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Transient stability analysis and control of power systems

with considering flux decay by energy function approach
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Abstract. In this paper, transient stability of power systems with structure preserving models is considered. A Hamiltonian function which

can be regarded as a Lyapunov function for the system is proposed. Based on this, the influence of flux decay dynamics, especially during

a fault, on transient stability is analyzed. With the increase of load power, the variation of stability boundary in the rotor angle/E′

q plane

is shown. The Energy-based excitation control, aiming at injecting additional damping into the post-fault system may reduce the critical

clearing time (CCT). This can be demonstrated by the comparison of different flux decay dynamics in the fault-on condition, and the reason

is illustrated by the relationship between rotor angle/E′

q and the stability boundary. An improved control strategy is proposed and applied to

increase the CCT. Simulation results verify that improvement is obtained both in transient stability and dynamic performance.
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1. Introduction

With the increasing complexity of power systems, operating

problems, such as transient instability and poor damping of

oscillations, have been confronted. Generators and flexible

AC transmission systems (FACTS) facilities play an impor-

tant role in stability enhancement of power systems. However,

the availability of FACTS is still limited, and their installation

cannot be economically justified only on the basis of improv-

ing stability – a situation which will probably not be changed

in a relatively brief time. Hence, excitation control remains

the main input through which one can improve short-term

(steady-state and transient) stability of power systems [1-3].

As the highly nonlinear nature of power systems, appli-

cation of nonlinear control methods to enhance transient sta-

bility has attracted much attention. Some achievements using

nonlinear control theories including the feedback linearization

have been accomplished in the past [4, 5]. However, these

control methods do not lend themselves easily to a physical

interpretation of their action on the system. The problem may

be solved by recent works on energy related design techniques

[6–9]. The main advantage of these methods is that the physi-

cal structure is preserved and the closed-loop energy function

can play the role of Lyapunov function. Though energy-based

excitation control laws can dramatically improve the dynamic

performance of power system, they may shorten the critical

clearing time (CCT), which can be regarded as an important

measure of transient stability margins.

The approach of energy function also makes the power

system stability analysis more transparent, it is usually ap-

plied to assess the transient stability, estimate the CCT [10,

11] or provide a measure of system proximity to the point of

maximum load ability [12, 13]. In this paper, a Hamiltoni-

an function for the power system with a structure preserving

model [14, 15] is presented to analyze the influence of flux de-

cay dynamics on transient stability, which is not only related

to the region of attraction about the operation point when flux

decay circuits are considered. The reason why energy-based

excitation controllers shorten the CCT is also presented. An

improved control strategy to enhance the transient stability is

proposed without decreasing the dynamic performance.

In order to establish a more realistic generator model,

structure preserving models are chosen. These models are

represented as a set of differential and algebraic equations

(DAEs) and leave the structure of the network in its original

form. The synchronous machine is modeled by the flux-decay

E′
q model [15, 16] for the purpose of analysis.

2. Energy function of the structure preserving

power system

A structure preserving power system with n machines,

n + m + 1 buses and voltage dependent loads is studied in

this section. Buses from 1 to n are the terminal buses of the

generators. Bus n + 1 is an infinite bus. Buses from n + 2 to

n + m + 1 are the load buses. For simplicity, it is assumed

that the power network is lossless. The node admittance ma-

trix is Y = [Yij ] = [jBij ], where Bij is the susceptance of

the line connecting bus i and j. The voltage of the i-th bus

is expressed as Vi∠θi. All phase angles are measured relative

to the infinite bus. The mechanical torque is assumed to be

constant.

The i-th (i = 1, . . . , n) machine is described as follows:

δ̇i = ωi − ω0, (1a)

ω̇i =
ω0

Mi

(Pm
i − P e

i ) −
Di

Mi

(ωi − ω0), (1b)
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Ė′
qi =

xdi − x′
di

T ′
d0i

Ki +
Efi

T ′
d0i

. (1c)

where

P e
i =

x′
di − xqi

2xqix′
di

V 2
i sin 2(δi − θi) +

1

x′
di

E′
qiVi sin(δi − θi),

Ki = −
xdi

x′
di(xdi − x′

di)
E′

qi +
1

x′
di

Vi cos(δi − θi),

δi is the rotor angle, ωi is the rotor angle speed, ω0 = 2πf0

is the synchronous machine speed, f0 is the synchronous fre-

quency, Di is the damping constant, Mi is the inertia constant,

xdi, xqi are the direct and quadrature axis synchronous reac-

tance respectively, x′
di is the direct axis transient reactance,

E′
qi is the quadrature axis voltage behind transient reactance,

Pm
i is the mechanical power, T ′

d0i is the direct axis transient

open-circuit time constant.

The real and reactive power demand at the i-th load bus

are P d
i and Qd

i . The real power is represented as a constant,

while the reactive power is depended on the voltage of the

bus, i.e. Qd
i = Qd

i (Vi). At the i-th (i = 1, . . . , n) generator

terminal bus, P d
i = Qd

i = 0, we get:

0 = h1i = −
x′

di − xqi

2x′
dixqi

V 2
i sin 2(δi − θi)

−
E′

qi

x′
di

Vi sin(δi − θi) +

n+m+1
∑

j=1

ViVjBij sin θij ,

(1d)

0 = h2i = V −1
i

(

x′
di + xqi

2x′
dixqi

V 2
i +

E′
qi

x′
di

Vi cos(δi − θi)

+
x′

di − xqi

2x′
dixqi

V 2
i cos 2(δi−θi)−

n+m+1
∑

j=1

ViVjBij cos θij

)

,

(1e)

where h1i, h2i are the normal power flow equations.

At the i-th (i = n + 2, . . . , n + m + 1) load terminal bus,

we get:

0 = h1i =

n+m+1
∑

j=1

ViVjBij sin θij − P d
i , (1f)

0 = h2i = V −1
i



−

n+m+1
∑

j=1

ViVjBij cos θij − Qd
i



 . (1g)

In general, the system (1) under research can be mathe-

matically described in following affine nonlinear differential

and algebraic system (NDAS):
{

ẋ = f(x, z) + g(x, z)u

0 = h(x, z)
. (2)

where

x = (xT
1 , xT

2 , . . . , xT
3 )T = (δ, ω,E′

q)

is the state vector,

xi = (δi, ωi, E
′
qi)

T , δ = (δ1, δ2, ..., δn),

ω = (ω1, ω2, ..., ωn), E′
q = (E′

q1, E
′
q2, ..., E

′
qn),

z = (zT
1 , zT

2 , ..., zT
n+m+1)

T = (θ, V )

is the constraint vector,

zi = (θi, Vi)
T , θ = (θ1, θ2, ..., θn+m+1),

V = (V1, V2, ..., Vn+m+1), u = (u1, u2, ..., un)T

is the input vector

ui = Efi/T ′
d0i, f(x, z) = (f1, f2, ..., fn)T ,

f i(xi, zi) = (fi1, fi2, fi3)
T , fi1 = ωi − ω0,

fi2 = (ω0/Mi)(P
m
i − P e

i ) − (Di/Mi)(ωi − ω0),

fi3 = −(xdiE
′
qi/x′

diT
′
d0i)+(xdi−x′

di)Vi cos(δi−θi)/x′
diT

′
d0i,

g(x, z) = diag{g1, g2, ..., gn}, g1 = (0, 0, 1)T ,

h(x, z) = (h1, h2, ..., hn, hn+2, ..., , hn+m+1)
T ,

hi = (h1i, h2i)
T .

The generator dynamics are described by differential equa-

tions while the bus voltage dynamics are described by alge-

braic load flow equations.

Consider the energy function given as follows:

H(x, z) = HKE + HPE , (3a)

where

HKE =

n
∑

i=1

Mi

2ω0
(ωi − ω0)

2, (3b)

HPE = −
n
∑

i=1

Pm
i (δi − δ∗i )

−
n+m+1
∑

i=1,i6=n+1

P d
i (θi − θ∗i )−

n+m+1
∑

i=1,i6=n+1

Qd
i (lnVi − lnV ∗

i )

−

n
∑

i=1

(x′
di − xqi)

4x′
dixqi

(

V 2
i cos 2(δi − θi) − V ∗2

i cos 2(δ∗i − θ∗i )
)

+

n
∑

i=1

x′
di + xqi

4x′
dixqi

(V 2
i − V ∗2

i ) +

n
∑

i=1

xdi(E
′2
qi − E′∗2

qi )

2x′
di(xdi − x′

di)

−

n
∑

i=1

1

x′
di

[E′
qiVi cos(δi − θi) − E′∗

qiV
∗
i cos(δ∗i − θ∗i )]

−

n+m+1
∑

i=1,i6=n+1

n+m+1
∑

j=1

[

ViVjBij cos θij − V ∗
i V ∗

j Bij cos θ∗ij
]

,

(3c)

HKE represents the kinetic energy, and HPE represents

the potential energy which can be expanded into several indi-

vidual potential energy terms, is the stable equilibrium point

(SEP). Indeed, function H(x, z) has an isolated local mini-

mum at normal SEP. Hence it is a positive definite function

in some neighborhood of SEP.

With the function H(x, z), NDAS (2) can be rewritten as

follows:
{

ẋ = (J − R)∂xH(x, z) + g(x, z)u

0 = h(x, z) = ∂zH(x, z)
. (4)
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where

∂xH = (∂x1H, ..., ∂xnH)T ,

∂xiH = (∂δiH, ∂ωiH, ∂E′qiH)T ,

∂zH = (∂z1H, ..., ∂zn+m+1H)T ,

∂ziH = (∂θiH, ∂V iH)T ,

J = (J1, J2, ..., Jn)T ,

J i =







0 ω0/Mi
0

−ω0/Mi
0 0

0 0 0






,

R = (R1, R2, ..., Rn)T ,

Ri =









0 0 0

0 ω0Di
/

M2
i

0

0 0 xdi − x′
di/T ′

d0i









.

System (4) is actually a Hamiltonian realization [17, 18]

of NDAS (2), and H(x, z) acts as a Hamiltonian energy func-

tion.

3. Transient stability analysis based

on the Hamiltonian function

3.1. Stability boundary with considering flux decay. Con-

sider a single-machine-three-bus power transmission system

showed in Fig. 1. The generator parameters are: xd = 0.162,

x′
d = 0.047, xq = 0.109, T ′

d0 = 6.8 s, M = 23.6 s, D = 5.0.

Fig. 1. A single-machine-three-bus power system

For simplification, it is assumed that Pm = 3.5 p.u.,

Qd = 0.5Pd, and constant load power is considered. With

the constant power load model, it is convenient to illustrate

the influence of flux decay dynamics as the path of potential

energy function HPE is independent.

Definition 1. For the compact set Ck, detJ l|(x,z)∈Ck
6= 0

and J l|(x,z)∈Ck
has k(k > 0) negative eigenvalues [19].

J l is the Jacobian of the load flow equations and J l =
∂h/∂z. The potential energy sheets under P d = 2.5 p.u. are

drawn in Fig. 2. It can be seen that the system has two po-

tential energy sheets. The lower one belongs to C0 while the

upper one belongs to C1.

Fig. 2. Potential energy sheets under P
d

= 2.5 p.u.

It could be judged from the potential energy surfaces in

Fig. 2 that the upper one has no energy well. And the state

of the system could not be kept on it. For the open-loop

system, there are often several solutions to the equilibrium

load flow equations. Usually only one of the power flow so-

lutions corresponds to a practical SEP. This solution, which

will be denoted as the “operable” solution, is angularly stable

for the system in sheet C0. The other solutions typically cor-

respond to unstable equilibrium points (UEPs) of the power

system, even though some of them in Ck are also angularly

stable [20].

Put our focus on C0. Figure 3 shows the contour lines

of the potential energy sheet C0 in δ/E′
q plane under P d =

2.5 p.u. It can be seen that the potential energy function is

positive definite about the operating point. The SEP defines a

local minimum of the energy and occupies the bottom of the

energy well. The UEP of which the energy is the minimum

on the boundary represents the easiest path to escaping from

SEP.

Fig. 3. Contour of potential energy surface under P
d

= 2.5 p.u.

Figure 4 shows the contour lines of potential energy sur-

face under heavy load of P d = 5.0 p.u. The increase of load

shrinks the energy well and lowers the potential energy of

UEP. The impasse surface appears which is presented by the

dashed line.
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Fig. 4. Contour of Potential energy surface under P
d

= 5.0 p.u.

If the state exits in the vicinity of UEP, the rotor angle

will vary rapidly. The disturbance is clearly an angle insta-

bility phenomenon. For transient conditions, voltage collapse

may occur as a bifurcation of the transient power flow equa-

tions. The implicit function theorem may be used to define the

bus voltage variables z = (θ, V ) as smooth functions of the

generator rotor angles and E′
q in a neighborhood of a solution

under detJl|(x,z)∈Ck
6= 0. As the rotor angles and E′

q vary,

the bus voltage variables also vary in a smooth fashion so as

to satisfy the load flow equations. However, when the power

flow fails to converge, the solution trajectory vanishes in the

vicinity of the impasse surface (singular surface):

IS = {(x, z)|h(x, z) = 0, det(Jl) = 0} . (5)

If impasse surface is reached, the system behavior be-

comes unpredictable, (θ, V ) are no longer dependent on

(δ, E′
qi). The generators rotor angles and E′

q become the para-

meters for the bifurcation of the load flow equation. Singular

perturbation methods can be applied [20]. The system will

experience voltage collapse before angle instability.

If a heavier load is applied, there will be no UEP in C0,

and only Voltage collapse can occur due to the large distur-

bance.

Roughly speaking, at the same rotor angle the higher E′
q

is, the longer distance to the boundary of potential energy

well is. It means that at a higher value of E′
q the rotor angle

may experience larger variation before the system trajectory

jumps out of the energy well. So if we fix a high field volt-

age during a fault, the initial state of post-fault system may

be far from the boundary of an energy well. And the total

energy may be not sufficient to drive the trajectory out of the

energy well because the boundary of potential energy well at

a high E′
q is much higher than the one at a low value of E′

q .

Therefore, the CCT increases. Hence, the larger field voltage

during any admissible fault, the “more stable” system is. This

is consistent with the simulation results in [21]. For a physical

reason, since the mechanical power does not vary substantially

in such a short time, the generators tend to accelerate driving

the system state away from the operating point. It is possible

to reduce this acceleration, and thus shorten the system tra-

jectory in the fault-on condition, by somehow increasing the

electrical power delivered.

3.2. Stability analysis with considering control effect. Ac-

cording to system (4), we have that ∂H/∂z = h = 0. Then

the time derivative of H(x, z) is:

Ḣ = −

n
∑

i=1

Di

ω0
(ωi − ω0)

2

−

n
∑

i=1

xdi − x′
di

T ′
d0i

K2
i −

n
∑

i=1

Kiui.

(6)

If ui = 0, it is the open-loop case. The system damping

can be enhanced by adding a negative definite term to the

Lyapunov derivative. The control law can be expressed as:

u = [a1K1, . . . , anKn]T . (7)

Actually, this control law is the extension of so-called LgV

controller [22] in the structure preserving system.

Then we have:

Ḣ = −

n
∑

i=1

Di

ω0
(ωi − ω0)

2 −

n
∑

i=1

(

xdi − x′
di

T ′
d0i

+ ai

)

K2
i . (8)

Because the system is stable at the operating point, it can

be seen from the dynamic system theory that the system con-

verges to the largest invariant set contained in:

E =
{

x, z : Ḣ(x, z) = 0, h = 0
}

= {x, z : ωi = ω0, Ki = 0, h = 0} .
(9)

From ωi≡ω0, we can get that Pm
i −P e

i =0, i = 1, . . . , n.

Thus, the point in the largest invariant set satisfies:
{

f(x, z) = 0

h(x, z) = 0
, (10)

which is exactly the condition the equilibrium point satis-

fies. Hence there exists a suitably small neighbor- hood Ω of

the operating point such that the largest invariant set in Ω
only contains one point, i.e., the operating point. From the

LaSalle’s invariance principle, the closed-loop system with

the control law (7) ensures asymptotic stability of the desired

SEP with the function H(x, z), which can be regarded as the

Lyapunov function.

HPE is the potential energy function both for open-loop

system and closed-up system. It gives a way to compare the

effect of control with the open-loop case under the same con-

dition and find the reason why the CCT shortens.

The response of the system to a short-circuit at the ma-

chine’s terminal will be studied. The pre-fault and post-fault

systems are identical. The transient process is stimulated at

t = 1.0 s and restored at t = 1.1 s, clearing time: tcl = 0.1 s.

Figure 5 shows the close-loop system trajectory superimposed

on the potential energy surface from Fig. 3. The energy well

is only valid for post-fault trajectory. The dashed curve repre-

sents the fault-on trajectory which is shown only to illustrate

the state space trajectory during the fault, and the solid line

represents the post-fault trajectory. Figure 6 shows the re-

sponse of rotor angle. It can be seen from Fig. 5 and Fig. 6

that the excitation controller provides the system with good

damping.
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Fig. 5. Trajectory of the system with excitation control (tcl = 0.1 s)

Fig. 6. Response of rotor angle with excitation control (tcl = 0.1 s)

Figure 7 shows the closed-loop system trajectory when

the fault clearing time is set to be 0.12 s. For the same con-

ditions, Fig. 8 shows the trajectory of open-loop system, and

Fig. 9 shows the response of rotor angle. It can be seen that

the closed-loop system loses stability while the open- loop

one keeps under tcl = 0.12 s.

Fig. 7. Trajectory of the system with excitation control (tcl = 0.12 s)

In Figs. 7 and 8, the voltages drop during fault, the same

E′
q does. Especially in Fig. 7, E′

q drops dramatically. The total

energy of the initial state in post-fault system is large enough

to jump out of the energy well. In the classical power sys-

tem model, the transient stability only relates to the region of

attraction. With the flux decay circuit, the transient stability

also relates to the flux decay dynamics. The CCT not only

reflects the region size of stability but also the performance

of the excitation control. Here, the decreased CCT may be

considered as a result of the bad flux decay dynamics during

the fault.

Fig. 8. Trajectory of the open-loop system (tcl = 0.12 s)

Fig. 9. Response of rotor angle with open-loop (tcl = 0.12 s)

4. An improved excitation control strategy

According to the analysis in Subsec. 3.1, upgrading the field

voltage during the fault has good effect on the improvement

of CCT. The proposed control strategy is given as follows:

during the severe fault, generators field voltage is set to the

maximum available value (also called the ‘ceiling voltage’)

instead of excitation controller (7); after the fault, the excita-

tion controller is applied again to add damping and accelerate

the convergence of the system.

Simulation results are presented in Figs. 10 and 11 to

show the behavior of the closed-loop system with the pro-

posed control method.

It can be seen that the CCT has been increased with the

improved control strategy which still provides a good dynam-

ic performance in damping the system oscillation. It offers

an effective way to meet the conflicting exciter performance

requirements with regard to system stability.

Bull. Pol. Ac.: Tech. 60(1) 2012 7
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Fig. 10. Trajectory of the system with proposed control (tcl = 0.12 s)

Fig. 11. Response of rotor angle with proposed control (tcl = 0.12 s)

5. Conclusions

The transient stability of power system including flux decay

is related to the domain of attraction and the flux decay dy-

namics. In this paper, the influence of flux circuit dynamics

on transient stability of structure preserving power system is

analyzed based on the approach of energy function. The re-

lationship between the rotor angle/E′
q and the boundary of

energy well is illustrated. According to the characteristics of

the system, the variation of the stability boundary in rotor

angle/E′
q plane with different loading conditions is shown.

The extension of the design of the LgV excitation controller is

presented. The reduction of system CCT with excitation con-

troller is mainly caused by the decrease of E′
q during a fault,

which makes the state of a system close to the UEP. An im-

proved control method is proposed. The simulation results

show the effectiveness of the proposed method in improving

the transient stability and dynamic performance of power sys-

tems.
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