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Cosserat gyro-birefringence.

An introduction to nonsymmetrical photoelasticity

M. SIKOŃ∗

Faculty of Mechanics, Institute of Machine Design, Cracow University of Technology, 37 Jana Pawła II St., 31-864 Cracow, Poland

Abstract. Mechanical couple stresses modify at a microscopic level optical properties of some materials so they can display gyro-birefringence
phenomena.

The Optical Cosserat medium is defined and optical rotation tensor relative to couple stress is introduced. The generalized tensor of the
dielectric permittivity is written for the Cosserat medium. Split of the plane-polarized light wave on passing through the Cosserat medium
is shown and rotation of the azimuth of polarization is expressed by components of the couple stress tensor.
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1. Introduction

In this work the gyro-birefringence phenomena [1–2] is ap-
plied to describe the optical properties of the Cosserat medi-
um.

According to the Cosserat theory (theory of the nonsym-
metrical elasticity) [3–5] the transmission of mechanical ac-
tion, through the surface dividing two neighboring unit cells
of material, occurs not only via a force vector, but also by
a couple vector. Therefore, in addition to force stresses one
observes couple stresses. In the Cosserat material the stress
tensor is nonsymmetrical.

Today the Cosserat theory does not have a complete ex-
perimental verification [6–9].

The noticed rigidity depends on the size in the Cosserat
elastic material and it is possible to determine one or more
of the Cosserat elasticity constants by the method of size ef-
fects [10]. Therefore, the theoretical solution to the Cosserat
problems can be completely determined. However, in order to
obtain the experimental solution to the nonsymmetrical elas-
ticity, phenomena where couple stress is described by one
physical parameter are searched. Phenomena applied in con-
temporary Experimental Mechanics allow us to determine the
force stress only.

The analysis in a nano-scale [11–12] is taken under con-
sideration, where the energetic state of the atom about a non-
symmetrical structure (with an optical active electron) is sep-
arate according to the mechanical quantum number mechS as
follows (Appendix 1):

mechs =
1

2
, E+ = Eo +

~

2
ωcouple, (1)

mechs = −1

2
, E− = Eo −

~

2
ωcouple, (2)

where: ~ = h/2π, h is Planck constant, ωcouple is angular
speed of disturbance of the optical electron in Cosserat medi-

um, Eo is not perturbed part of the energy. For energy (1),
(2) we obtain frequency:

ω+ = ωo +
ωcouple

2
, (3)

ω− = ωo −
ωcouple

2
, (4)

which creates a separation of the light wave travelling towards
the Cosserat medium in two circular polarization waves, for
mechS = +1/2 right-handed, for mechS = −1/2 left-handed.
When two circular polarization light waves travel forward with
different velocity of propagation as a result of interference, we
obtain a rotation of the azimuth of polarization. The separation
of the light wave in the Cosserat medium and the correlation
of this phenomenon to the couple stresses are referred to as
the Cosserat gyro-birefringence.

2. Cosserat gyro-birefringence medium

The elastic, transparent, dielectric medium with a property of
the birefringence is studied. The density of the free charge
and the electric conduction are zero. The transmission of the
mechanical state is represented by two independent vectors:
the force vector and the moment vector. The optical state is
described by the tensor of the dielectric constant κij and ad-
ditionally by the optical rotation tensor gij .

3. Generalized dielectric constant

The tensor κij is associated with the force stress tensor σij

when tensor gij is relative to the couple stress tensor µij . The
generalized tensor of the dielectric permittivity is written in
the following formula [1–2]:

Kij = κij + i ∈ijk gklsl, (5)
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where i =
√
−1, ∈ijk is permutation symbol, sl is dimension

of the unit victor sl which is perpendicular to the front of the
light wave.

4. Material equations

The basic equation of the gyro-birefringence [1–2]:

Dk = κoκklEl + iκo (gklsl × E)k , (6)

connect the vector of the electric induction Dk with vector of
the intensity of the electric field El, through κij and gij . We
note κo as permittivity of the vacuum. The optical anisotropy
generated by state of the force stress is described by formula
[13–15]:

κkl = κδkl + Cσ
1 σkl + Cσ

2

∑
σiiδkl, (7)

where Cσ
1 , Cσ

2 are optical constants, κ is natural permittivity
in the medium without the stresses, δij is Kronecker sym-
bol. The relation between rotation tensor gij and tensor of
the couple stress µij we propose as the following formula
[16–17]:

gkl = gδkl + C
µ
1 µkl + C

µ
2

∑
µiiδkl, (8)

where g is the parameter of the natural rotation (without the
stress), Cµ

1 , Cµ
2 are optical constants.

We define the optical rotation vector: Gk = gklsl and
we write the general tensor of the dielectric constant in the
coordinate system (x, y, z) in the form of the matrix:

T =




κx κxy − iGz κxz + iGy

κyx + iGz κy κyz − iGx

κzx − iGy κzy + iGx κz



 . (9)

5. Light wave in Cosserat medium

Maxwell equations are grouped with material equations and
are written in the first approximation as (Appendix 2):

D = κon
2 [E − s (Es)] . (10)

Then we compare components of formulas (6), (10) ade-
quately, and write the system of the equations [1–2]:

Ex

[
κx −

(
1 − s2x

)
n2
]
+ Ey

(
n2sxsy + κxy − iGz

)

+Ez

(
n2sxsz + κxz + iGy

)
= 0,

(11)

Ey

[
κy −

(
1 − s2y

)
n2
]
+ Ez

(
n2sysz + κyz − iGx

)

+Ex

(
n2sysx + κyx + iGz

)
= 0,

(12)

Ez

[
κz −

(
1 − s2z

)
n2
]
+ Ex

(
n2szsx + κzx − iGy

)

+Ey

(
n2szsy + κzy + iGx

)
= 0.

(13)

Formulas (11), (12), (13) present the light wave in the
gyro-birefringence medium. We note (x) as direction of the
light path and we write the unit vectors s=x 1, s=y s

=
z 0 for

the light path parallel to coordinate “x”. The matrix (9)
we write in the system of the quasi-principal directions(
(x) = x = 1(x), 2(x), 3(x)

)
in the form:

T (x) =




κx κ

(x)
x2 − iG

(x)
3 κ

(x)
x3 + iG

(x)
2

κ
(x)
2x + iG

(x)
3 κ

(x)
2 κ

(x)
23 − iGx

κ
(x)
3x − iG

(x)
2 κ

(x)
32 + iGx κ

(x)
3



, (14)

For the chosen direction (x) Eqs. (12), (13) are written as:

E
(x)
2

(
κ

(x)
2 −

(
n(x)

)2
)

+ E
(x)
3

(
κ

(x)
23 − iGx

)
= 0, (15)

E
(x)
2

(
κ

(x)
32 + iGx

)
+ E

(x)
3

(
κ

(x)
3 −

(
n(x)

)2
)

= 0. (16)

We then write the non-zero condition of the solution:
∣∣∣∣∣
κ

(x)
2 −

(
n(x)

)2
κ

(x)
23 − iGx

κ
(x)
32 + iGx κ

(x)
3 −

(
n(x)

)2

∣∣∣∣∣ = 0 (17)

and we determine the roots:
(
n(x)

)2

r
=
κ

(x)
2 + κ

(x)
3

2

+
1

2

√(
κ

(x)
2 − κ

(x)
3

)2

+ 4
(
G2

x + κ
(x)
23 κ

(x)
32

)
,

(18)

(
n(x)

)2

l
=
κ

(x)
2 + κ

(x)
3

2

−1

2

√(
κ

(x)
2 − κ

(x)
3

)2

+ 4
(
G2

x + κ
(x)
23 κ

(x)
32

)
,

(19)

where
(
n(x)

)
r
,
(
n(x)

)
l

– are two refractive indexes of the
light wave coming towards direction (x).

For roots (18), (19) the system (15), (16) have infinite
number of solutions which are relative to following relations:

E
(x)
3

E
(x)
2

=

(
n

(x)
r

)2

− κ
(x)
2

κ
(x)
23 − iGx

, (20)

E
(x)
3

E
(x)
2

=
κ

(x)
32 + iGx(

n
(x)
r

)2

− κ
(x)
3

, (21)

E
(x)
3

E
(x)
2

=

(
n

(x)
l

)2

− κ
(x)
2

κ
(x)
23 − iGx

, (22)

E
(x)
3

E
(x)
2

=
κ

(x)
32 + iGx(

n
(x)
l

)2

− κ
(x)
3

. (23)

We write E(x)
2 = Eo and on the basis of (20), (21), (22), (23)

four light waves are obtained:

EI =



0, Eo,

(
n

(x)
r

)2

− κ
(x)
2

κ
(x)
23 − iGx

Eo



exp
[
i
(
ωt− ψ(x)

r

)]
, (24)

EII =



0, Eo,
κ

(x)
32 + iGx(

n
(x)
r

)2

− κ
(x)
3

Eo



exp
[
i
(
ωt− ψ(x)

r

)]
, (25)
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EIII =



0, Eo,

(
n

(x)
l

)2

− κ
(x)
2

κ
(x)
23 − iGx

Eo



exp
[
i
(
ωt− ψ

(x)
l

)]
, (26)

EIV =



0, Eo,
κ

(x)
32 + iGx(

n
(x)
l

)2

− κ
(x)
3

Eo



exp
[
i
(
ωt− ψ

(x)
l

)]
. (27)

Having added the amplitudes of the components for the same
phases, we obtain:

EI =



0, 2Eo,





(
n

(x)
r

)2

− κ
(x)
2

κ
(x)
23 − iGx

+
κ

(x)
32 + iGx(

n
(x)
r

)2

− κ
(x)
3



Eo





exp
[
i
(
ωt− ψ(x)

r

)]
,

(28)

EII =



0, 2Eo,





(
n

(x)
l

)2

− κ
(x)
2

κ
(x)
23 − iGx

+
κ

(x)
32 + iGx(

n
(x)
l

)2

− κ
(x)
3



Eo





exp
[
i
(
ωt− ψ

(x)
l

)]
.

(29)

Using Euler formula: exp [i (ωt− ψ)] = cos (ωt− ψ) +
i sin (ωt− ψ) we write real part of the component (28), (29):

E2I = Eo cos
(
ωt− ψ(x)

r

)
, (30)

E3I = EoA
(x) cos

(
ωt− ψ(x)

r + ϕ(x)
)
, (31)

E2II = Eo cos
(
ωt− ψ

(x)
l

)
, (32)

E3II = EoB
(x) cos

(
ωt− ψ

(x)
l + ϕ(x)

)
, (33)

where

A(x) =
√
A2

1 +A2
2,

B(x) =
√
B2

1 +B2
2 ,

ϕ(x) = arctan
A2

A1
= arctan

B2

B1
,

A1 =

(
κ

(x)
3 − κ

(x)
2 +

√(
κ

(x)
2 − κ

(x)
3

)
+ 4

(
G2

x + κ
(x)
23 κ

(x)
32

))[
κ

(x)
23

(
G2

x + κ
(x)
23 κ

(x)
32

)
+ κ

(x)
32

(
G2

x +
(
κ

(x)
23

)2
)]

2

(
G2

x +
(
κ

(x)
23

)2
)(

G2
x + κ

(x)
23 κ

(x)
32

) ,

A2 =

(
κ

(x)
3 − κ

(x)
2 +

√(
κ

(x)
2 − κ

(x)
3

)
+ 4

(
G2

x + κ
(x)
23 κ

(x)
32

))(
2G2

x +
(
κ

(x)
23

)2

+ κ
(x)
23 κ

(x)
32

)

2

(
G2

x +
(
κ

(x)
23

)2
)(

G2
x + κ

(x)
23 κ

(x)
32

) ,

B1 =

(
κ

(x)
3 − κ

(x)
2 −

√(
κ

(x)
2 − κ

(x)
3

)
+ 4

(
G2

x + κ
(x)
23 κ

(x)
32

))[
κ

(x)
23

(
G2

x + κ
(x)
23 κ

(x)
32

)
+ κ

(x)
32

(
G2

x +
(
κ

(x)
23

)2
)]

2

(
G2

x +
(
κ

(x)
23

)2
)(

G2
x + κ

(x)
23 κ

(x)
32

) ,

B2 =

(
κ

(x)
3 − κ

(x)
2 −

√(
κ

(x)
2 − κ

(x)
3

)
+ 4

(
G2

x + κ
(x)
23 κ

(x)
32

))(
2G2

x +
(
κ

(x)
23

)2

+ κ
(x)
23 κ

(x)
32

)

2

(
G2

x +
(
κ

(x)
23

)2
)(

G2
x + κ

(x)
23 κ

(x)
32

) ,

ϕ(x) = arctan

Gx

(
2G2

x +
(
κ

(x)
23

)2

+ κ
(x)
23 κ

(x)
32

)

G2
x

(
κ

(x)
23 + κ

(x)
32

)
+ 2

(
κ

(x)
23

)2

κ
(x)
32

.
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We group formulas (30), (31), (32), (33) accordingly, and
register two light waves travelling towards the Cosserat medi-
um in the form:

(
E2II

Eo

)2

+

(
E3I

EoA(x)

)2

− 2
E2IIE3I

E2
oA

(x)

cos
[(
ψ(x)

r − ψ
(x)
l

)
− ϕ(x)

]
= sin2

[(
ψ(x)

r − ψ
(x)
l

)
− ϕ(x)

]
,

(34)

(
E2I

Eo

)2

+

(
E3II

EoB(x)

)2

− 2
E2IE3II

E2
oB

(x)

cos
[(
ψ

(x)
l − ψ(x)

r

)
− ϕ(x)

]
= sin2

[(
ψ

(x)
l − ψ(x)

r

)
− ϕ(x)

]
.

(35)
The formulas (34), (35) present right and left-handed elliptical
polarization light waves which travel forward in an elliptical
helical path.

The infinitesimal path retardation

d∆(x) =
[
(n(x))r − (n(x))l

]
dx,

is written as:

d∆(x) = C

√(
κ

(x)
2 − κ

(x)
3

)2

+ 4
(
G2

x + κ
(x)
23 κ

(x)
32

)
dx,

(36)

where C =
1

n
(x)
r + n

(x)
l

∼= 1
2n

, n(x)
r + n

(x)
l

∼= 2n, (small

optical anisotropy). When we arrive at the linear medium we
ignore the vector of optical rotation, Gx = 0, and when the
principal directions (1, 2, 3) are parallel to the directions of
the coordinate system (x, y, z) we obtain formula:

d∆(x) = C (κ2 − κ3) dx, (37)

which is applied in linear birefringence [13–15].

Formulas (7) and (8) are substituted by formula (36) and
the infinitesimal path retardation of the Cosserat birefringence
medium is expressed by components of the force stress and
couple stress tensor:

d∆(x) = C
√
a∗ dx, (38)

where

a∗ = (Cσ
1 )2

[(
σ

(x)
2 − σ

(x)
3

)2

+ 4τ
(x)
23 τ

(x)
32

]

+ 4
[
g + C

µ
1 µx + C

µ
2

(
µx + µ

(x)
2 + µ

(x)
3

)]2

For symmetrical elasticity without couple stresses formula
(38) corresponding to linear photoelasticity [13–15] and we
write for the principal directions ((x) = 1, 2, 3):

d∆(x) = C1 (σ2 − σ3) dx, (39)

where C1 =
Cσ

1

2n
.

6. Cosserat gyro-birefringence formula

We write formula (14) in the form of the sum:



κx κ

(x)
x2 − iG

(x)
3 κ

(x)
x3 + iG

(x)
2

κ
(x)
2x + iG

(x)
3 κ

(x)
2 κ

(x)
23 − iGx

κ
(x)
3x − iG

(x)
2 κ

(x)
32 + iGx κ

(x)
3





=




0 −iG(x)

3 iG
(x)
2

iG
(x)
3 0 −iGx

−iG(x)
2 iGx 0





+




κx κ

(x)
x2 κ

(x)
x3

κ
(x)
2x κ

(x)
2 κ

(x)
23

κ
(x)
3x κ

(x)
32 κ

(x)
3



 .

(40)

Then we study only gyro-birefringence component when
κ

(x)
1 = κ

(x)
2 = κ

(x)
3 = 0, and κ(x)

12 = κ
(x)
21 = 0, κ(x)

23 = κ
(x)
32 =

0, κ(x)
31 = κ

(x)
13 = 0. Equations (18), (19) are written as:

(
n(x)

r

)2

= Gx, (41)

(
n

(x)
l

)2

= −Gx. (42)

We then substitute (41), (42) to (20), (21), (22), (23) in order
to obtain two independent solutions:

E
(x)
3

E
(x)
2

= i, (43)

E
(x)
3

E
(x)
2

= −i, (44)

which allow us to describe two light waves:

EI = [0, 2Eo, i2Eo] exp
[
i
(
ωt− ψ(x)

r

)]
, (45)

EII = [0, 2Eo,−i2Eo] exp
[
i
(
ωt− ψ

(x)
l

)]
. (46)

We take the real part of the solutions (45), (46) and add mu-
tual perpendicular waves leading us to obtain two pairs of the
intensity component of the electric field:





E2I = Eo cos

(
ωt− ψ

(x)
l

)

E3I = Eo cos
(
ωt− ψ

(x)
l + π

2

) , (47)





E2II = Eo cos

(
ωt− ψ

(x)
r

)

E3II = Eo cos
(
ωt− ψ

(x)
r − π

2

) , (48)

expressed as:
E2

2I + E2
3I = E2

o , (49)

E2
2II + E3II2 = E2

o . (50)

Solutions (47), (48) and (49), (50) mean that two right and
left-handed light waves, travel forward in a circular helicon
path.

The infinitesimal phase retardation for each of the waves
on the dx way are written as:

dψ(x)
r =

2π

λ

(
n(x)

r − n
)
dx, (51)
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dψ
(x)
l =

2π

λ

(
n

(x)
l − n

)
dx. (52)

The relative phase retardation (51), (52) of the right and left-
handed circular polarization waves create the infinitesimal ro-
tation of the azimuth of polarization:

dΓcouple
x =

1

2

(
dψ(x)

r − dψ
(x)
l

)

=
π

λ

(
n(x)

r − n
(x)
l

)
dx =

π

λ
√
κ
Gxdx.

(53)

For geometrical way AB, Fig. 1, we write:

Γcouple

AB
=

π

λn

B∫

A

Gxdx, (54)

where Γcouple

AB
is the angle of the rotation of the azimuth of

polarization, n ∼=
√
κ. We join (4) and (54), and we obtain

the searched relation between Γcouple

AB
and components of the

couple stresses:

Γcouple

AB
=

π

λn

B∫

A

[
g + (Cµ

1 + C
µ
2 )µx + C

µ
2

(
µ

(x)
2 + µ

(x)
3

)]
dx.

(55)

Fig. 1. Measurement model of the anticipate of the rotation of the
azimuth of polarization in Cosserat gyro-birefringence material

7. Conclusions

As it is seen, a plane-polarized light wave on passing through
the Cosserat medium is split into two right and left-handed
elliptical polarization light waves which travel forward in an
elliptical helical path. We divide elliptical light wave into two
components: plane-polarized wave and circularly polarized
wave. Circular polarized waves is right and left-handed and
travels forward in an circular helical path. The linear polariza-
tion is associated with classical photoelasticity (force stresses)
and circular polarization belongs to nonsymmetrical photoe-
lasticity (couple stresses). Two circular helicon path travels
forward with different speeds. As a result of interference we

obtain a rotation of the azimuth of polarization proportional
to couple stresses.

The work presented is an attempt to complement the bire-
fringence theory in which the influence of the mechanical
factor on gyro-birefringence is not known.

Appendix 1

We analyze an atom where the mass centre and the action
centre of Coulomb forces is not lined up. This symmetry dis-
turbance is created by an optical active electron.

The assumption is to eliminate the orbital angular mo-
ment of the optical active electron by the action of the crystal
field. The energy contribution due to the electron spin S un-
der a nonsymmetrical mechanical loading, can be written in
this form [11]:

Ecouple = −ωcoupleS. (A1)

There ωcouple is the precession vector of spin due to non-
symmetrical loading. Equation (A1) can be re-written in the
operator form as follows:

ωcoupleŜΦ = EcoupleΦ, (A2)

there Φ is the wave function, Ŝ is operator of spin. Equa-
tion (A1) corresponds now to the Schrödinger equation writ-
ten in the component “z” Cartesian coordinate system:

ωcouple
z ŜzΦz = Ecouple

z Φz. (A3)

By application the Pauli operators:

Ŝz =
~

2

(
1 0

0 −1

)
(A4)

and the spin wave functions:

Φz =






Φ+
z =

(
1

0

)
for mechSz

=
1

2
,

Φ−

z =

(
0

1

)
for mechSz

= −1

2
,

(A5)

where mechSz
denotes the spin quantum number for the axes

“z” the Eq. (A2) now read:

ŜzΦz = ~ mechSz
Φz. (A6)

Using analogy between (A3) and (A6) the eigenfunctions for
both sets of equations can be presented in the form:

Ecouple
z = ωcouple

z ~ mechSz
. (A7)

Appendix 2

Maxwell equations are grouped with material equations and
are written in the first approximation [1–2]:

rotH − Ḋ = 0

D = κκoE

}
rotḢ − κκoË = 0, (A1)

rotE + Ḃ = 0

B = χχoH

}
rotrotE + χχorotḢ = 0, (A2)

where H is the vector of the field of the magnetic intensity,
B is the vector of the magnetic induction, χo is magnetic
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permeability of the vacuum, χ is magnetic permeability of
the medium. On the basis of the identity:

rotrotE = graddivE −∇2E = 0, (A3)

we obtain the wave equation:

∇2E − χχoκκoË = 0, (A4)

and the solution (A3) as:

E = Eo exp

[
iω

(
t− rs

cn

)]
, (A5)

where ω – angular frequency, t – time, r – radius vector,
cn = 1

/√
κκoχχo – phase speed of the wave in the medi-

um with refractive index n. We apply the rotation operator to
(A4) and after the transmutation we write:

rotE =
iω

cn
(E × s) . (A6)

Similarly, we obtain:

rotH =
iω

cn
(H × s) . (A7)

Then we group equations:

D = κκoE,

E = Eo exp

[
iω

(
t− rs

cn

)]



 Ḋ = iωD (A8)

and

B = χχoH,

H = Ho exp

[
iω

(
t−

rs

cn

)]



 Ḃ = iωB. (A9)

After joining formulas written above we obtain:

rotH − Ḋ = 0 → H × s = cnD, (A10)

rotE + Ḃ = 0
B=χχoH−−−−−−→ s × H = cnχχoH. (A11)

Formulas (A10) are written in the form:
√
κκo

χχo

[(s × E) × s] = cnD. (A12)

Including: n =
√
χκ, χ = 1, we obtain:

D = −κon
2 [(E × s) × s] . (A13)

Finally, we write:

D = κon
2 [E − s (Es)] . (A14)
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