
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chromosome corresponds to a possible configuration of the

solution. The genetic search is performed from one popula-

tion to another, using the fitness function values to evaluate

the survival capacity of each individual. Each generation, in-

dividuals are selected with a probability proportional to their

relative fitness, bred using crossover and modified through

mutation to form a new population.

These processes finally result in the next generation popu-

lation of chromosomes that is different from the initial gener-

ation. A proper chromosome representation and a good choice

of objective function will make the search easier by limiting

the search space.

The algorithm ends when the stopping condition (reaching

a maximum number of generations or finding an acceptable

solution) is met.

Recent studies using GAs have shown their advantages

in dealing with Transportation Network Design problems.

Hourani et al. [18] addressed a queuing network problem

specified in terms of functional, cost, performance and de-

pendability constraints and proposed a solution based on GA.

Pattnaik et al. [19] implemented a two phases procedure

based on GA for solving Urban Bus Transit Network De-

sign problem, while Karoonsoontawong et al. [20] proposed

three metaheuristics for the multiorigin and multidestination

CNDP: Simulated Annealing, Genetic Algorithm, and ran-

dom search. Dung-Ying et al. [21] proposed a solution model

based on the use of quantum-inspired GA for dynamic CNDP.

Fan et al. [22] formulated the optimal Transit Route Network

Design problem with variable transit demand and developed

a GA application to solve this TNDP. Other authors [23–25]

also developed significant works on this matter, showing that

Gas are efficiently in solving Transportation Network Design

problems.

4.1. Haploidy vs. diploidy in Genetic Algorithms- relevant

research. The most common representation of genetic infor-

mation in GA contains one string of genetic information for

each individual in the population. This is the haploid mo-

del that is widely used in evolutionary algorithms [21–25].

In biology, however, genetic material in complex organisms

has a diploid or even multiploid chromosome structure. In

the diploid structure, each individual has two homologous

chromosomes, each containing information for the same func-

tions.

The concept of diploidy in GA is similar with the prin-

ciples used in human genetics: a diploid genotype compris-

es a pair of binary strings, called chromosomes. In GA the

term “chromosome” refers to a candidate solution to the giv-

en optimization problem that can be represented by a set of

parameters. These parameters are regarded as the genes of the

chromosome, encoded as a bit string.

Holland [26] suggested that the existence of diploidy al-

lows greater genetic diversity in a population, which may

increase the population’s ability to adapt more quickly to

changes in environment over time, compared with haploid

coding. He observed that less mutation is needed to maintain

a given level of diversity in a diploid GA than a haploid GA.

The effects of the cardinality of genotypic representation

have been investigated by GA-community. The results indicate

that the diploid method retains greater diversity and shows

more robustness than the simple GA. By comparing the fre-

quency distribution of different fitness values in each gen-

eration for haploid and diploid individuals, Calabretta et al.

[27] concluded that in haploid populations most individuals

have an average level fitness and few individuals have a much

higher level of fitness. On the other hand, diploid populations

have about half of the population with very low level fitness

but also tend to include individuals that have average level,

good and very good fitness values.

4.2. Implementation and settings. In this study we are im-

proving the complex-encoding GA based on diploid geno-

type [28] by adding meiosis specific features: duplication

and recombination with real valued representation scheme

for solution (Fig. 4). Moreover, we are proposing a new

mutation operator for imaginary genes of the chromo-

somes.

Fig. 4. The proposed GA for CTND problem
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A population of constant size PS consisting of diploid

chromosomes is given by:

ρgen
i =

(

ρgen

[a1]i
...ρgen

[ak]i...ρ
gen

[am]i

)

,

gen = 1, . . . , GMAX, i = 1, . . . , PS
(16)

and

θgen
i =

(

θgen

[a1]i
...θgen

[ak]i...θ
gen

[am]i

)

,

gen = 1, . . . , GMAX, i = 1, . . . , PS.
(17)

For the population size we lean on the values used for

other similar network problems [29, 30]. Initially we assume

PS = 20.

GMAX is the maximum number of generations. Because we

use a stopping criterion based on the number of generations,

GMAX should be set very large to allow reasonable perfor-

mance. If the number of generations is too small, there will

not be enough chances to find the optimum. Consequently, we

set GMAX = 3000.

ρgen
i and θgen

i indicate the modulus and angle of complex

of allele respectively.

Initialization:

The initial population is randomly generated using equa-

tions (18) and (19) as follows:

ρ1
[ak]i = [rand] ×

βmax
a − βmin

a

2
, i = 1, . . . , PS, (18)

θ1
[ak]i

= [rand] × 2π, i = 1, . . . , PS. (19)

The resultant variable β1
[ak]i

which corresponds to an al-

lele is given by:

β1
[ak]i

= ρ1
[ak]i

× cos θ1
[ak]i

+
βmin

a + βmax
a

2
, i = 1, . . . , PS.

(20)

Each resultant chromosome:

β1
i =

(

β1
[a1]i

...β1
[ak]i...β

1
[am]i

)

, i = 1, . . . , PS (21)

of the population is a k-dimension vector of capacity im-

provements: each gene β1
[ak]i

is a real number representing

the capacity enhancement associated with link a.

One can note that: βmin
[ak] ≤ β1

[ak]i
≤ βmax

[ak] , i = 1, . . . , PS.

Evaluation:

For each of the leader’s decision variables solve the low-

er problem to obtain the user equilibrium link flows fgen
i =

(...fgen
ai

...). Then evaluate the program U for each member of

the population. A fitter individual implies a lower value for

the objective function U(fgen
i , βgen

i ) which is considered as

fitness measure of each chromosome βgen
i .

Once the individuals of current population are evaluat-

ed according to their fitness, the individuals that will be the

parents of the next generation are selected according to the

desired selection scheme. This study uses the proportional

(roulette wheel) selection.

Next, the selected individuals are paired off randomly to

give rise to new offsprings.

The reproduction of the individuals in this study is in-

spired by the organic mechanism of a meiotic cell division. In

this context, the term “meiosis” refers to the process whereby

a nucleus divides by two divisions (meiosis I and meiosis II)

into four gametes. Meiosis halves the number of chromosomes

before sexual reproduction, thereby ensuring that chromosome

number does not double with each generation. Before meio-

sis, each chromosome is replicated, forming two sisters “chro-

matids” that remain linked together. The two sister chromatids

forming each homolog are then separated during the second

meiotic division.

In order to perform crossover for two chosen chromatids,

both the modules and angles of the arguments are changed as

described below.

Let us consider that we perform the crossover operator for

chromatid 1 and chromatid 3.

Their modules are:

ρ1 = (ρ[a1]1...ρ[ak]1...ρ[am]1)

and respectively

ρ3 = (ρ[a1]3...ρ[ak]3...ρ[am]3)

and their angles are:

θ1 = (θ[a1]1...θ[ak]1...θ[am]1)

and respectively

θ3 = (θ[a1]3...θ[ak]3...θ[am]3).

After performing their crossover, two gametes are obtained

as following:

gamete1 has

{

ρc1
= (...., r × ρ[ak]1 + (1 − r) × ρ[ak]3, ....);

θc1
= (...., r × θ[ak]1 + (1 − r) × θ[ak]3, ....)

(22)

gamete2 has

{

ρc2
= (...., (1 − r) × ρ[ak]1 + r × ρ[ak]3, ....);

θc2
= (...., (1 − r) × θ[ak]1 + r × θ[ak]3, ....),

(23)

where r is a random number between 0 and 1.

The probability of crossover is pc, so that an average of

pc × 100% chromosomes undergo crossover.

Fertilization (putting together two gametes resulted from

meiosis) is done by randomly combining gametes from the

gene pool: for each parent individual, two of the gametes from

the four that have been formed are then selected randomly to

form two new offsprings.

The next genetic operator, mutation, is a mechanism for

extending the search on the new areas of search space. Mu-

tation modifies the genotype, and thus the phenotype, by ran-

dom altering of bit’s values inside chromosome with given

probability.

In this paper we use non-uniform mutation [31] for the

module of an argument. Let us consider that we perform the

non-uniform mutation operator for a resultant offspring.

If ρ=(ρ[a1]...ρ[ak]...ρ[am]) is the modulus component and

ρ[ak] is selected at random for mutation, the result is:

ρmut = (ρ[a1]...ρ
mut
[ak] ...ρ[am]),
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where

ρmut
[ak] =











ρ[ak] + (βmax
ak

− ρ[ak])f(gen) if r1 < 0.5,

ρ[ak] + (ρ[ak] − βmin
ak

)f(gen) if r1 > 0.5,

ρ[ak], otherwise,
(24)

where

f(gen) =

(

r2

(

1 −
gen

Gmax

))τ

, (25)

r1, r2 are randomly generated numbers in interval (0, 1); gen

is the current generation; τ is a system parameter determin-

ing the degree of dependency on the iteration number. In this

study we set τ = 3.

For an angle of an argument we propose a new mutation

operator defined as follows: if θ = (θ[a1]...θ[ak]...θ[am]) is the

angle component and θ[ak] is selected at random for mutation,

the result is: θmut = (θ[a1]...θ
mut
[ak] ...θ[am]), where:

θmut
[ak] =











max(θ[ak] − f(gen) · π,0 ) if r1 < 0.5,

min(θ[ak] + f(gen) · π, 2π) if r1 > 0.5,

θ[ak], otherwise,

(26)

where

f(gen) = 1 − r
(1− gen

Gmax
)τ

2 (27)

and the other parameters are the same as those described

above.

As can be seen from Eqs. (25) and (27), the amplitude of

the change decrease as one approaches the maximum num-

ber of generations. Thus, these mutation operators perform

global search during the initial search and local search in the

later generations. Moreover, the local searching ability of the

algorithm is improved, as well as the algorithm’s efficiency.

A large number of studies which explore the interaction

among different GA parameters showed that in general GAs

will work well with high crossover & low mutation probabil-

ity. Therefore, common to each run were the following pa-

rameter settings: population size was 20, crossover rate was

80%, and mutation rate was 3%.

4.3. Application study. In order to verify the effectiveness

of the model, the proposed solution method is implement-

ed into a test network. The numerical experiment involves a

road network taken from [17] as shown in Fig. 5. This net-

work contains 6 nodes and two O−D pairs, 1→6 and 6→1.

The network information is summarized in Table 1 and the

complete data relating to this example can be found in [17].

Fig. 5. Test Network

Table 1

Network parameter for the test network

Arc (a) t0a ba wa da

(1,2) 1.0 10.0 3.0 2.0

(1,3) 2.0 5.0 10.0 3.0

(2,1) 3.0 3.0 9.0 5.0

(2,3) 4.0 20.0 4.0 4.0

(2,4) 5.0 50.0 3.0 9.0

(3,1) 2.0 20.0 2.0 1.0

(3,2) 1.0 10.0 1.0 4.0

(3,5) 1.0 1.0 10.0 3.0

(4,2) 2.0 8.0 45.0 2.0

(4,5) 3.0 3.0 3.0 5.0

(4,6) 9.0 2.0 2.0 6.0

(5,3) 4.0 10.0 6.0 8.0

(5,4) 4.0 25.0 44.0 5.0

(5,6) 2.0 33.0 20.0 3.0

(6,4) 5.0 5.0 1.0 6.0

(6,5) 6.0 1.0 4.5 1.0

Demand is equal to D from node 1 to node 6 and 2D

from node 6 to node 1. It is multiplied by scalars to represent

increasing demand.

Table 2 summarizes two travel demand scenarios for this

network in order to observe the effect of traffic congestion. A

matrix E representing link interaction was randomly generated

to obtain suggestive input data and is given in Table 3.

Table 2

The levels of traffic demand

Case
Traffic demand D

from node 1 to node 6

Traffic demand D

from node 6 to node 1
Total demand

Upper limit

of capacity improvements

I 5.0 10.0 15.0 0 ≤ βa ≤ 10, ∀a ∈ A

II 10.0 20.0 30.0 0 ≤ βa ≤ 20, ∀a ∈ A
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Table 3

Link interactions

εa,b (1,2) (1,3) (2,1) (2,3) (2,4) (3,1) (3,2) (3,5) (4,2) (4,5) (4,6) (5,3) (5,4) (5,6) (6,4) (6,5)

(1,2) 1.00 0.020 0.011 0.13 0.06 0.12 0.03 0.00 0.01 0.10 0.00 0.00 0.01 0.02 0.14 0.09

(1,3) 0.10 1.00 0.12 0.18 0.00 0.08 0.09 0.07 0.00 0.02 0.00 0.20 0.00 0.00 0.03 0.00

(2.1) 0.04 0.13 1.00 0.11 0.03 0.18 0.17 0.12 0.15 0.02 0.00 0.06 0.00 0.01 0.03 0.19

(2.3) 0.00 0.01 0.19 1.00 0.10 0.20 0.03 0.00 0.03 0.00 0.00 0.10 0.07 0.15 0.01 0.00

(2.4) 0.15 0.00 0.18 0.17 1.00 0.00 0.12 0.01 0.19 0.01 0.04 0.00 0.17 0.14 0.07 0.00

(3.1) 0.17 0.12 0.15 0.19 0.00 1.00 0.18 0.14 0.00 0.00 0.10 0.16 0.00 0.00 0.00 0.05

(3.2) 0.14 0.19 0.17 0.06 0.11 0.12 1.00 0.09 0.19 0.00 0.00 0.19 0.00 0.04 0.01 0.03

(3.5) 0.06 0.18 0.07 0.19 0.02 0.15 0.19 1.00 0.03 0.12 0.00 0.17 0.12 0.08 0.00 0.14

(4.2) 0.16 0.01 0.16 0.12 0.14 0.00 0.12 0.00 1.00 0.18 0.15 0.01 0.14 0.00 0.17 0.00

(4.5) 0.01 0.00 0.02 0.05 0.14 0.01 0.09 0.19 0.12 1.00 0.14 0.02 0.17 0.16 0.13 0.18

(4.6) 0.07 0.03 0.02 0.09 0.12 0.00 0.00 0.07 0.19 0.11 1.00 0.00 0.12 0.15 0.19 0.17

(5.3) 0.00 0.18 0.00 0.09 0.00 0.18 0.19 0.16 0.02 0.16 0.19 1.00 0.11 0.12 0.00 0.16

(5.4) 0.01 0.00 0.09 0.08 0.16 0.01 0.00 0.19 0.14 0.14 0.11 0.18 1.00 0.14 0.18 0.12

(5.6) 0.00 0.00 0.08 0.09 0.03 0.07 0.08 0.12 0.00 0.16 0.13 0.19 0.15 1.00 0.14 0.16

(6.4) 0.00 0.09 0.00 0.08 0.19 0.00 0.00 0.07 0.14 0.15 0.19 0.00 0.12 0.17 1.00 0.13

(6.5) 0.00 0.02 0.00 0.00 0.03 0.10 0.01 0.14 0.02 0.17 0.12 0.14 0.09 0.08 0.18 1.00

4.4. Result analysis. Results are presented comparing the

performance of the proposed algorithm and the tradition-

al/simple Genetic Algorithm.

Another test was performed for the proposed CTND prob-

lem using the Statistical Genetic Algorithm [32] with binary

representation.

In this test, for β[ai] ∈ [βmin
[ai]

, βmax
[ai]

] represent-

ed by {a1, . . . , aN} ∈ {0, 1}N , i = 1, .., m, T :
{0, 1}N

→
[βmin

[ai]
, βmax

[ai]
] defines the representation:

T (a1,. . . , aN ) = βmin
[ai]

+

+
βmax

[ai]
− βmin

[ai]

2N − 1





N−1
∑

j=0

β[aN−j]2
j



 ∈ [βmin
[ai]

, βmax
[ai]

].
(28)

The sensitivity analysis was performed on Statistical GA

parameters to determine their influence on the algorithm’s per-

formance. After experimenting with various parameter com-

binations, we decided to adopt the following parameter values

in both simple GA and Statistical GA:

– size of population PS: 100;

– crossover rate pc = 0.8;

– total number of generations GMAX = 2000.

The results of this comparison are summarized in Figs. 6–

7 and in Tables 4–6. We use the same random number gener-

ator seed for all the GA runs. That generates the same starting

population and provides a fairer comparison of the proposed

implementations. Also for comparison purpose all algorithms

are programmed in Matlab 6.0 version environment.

Fig. 6. Best objective values for the proposed algorithm – 100 runs,

case I

Fig. 7. Best objective values for the traditional/simple GA– 100 runs,

case I

Details of the resultant link capacity enhancements and

corresponding objective function values obtained by these

methods are shown in Tables 4 and 5.
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Table 4

Arc improvement solutions and objective value for case I

Capacity enhancement Simple GA Statistical GA
Proposed

algorithm

β1|Arc (1.2)

β2| Arc (1.3) 1.084 0.142

β3| Arc (2.1) 1.245 0.173 0.579

β4| Arc (2.3)

β5| Arc (2.4)

β6| Arc (3.1) 5.89 5.499 6.238

β7| Arc (3.2) 0.243 0.384

β8| Arc (3.5)

β9| Arc (4.2)

β10| Arc(4.5) 0.114

β10| Arc(4.6)

β12| Arc(5.3) 0.039 0.058

β13| Arc(5.4)

β14| Arc(5.6)

β15| Arc(6.4) 0.249

β16| Arc(6.5) 6.784 6.704 6.112

Objective value 230.210 224.570 221.340

Table 5

Arc improvement solutions and objective value for case II

Capacity enhancement Simple GA Statistical GA
Proposed

algorithm

β1|Arc (1.2)

β2| Arc (1.3) 5.392 5.117 4.851

β3| Arc (2.1) 10.114 11.014 9.304

β4| Arc (2.3)

β5| Arc (2.4)

β6| Arc (3.1) 7.129 9.142 10.948

β7| Arc (3.2) 0.763 0.544

β8| Arc (3.5) 0.214 0.179 0.815

β9| Arc (4.2) 0.175 0.214 0.025

β10| Arc(4.5) 0.103 0.039

β10| Arc(4.6)

β12| Arc(5.3)

β13| Arc(5.4)

β14| Arc(5.6) 1.107

β15| Arc(6.4) 9.814 3.489 4.079

β16| Arc(6.5) 17.495 18.944 16.438

Objective value 611.443 593.708 587.124

Table 6

Performances of the proposed algorithm and the traditional/simple GA for case I

Traditional/simple GA Statistical GA Proposed GA

100 runs Hits Average St. Dev 100 runs Hits Average St. Dev 100 runs Hits Average St. Dev

[230.21.238.79] 7 234.42 2.28 [224.56.230.16] 15 227.09 1.36 [221.34.225.47] 16 223.24 1.22

Table 6 includes the average, maximum, minimum and

standard deviation obtained for case I after performing 100

independent runs. “Hits” is the number of runs in which we

obtained a solution differing by less than 0.1% from the best

solution obtained. “Average” means the best objective function

value of the 100 runs of each algorithm. It shows the qual-

ity of candidate solutions through iterations. The difference

between max and min objective values expresses the search

range of the algorithms. “St. Dev” denotes standard deviation,

which expresses the searching capacity of each algorithm. As

table 6, the proposed algorithm has a smaller mean value and

a smaller standard deviation. That is, this algorithm has better

convergence stability, is more robust and is able to reach good

solutions across 100 runs.

Figure 6 shows the best objective values obtained by the

100 runs performed when using the proposed algorithm for

case I, while Fig. 7 shows the best objective values obtained

by the 100 runs performed when using the traditional/simple

GA for the same case. The average and standard deviation

for these 100 runs are shown in the figures. It is not difficult

to observe that the proposed methodology gives better results

and generates solutions with significantly lower cost.

The population size and the number of generations have a

large influence on the GA’s performance. In order to determine

the appropriate population size for the proposed methodolo-

gy, different population sizes of 20, 30 and 50 individuals are

tested, respectively for case I. Figure 8 shows that although

the convergence rate increases when the population size in-

creases, the improvement is not obvious. Consequently, the

population size of 20 individuals will be suitable.

Fig. 8. Average fitness of populations by generation, case I

From the results one can observe an intense decrease of

fitness scores in early generations, then the decrease fluctu-

ates and then fitness scores become stable in later generations.

The algorithm finds an optimal solution within less than 3000

generations that leads to less computational time for the so-

lution process. This analyze of the influence of the changing

parameter (population size) may have further consequences

on designing other evolutionary algorithms for this problem.
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5. Conclusions

In this study we have extended the CTNDP frame to incorpo-

rate an important feature for particular applications: interac-

tions among different links. This broaden model is formulated

as a bi-level mathematical model. Since it is very difficult to

obtain an exact optimal solution for such a problem, a heuris-

tic search procedure is used to find near optimal solutions. The

essential features of our proposed algorithm include a diploid

based complex-encoding with meiosis specific features and a

novel mutation operator that performs global search during

the initial search and local search in the later generations.

The implementation on a test network verifies the effec-

tiveness of the proposed method.

This approach merits further study concerning the analysis

for other existing selection, crossover and mutation operators.

Another possible extension would be for solving network de-

sign problems from a broader perspective of dynamic traffic,

elastic demand and other uncertainties related to supply, route

capacities and processing/transportation costs.
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